首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most traits of agronomic importance in rice are quantitative in nature and are controlled by polygenes, called quantitative trait loci (QTL). Understanding the nature and effect of QTLs are important for rice breeding to achieve higher yield and stability. Single segment substitution lines (SSSLs or 3-S Lines) were developed through simple sequence repeats (SSR) marker-facilitated backcrossing methods for Hua-Jing-Xian 74 (HJX74) with the donor segment from six elite germplasm and was characterized. Complete genome survey was carried out with 258 polymorphic SSR markers. Polymorphism of the donors with the recurrent parent varied between 32.98 and 60.73% with an average of 47.81%. Japonica donors were more polymorphic than indica donors. Number of substitution segments per plant decreased with the advancement of backcross generations. In BC2F1, BC3F1, BC3F2 and BC3F3 the average number of substitution segment per plant were 12.5, 5.98, 1.69 and 1.46, respectively. Average size of substitution segments also decreased with the number of times plants were backcrossed and selfed. In BC2F1, BC3F1, BC3F2 and BC3F3, average size of the segments was 25.43, 22.38, 20.78 and 18.15 cM, respectively. The rate of reduction of segment size was more in backcross (11.99%) than selfing (7.15%) generations. Percent recovery of recurrent parent genome in BC2F1, BC3F1, BC3F2 and BC3F3 was 82.24, 92.55, 98.04 and 98.52%, respectively. A total of 111 SSSLs comprising of 43 unique types were developed in BC3F2 and BC3F3. The estimated length of the segments in SSSLs ranged from 2.00 to 64.80 cM with an average of 21.75 cM, and 6.05 to 48.90 cM with an average of 20.95 cM in BC3F2 and BC3F3, respectively. Total length of all substitution segments was 2367.5 cM that covered 704.50 cM (39.25%) of the entire rice genome. Effective development and successful utilization of 3-S Lines for analysis of QTLs and mapping of genes established the suitability of the SSR marker facilitated backcross breeding approach for 3-S Lines development and its utilization.  相似文献   

2.
Introgression populations consist of a set of introgression lines or families, constructed by continuous backcrossing to the recurrent parent, while carrying a limited number of chromosome segments from a donor parent in their genomes. Increasing the genome coverage is an important aim when constructing introgression population. In this study, we proposed bulk pollen pollination (BPP) method and used it to increase the genome coverage of a maize introgression population. The results showed that the genome coverage of the introgression population constructed using BPP method reached 100% at BC3 generation, which accorded with the simulation result. The BPP‐based BC3F1:2 population could identify most quantitative trait loci (QTL) detected using the F2:3 population, especially major QTL. Simulation analysis showed that the genome coverage of introgression population increased with the increase of population size and the number of bulked plants, and decreased with the increase of backcross generation. Our results proved the reliability of the BPP‐based introgression population in increasing genome coverage and detecting QTL, and provided references for constructing high‐coverage introgression populations.  相似文献   

3.
全基因组导入系是遗传和育种研究的重要材料。导入系经受体亲本和供体亲本间连续杂交、回交构建而成, BC1F1群体大小是获得理想导入系群体的关键参数。然而, 各物种所需要的最小群体尚不清楚, 并且难以通过试验确定。本研究通过编写程序, 模拟减数分裂时的重组过程研究适宜的群体大小, 并通过数学运算和试验验证程序的可靠性。结果表明, 编程模拟与数学计算和试验结果一致。BC1F1群体大小与连锁群数目、连锁群长度和基因密度之间均为正相关。当模拟连锁群从5个增加到40个时, 群体大小需要由6.06增加到9.49; 当模拟连锁群长度从80 cM增加到200 cM时, 需要的群体大小从7.14增加到8.64; 当模拟基因密度从每基因20 cM缩小到每基因5 cM时, 群体大小从7.65增加到8.22。为测试该程序的应用范围, 对水稻、小麦、玉米、大豆等主要作物进行了BC1F1群体大小模拟,在保证95%的概率覆盖全基因组条件下, 水稻需要的群体最少, 为12个个体, 小麦和大豆均需13个个体, 玉米需要的个体数最多, 为14~15个。  相似文献   

4.
Marker assisted backcrossing has been used effectively to transfer the submergence tolerance gene SUB1 into popular rice varieties, but the approach can be costly. The selection strategy comprising foreground marker and phenotypic selection was investigated as an alternative. The non-significant correlation coefficients between ranking of phenotypic selection and ranking of background marker selection in BC2F1, BC3F1 and BC3F2 generations indicated inefficiency of phenotypic selection compared to marker-assisted background selection with respect to recovery of the recipient genome. In addition, the introgression size of the chromosome fragment containing SUB1 was approximately 17 Mb, showing the effects of linkage drag. The significant correlation coefficient between rankings of phenotypic selection with the percentage of recipient alleles in the BC1F1 generation suggested that background selection could be avoided in this generation to minimize the genotyping cost. The phenotypically selected best plant of the BC3F1 generation was selfed and backcross recombinant lines were selected in the resulting BC3F4 generation. The selection strategy could be appropriate for the introgression of SUB1 QTL in countries that lack access to high-throughput genotyping facilities.  相似文献   

5.
Flooding is one of the major hazards of rice production for the rainfed lowland rice ecosystem, and tolerant cultivars are urgently needed to help protect farmers from submergence damage. A quick and efficient strategy was implemented to introgress SUB1, a major QTL for submergence tolerance, into a rainfed lowland mega variety BR11 of Bangladesh by only two backcrosses and one selfing generation. In marker-assisted backcrossing (MABC), one tightly-linked simple sequence repeat (SSR) and two gene-based markers, four flanking SSR and 116 background SSR markers were used for foreground, recombinant and background selection, respectively, in backcrosses between a SUB1 donor IR40931-33-1-3-2 and BR11. BR11-Sub1, identified in a BC2F2 plant, possessed BR11 type SSR alleles on all fragments analyzed except the SUB1 QTL. The introgression size in BR11-Sub1 was 800 Kb indicating approximately 99.8% identity to BR11. BR11-Sub1 along with other introgression lines showed submergence tolerance similar to the tolerant parent. Yield, yield-component parameters and grain physico-chemical properties showed successful recovery of the BR11 traits in BR11-Sub1, with yield potential ranging from 5.2 to 5.6 t/ha, not significantly different from the recurrent parent mega variety BR11. Producing a large number (~1000) of backcross F1 plants was considered essential to achieve recombination on both sides of the gene, limiting linkage drag with only two backcrosses. A large number of background markers ensured proper recovery of the recurrent parent genome in the BC2F2 generation. The study demonstrates a rapid and highly precise strategy to introgress a major QTL by BC2F2 generation into a modern rice variety using an unadapted donor. The variety can replace BR11 on more than 2 million of ha in Bangladesh and provide major increases in rice production.  相似文献   

6.
Introgression of yellow mosaic disease (YMD) resistance and effect of recurrent parent genome (RPG) on grain yield was studied in 84 soybean genotypes from four populations namely, F2:7, BC1F6, BC2F5 and BC3F4 derived from cross JS335 x SL525. It was observed that in F2:7, BC1F6, BC2F5 and BC3F4 derived lines, RPG contribution was 42.5%, 54.9%, 66.4% and 77.6%, respectively, which is significantly less than expected values. Linkage drag from donor parent with YMD resistance gene may be a possible reason for such deviations. Average grain yield per plant in F2:7, BC1F6, BC2F5 and BC3F4 generations was observed as 13.0, 14.3, 14.9 and 16.1 g, respectively. It was observed that genotypes with more than 80% RPG observed to have both YMD resistance and good yield potential. Graphical genotyping (GGT) analysis revealed that maximum RPG was recovered in chromosomes 8 and 10 and maximum introgression occurred in chromosomes 6 and 19. Our results demonstrated that RPG was positively associated with yield as evident from yield increase with increase in RPG.  相似文献   

7.
This study aimed at developing, characterizing and evaluating two maize phenotypic‐selected introgression libraries for a collection of dominant plant height (PHT)‐increasing alleles by introgressing donor chromosome segments (DCS) from Germplasm Enhancement of Maize (GEM) accessions into elite inbred lines: PHB47 and PHZ51. Different backcross generations (BC1‐BC4) were developed and the tallest 23 phenotype‐selected introgression families (PIFs) from each introgression library (PHB47 or PHZ51) were selected for single nucleotide polymorphism genotyping to localize DCS underlying PHT. The result shows that most PIFs carrying DCS were significantly (α = 0.01) taller than the respective recurrent parent. In addition, they contained larger donor genome proportions than expected in the absence of selection or random mating across all BC generations. The DCS were distributed over the whole genome, indicating a complex genetic nature underlying PHT. We conclude that our PIFs are enriched for favourable PHT‐increasing alleles. These two libraries offer opportunities for future PHT gene isolation and allele characterization and for breeding purposes, such as novel cultivars for biofuel production.  相似文献   

8.
构建水稻优良恢复系背景的重叠片段代换系及其效应分析   总被引:7,自引:2,他引:5  
通过回交程序结合分子标记辅助选择构建了一套以优良籼稻恢复系9311为背景、导入片段来源于粳稻日本晴的代换系群体。该套群体由125个代换系组成,每系含有单一或少量导入染色体片段,导入片段间相互重叠或衔接能覆盖粳稻全基因组。代换系的平均背景回复率为98.4%,导入片段平均长度为20.9 cM,纯合和杂合导入片段分别占水稻基因组的1.4%和0.2%。利用该群体,两年共检测到31个QTL影响水稻穗重、穗长、结实率和秃顶等性状;导入片段QTL对穗重和结实率均起减效作用。该套重叠片段代换系将为重要性状的基因定位、功能鉴定以及籼粳杂交育种研究提供极有价值的遗传材料。  相似文献   

9.
Using the advanced backcross quantitative trait loci (AB‐QTL) strategy, we successfully transferred and mapped valuable allelic variants from the high β‐glucan (BG) accession IAH611 (PI 502955), into the genome of cultivar ‘Iltis’. By backcrossing one BC1F1 plant to ‘Iltis’, we developed two BC2F2‐6 populations A and B, comprising 98 and 72 F2‐individuals, respectively. Genotyping of BC2F2 individuals with predominantly AFLP markers resulted in 12 linkage groups with a map size of 455.4 cM for Population A and 11 linkage groups with a map size of 313.5 cM for Population B. Both populations were grown at three sites in Germany over a three‐year period. Individuals were then phenotyped for 13 traits including grain yield (YD) and β‐glucan content (BG). QTL analysis via stepwise regression detected a total of 33 QTLs, most of which were clustered in three linkage groups. Two dense linkage groups A1 and B13 were found to be putatively homologous to groups KO_6 and KO_11 of the ‘Kanota’/‘Ogle’ map, respectively.  相似文献   

10.
Given that feral transgenic canola (Brassica napus) from spilled seeds has been found outside of farmer’s fields and that B. juncea is distributed worldwide, it is possible that introgression to B. juncea from B. napus has occurred. To investigate such introgression, we characterized the persistence of B. napus C genome chromosome (C-chromosome) regions in backcross progenies by B. napus C-chromosome specific simple sequence repeat (SSR) markers. We produced backcross progenies from B. juncea and F1 hybrid of B. juncea × B. napus to evaluate persistence of C-chromosome region, and screened 83 markers from a set of reported C-chromosome specific SSR markers. Eighty-five percent of the SSR markers were deleted in the BC1 obtained from B. juncea × F1 hybrid, and this BC1 exhibited a plant type like that of B. juncea. Most markers were deleted in BC2 and BC3 plants, with only two markers persisting in the BC3. These results indicate a small possibility of persistence of C-chromosome regions in our backcross progenies. Knowledge about the persistence of B. napus C-chromosome regions in backcross progenies may contribute to shed light on gene introgression.  相似文献   

11.
为探讨偏凸山羊草-柱穗山羊草双二倍体SDAU18在小麦遗传改良中的利用价值,以SDAU18和普通小麦品种烟农15及其9个杂种世代为材料,分析不同自交和回交世代染色体和性状分离的特点。结果表明,随自交和以烟农15为轮回亲本回交世代的增加,染色体数目逐渐减少,回交比自交能使后代的染色体数目更快趋近普通小麦的42条,至F5和BC3F1代,染色体数目为42的植株已分别达93.9%和92.0%。与自交世代相比,回交后代减数第一分裂中期的花粉母细胞的染色体构型较为简单,回交次数过多不利于外源染色体与普通小麦染色体发生重组,一般应以回交2~3次为宜;随自交和回交世代的增进,杂种的育性提高,至F3和BC2F1代育性基本稳定。在不同杂种世代可分离出具有矮秆、大穗、大粒、对白粉病、条锈病免疫或高抗及外观品质优良的变异类型,以F3和BC1F1代的变异类型最丰富。  相似文献   

12.
S. Chen    C. G. Xu    X. H. Lin  Q. Zhang 《Plant Breeding》2001,120(2):133-137
Bacterial blight (BB), caused by Xanthomonas oryzae pv. oryzae (X00), is one of the most devastating diseases of rice world‐wide; it is also a serious problem of hybrid rice production in China. In this study, a molecular marker‐assisted introgression of Xa21, a gene highly resistant to a broad spectrum of Xoo strains, from ‘IRBB21’ was performed to improve the BB resistance of‘6078′, a new restorer line with high yielding potential. The entire process took one generation of crossing followed by three generations of backcrossing and one generation of selfing. The presence of Xa21 in each generation was determined by both polymerase chain reaction (PCR) and pathogen inoculation. Recombinations between Xa21 and flanking markers were identified by PCR analysis. Background selection was conducted in BC1F1 and BC2F1 using amplified fragment length polymorphism (AFLP) markers detecting a total of 129 polymorphic bands between‘6078’ and ‘IRBB21′. The individual selected in BC3F2, or‘6078′(Xa21), carried a fragment of less than 3.8 cM from the donor line in the Xa21 region on chromosome 11, and about 98.8% of the genetic background from the recurrent parent. The results showed that‘6078′(Xa21) had the same level and spectrum of BB resistance as the donor parent ‘IRBB21′, while maintaining the agronomic performance and combining ability of the original 6078. A significant increase in BB resistance was also achieved in the hybrid using 6078(Xa21) as the restorer line.  相似文献   

13.
Developing chromosome segments substitution lines (CSSLs) is an effective method for broadening the cotton germplasm resource, and improving the fiber quality and yield traits. In this study, the 1054 F2 individual plants and 116 F2:3 lineages were generated from the two parents of MBI9749 and MBI9915 selected from BC5F3:5 lines which originated from hybridization of CCRI36 and Hai1, and advanced backcrossing and repeated selfing. Genotypes of the parents and F2 population were analyzed. The results showed that 19 segments were introgressed for MBI9749 and 12 segments were introgressed for MBI9915, distributing on 17 linkage groups. The average background recovery rate to the recurrent parent CCRI36 was 96.70% for the two parents. An average of 16.46 segments was introgressed in F2 population. The average recovery rate of 1054 individual plants was 96.85%, and the mean length of sea island introgression segments was 157.18 cM, accounting for 3.15% of detection length. QTL mapping analysis detected 22 QTLs associated with fiber quality and yield traits in the F2 and F2:3 populations. These QTLs distributed on seven chromosomes, and the phenotypic variation was explained ranging from 1.20 to 14.61%. Four stable QTLs were detected in F2 and F2:3 populations, simultaneously. We found that eight QTLs were in agreement with the previous research. Six QTL-clusters were identified for fiber quality and yield traits, in which five QTL-clusters were on chromosome20. The results indicated that most of QTL-clusters always improve the fiber quality and have negative additive effect for yield related traits. This study demonstrated that CSSLs provide basis for fine mapping of the fiber quality and yield traits in future, and could be efficiently used for pyramiding favourable alleles to develop the new germplasms for breeding by molecular marker-assisted selection.  相似文献   

14.
Two series of progenies were developed from hybrids between octoploid (AABBDDRR) and tetraploid triticale ((AB)(AB)RR). One arose from the successive selfing of the F1s, while the second was established after one backcross of the F1 hybrids with the respective 8 × triticale parent. Altogether, 250 F3 and BC1F2 lines were developed, of which 112 were karyotyped in the F4/F5 or in BC1F3/BC1F4 generations using C-banding and SDS-PAGE. The 112 lines represented 61 different karyotypes, of which 39 appeared to be stabilized, having pairs of homologous wheat chromosomes only, while 22 karyotypes exhibited 1—3 heterologous pairs. The frequency of karyotypically stabilized lines originating from the series with one backcrossing was much higher (79.5 %) than those derived from the successive selfing of the F1 hybrids (51.7%). Six lines had the pure hexaploid triticale chromosome constitution. The frequency of disomic substitutions of D genome chromosomes for their homoeologous A and/or B genome chromosomes ranged from one to six per line with an average of 1.7. Except for 3B and 6B all possible D(A/B) substitutions were obtained. Chromosomes ID and 3D substituted for their homoeologues with the highest frequency, while the substitution of chromosome 4D for 4A or for 4B was the least frequent. D(R) substitutions were found in eight lines only. A complete set of 6x triticale lines was established in which chromosome ID was present in all possible combinations, i.e. single 1D(1A/1B/1R) disomic substitutions as well as disomic ID addition.  相似文献   

15.
Two related segregating populations of Theobroma cacao L. were analysed for their resistance to Phytophthora palmivora. The first F1 population was obtained by crossing two susceptible cacao clones of Catongo (a highly homozygous genotype) and Pound 12(a highly heterozygous genotype) and the second population was obtained by backcrossing a single F1 tree with Catongo. The genetic maps obtained for each population were compared. The F1 map includes 162 loci and the backcross has 140 loci. The two maps, F1 and BC1, exhibit high co-linear loci organization covering respectively, 772 and 944 cM.Phytophthora resistance was assessed by measuring the size increase of a lesion at five (DL5)and ten days (DL10) after pod inoculation. Six different QTL were detected in the F1 and BC1 populations. One QTL was found in both populations, and appeared to be a major component of disease resistance, and explaining nearly 48% of the phenotypic variance in the F1 population. The absence of some yield QTL detection in the BC1 in comparison with the F1 population is due to the lack of transmission of the favouring alleles for these QTL from the single F1 tree used for the backcross. The phenotypic variance explained by the action of the quantitative trait alleles indicated that genetic factors of both major and minor effects were involved in the control of the character studied. QTL conferring increased resistance to Phytophthorawere identified in both susceptible parents, suggesting the presence of transgressive traits and the possibility of selection in cacao. Pleiotropic and epistatic effects for the QTL were also detected. Finally, the use of marker assisted selection (MAS) in cacao breeding programs is discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
The development of soybean varieties that lack the β‐conglycinin α‐subunit is an attractive goal because the β‐conglycinin α‐subunit negatively influences the nutrition and gelation of tofu and is a major allergen. To remove this undesirable allergen and simultaneously improve the seed nutritional value and food‐processing quality, marker‐assisted background selection (MABS) was used in backcross breeding to incorporate cgy‐2, a null phenotype version of the gene encoding the β‐conglycinin α‐subunit, from the donor line ‘RiB’ into the genetic background of the Chinese cultivar ‘Dongnong47’ (DN47), a popular high‐oil superfine seed soybean cultivar from Heilongjiang Province, China. In each F2 (F2, BCnF2) generation of the breeding programme, the offspring that carried the introgressed cgy‐2 were identified by sodium dodecyl sulphate–polyacrylamide gel electrophoresis and rescreened by MABS using simple sequence repeat markers to accelerate recurrent parent genome recovery. Of the 49 advanced backcrossing breeding lines (ABLs), the three best lines, ABL1, ABL2 and ABL3, were selected from the BC1, BC2 and BC3 populations, respectively. The ABLs were evaluated for desirable agronomic characteristics, yield‐related traits, amino acid composition, free amino acid composition and tofu‐processing quality in the mature seeds. All of the ABLs lacked the α‐subunit but grew and reproduced normally without deleterious effects on physiological processes such as seed development and germination. The free amino acid content of ABL1 was significantly higher than that of ‘DN47’, with arginine (Arg) being particularly enriched. Compared to the recurrent parent ‘DN47’, the total protein content of the three ABLs was higher, the amino acid composition of the seed proteins was markedly modified and the yield and hardness of the tofu that was made from the ABLs were significantly increased. MABS combined with stringent phenotypic selection in a backcross breeding programme is a feasible strategy for the genetic engineering of seed protein components to produce allergenic subunit‐deficient variant alleles.  相似文献   

17.
Cucumber (Cucumis sativus L.) is a major cucurbit vegetable species whose genetic base has been drastically reduced during its domestication. The crop’s narrow genetic base (3–12% DNA polymorphism) has resulted from the use of limited genetic material and intense selection during plant improvement. Recently, however, interspecific hybridization has been successful in Cucumis via mating of C. hystrix Chakr. and C. sativus, which resulted in the amphidiploid C. hytivus. We report herein a marker-assisted strategy for increasing genetic diversity in cucumber through introgression backcrossing employing C. hytivus. The comparatively late-flowering but high-yielding, indeterminate, monoecious line WI 7012A (P1; donor parent) derived from a C. hytivus × C. sativus-derived line (long-fruited Chinese C. sativus cv. Beijingjietou) was initially crossed to the determinate, gynoecious C. sativus line WI 7023A (P2; recurrent parent 1), and then advanced backcross generation progeny (BC2) were crossed with the gynoecious indeterminate line WI 9-6A (P3; recurrent parent 2). More specifically, a single F1 individual (P1 × P2) was backcrossed to P2, and then BC progeny were crossed to P2 and P3, where marker-assisted selection (MAS) for genetic diversity (8 mapped and 16 unmapped markers; designated Sel) or no selection (designated NSel) was applied to produce BC3P2 (Sel) and BC3P3 (Sel), and BC2P2 (NSel) and BC2P2S1 (NSel) progeny. Relative vegetative growth, number of lateral branches (LB), days to flowering (DF), yield (fruit number), and fruit quality [as measured by length:diameter (L:D) and endocarp:total diameter (E:T) ratios] were assessed in parents and cross-progeny. DF varied from ~20 (BC3P2Sel) to ~25 days (BC2P3Sel) among the populations examined, where progeny derived from P2 possessed the shortest DF. Differences in cumulative yield among the populations over six harvests were detected, varying from ~8 fruits per plant in BC3P2 (Sel) to ~39 fruits per plant in BC2P3 (Sel). Although the vigorous vegetative growth of line P1 was observed in its backcross progeny, highly heterozygous and polymorphic backcross progeny derived from P3 were comparatively more vigorous and bore many high-quality fruit. Response to selection was detected for LB, DF, L:D, and E:T, but the effectiveness of MAS depended upon the parental lines used. Data indicate that the genetic diversity of commercial cucumber can be increased by introgression of the C. hystrix genome through backcrossing.  相似文献   

18.
以携带抗纹枯病QTL qSB-9TQ的籼稻品种特青和携带抗条纹叶枯病基因Stv-bi的粳稻品种镇稻88为优良等位基因供体亲本,江苏省推广的粳稻品种武育粳3号和武粳15为受体亲本,分别杂交并连续回交。在回交及自交分离世代,利用开发的覆盖目标基因区间的双侧分子标记对目标基因进行辅助选择。至回交BC4F1世代,同一遗传背景2个回交方向的中选单株间聚合杂交,获得2个目标基因位点均纯合的聚合F3株系。条纹叶枯病抗性鉴定和纹枯病抗性接种鉴定结果表明,聚合株系对条纹叶枯病均表现抗病;以0~9级评级标准评价,聚合株系的纹枯病较相应的轮回亲本分别低1.1~1.6级和0.8~1.4级。结合回交低世代抗性鉴定结果分析,自行开发的分子标记对目标基因的辅助选择是有效的。讨论了抗纹枯病育种及分子标记辅助选择聚合育种的相关问题。  相似文献   

19.
N. Inomata 《Euphytica》2003,133(1):57-64
The cytogenetic study was investigated in the intergeneric F1 hybrid, F2and backcross progenies (BC1). The plants used were Brassica juncea(2n=36) and Diplotaxis virgata(2n=18). Three intergeneric F1 hybrids between two species were produced through ovary culture. They showed 36 chromosomes. It might consist one genome of B. juncea and two genomes of D. virgata. The morphology of the leaves resembled that of B. juncea. The color of the petals was yellow that was like in D. virgata. The size of the petal was similar to that of B. juncea. The mean pollen fertility was15.3% and the chromosome associations in the first meiotic division were(0–1)IV+(0–2)III+(8–12)II+(12–20)I. Many F2 and BC1seeds were harvested after open pollination and backcross of the F1 hybrids withB. juncea, respectively. The F2seedlings showed different chromosome constitutions and the range was from 28 to54 chromosomes. Most seedlings had 38chromosomes followed by 36, 40 and 54. The BC1 seedlings also showed different chromosome constitutions and the range was from 29 to 62. Most seedlings had both 40and 54 chromosomes followed by 36, 46 and52. In the first meiotic division of F2 and BC1 plants, a high frequency of bivalent associations was observed in all the various kinds of somatic chromosomes. Many F3 and BC2 seeds were obtained by self-pollination and open pollination of both F2 and BC1 plants, and by backcrossing both F2 and BC1plants with B. juncea, respectively,especially, three type progeny with 36, 40or 54 chromosomes. The somatic chromosomes of the F3 and BC2 plants were further investigated. The bridge plants between B. juncea and D. virgata with 36 chromosomes may be utilized for breeding of other Brassica crops as well as B. juncea. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
In a backcrossing programme to transfer desirable characters from wild Avena maroccana Gdgr. to cultivated oats, A. sativa L., meiotically stable plants in BC1F3 and BC2F2 progenies were isolated. The recovery of stable genotypes with 2n = 6×= 42 chromosomes indicated that two backcrosses are enough for such a programme. The cytological observations in various backcross generations are presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号