首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
里氏木霉产纤维素酶条件的优化   总被引:2,自引:1,他引:2  
研究采用里氏木霉菌株30911、40358和40359,设计了9个影响里氏木霉产纤维素酶活性因素,对里氏木霉的纤维素酶活性进行了液体摇瓶发酵试验。结果表明,培养基中微晶纤维素和小麦麸皮的最适添加量分别为:微晶纤维素20 g·L-1,小麦麸皮80 g.L-1,微晶纤维素与小麦麸皮最适配比为1:4;接种孢子悬液浓度1×107个·mL-1,培养温度28~30℃,pH 5.5,培养时间72 h,摇瓶转速180 r·min-1,250 mL三角瓶中装液量为50~75 mL。  相似文献   

2.
提高纤维素酶生产效率,降低纤维素酶生产成本是纤维素乙醇生产技术的关键之一。而碳源、氮源和无机盐等产酶培养基成分以及接种时间、产酶温度、培养初始pH等产酶条件是纤维素酶生产过程中的关键因素。为充分利用里氏木霉生产纤维素酶,研究了纤维素酶高产菌株里氏木酶FST-1产酶培养基和产酶条件对纤维素酶产酶的影响。结果表明:麸皮、蛋白胨和磷酸二氢钾的含量对于纤维素酶的生产影响较大,并且确定了最优产酶培养基为4号培养基。通过对不同产酶条件的研究,确定最佳接种时间为24h、最佳产酶温度为32℃、最佳初始pH为5.5,优化后的生产工艺可以将滤纸酶活力和蛋白含量提高3倍。  相似文献   

3.
里氏木霉产纤维素酶系各组分分泌特性   总被引:6,自引:0,他引:6  
在液体发酵条件下,以纤维素粉或麦麸为不同碳源及添加碳酸钙和酵母膏对里氏木霉产纤维素酶系不同组分的最高酶活、比酶活及其形成时间、分泌规律等进行了探讨。结果表明:以纤维素粉或麦麸为不同碳源时,各组分的最高酶活、酶活比及其形成时间均有较大差异,并以混合碳源(1 0%纤维素粉+2 0%麦麸)时为最佳,内切型β 1,4 葡聚糖酶(C1)外节型β 1,4 葡聚糖酶(Cx)和β 葡萄糖苷酶(BG)的最高酶活分别达到76 18×10-5,313 25×10-5和135 59×10-5mol·s-1,比酶活分别为72 18×10-5,331 57×10-5和124 29×10-5mol·s-1,最高酶活形成时间为9~10d。添加碳酸钙可明显提高C1和Cx的最高酶活及提高C1的比酶活,降低BG的最高酶活及比酶活和缩短C1和Cx的最高酶活形成时间;添加酵母膏能明显提高BG最高酶活但降低其酶活比;而C1和Cx的比酶活和最高酶活则随其浓度变化而增减不一。3种组分酶的分泌规律和酶系的均衡性极不相同,其中对BG的影响较为滞后。图3表3参12  相似文献   

4.
以里氏木霉(Trichodermareesei)RutC30为产酶菌株,经适当预处理后的啤酒糟为碳源或诱导物,通过深层培养可获得较高浓度的纤维素酯液,当固体碳源浓度为20g/L,碳氮比为8.5时,于初始pH=4.8温度26~28℃,转速150r/min下培养,其发酵时间为6d酶液浓度可达3.8FPIU/mL,酶产率172FPIU/g纤维素。  相似文献   

5.
6.
里氏木霉利用杂细胞产纤维素酶条件的研究   总被引:1,自引:0,他引:1  
以里氏木霉 (Trichodermareesei)为产酶菌株 ,杂细胞为产酶诱导物 ,通过固态发酵生产纤维素酶。研究结果表明 :杂细胞、稻草粉、麸皮三者之比为 2∶4∶4,氮源为硫酸铵 (总氮量为 0 4% ) ,料水比为 1∶2 ,2 8~ 30℃恒温培养5d ,为最佳产酶条件 ,CMC酶活达 5 16 6 4IU/g干曲。在培养基中添加 0 1%的表面活性剂Tween 80对产酶无显著影响。纤维素酶作用的最适 pH4 85、温度 5 0℃。  相似文献   

7.
采用里氏木霉DWC-5和50℃,转速110r.min^-1的摇瓶中发酵7d。在装液量40ml、初始PH6.5,接种量0.5%-1.5%,菌龄2d,培养时间7-9d、温度45-50℃,CMC酶活、FP酶活都达到较高水平。  相似文献   

8.
微量元素对里氏木霉DWC—5产纤维素酶的影响   总被引:5,自引:0,他引:5  
采用正交试验法,使里氏木霉(Trichoderma reesei)DWC-5在50℃,转速110r.min^-1的摇瓶中发酵5-7d。研究了铁、锰、锌、钴4种微量元素对里氏木霉DWC-5纤维素酶产生的影响。结果表明:对CMC酶活、FP酶活影响显著性的主次顺序依次为铁〉铁〉锌〉钴〉锰。微量元素的最佳组合对于CMC酶活:Fe,Zn,Co,Mn的用量分别为5.0,4.5,3.8,4.0mg.L^-1,C  相似文献   

9.
培养条件对里氏木霉产纤维素酶的影响   总被引:3,自引:0,他引:3  
通过对里氏木霉分别采用固体和液体进行静置或振荡(翻拌)培养,选择产纤维素酶活性最高的液体振荡培养的方式。以此为基础,在原有的培养液中分别添加葡萄糖、尿素、吐温80,测定其纤维素酶活、生物量以及pH值,得出在添加1.5g/L葡萄糖、1.0g/L尿素、0.5g/L吐温80的条件下,生物量增幅达到了48.67%;纤维素酶活可达到291.2×103U/L,提高了29.21%;pH值较为稳定,在5.0左右。  相似文献   

10.
[目的]探讨利用稻草秸秆作为碳源固态发酵产β-葡萄糖苷酶的条件。[方法]以碱预处理的稻草秸秆作为碳源,确定里氏木霉固态发酵的优化条件,使用发酵生产的酶制剂对稻草进行酶解反应。[结果]在采用酵母提取物作为氮源、固液比1.0∶2.0(g∶mL)、温度28℃、初始pH 5.5、吐温-80浓度为0.2%和发酵时间为96 h时,菌株固态发酵的产酶条件最优。在此发酵工艺条件下,β-葡萄糖苷酶活力为8.9 U/mL。利用试验所产酶制剂对稻草进行水解,酶解得率为68.2%。[结论]该研究为里氏木霉固态发酵生产β-葡萄糖苷酶和酶解稻草的应用提供了一定的依据。  相似文献   

11.
[目的]优化里氏木霉RutC-30产纤维素酶的液体发酵条件。[方法]以里氏木霉RutC-30为出发菌株,通过单因素试验研究培养基不同氮源(硫酸铵、尿素、蛋白胨)及浓度、不同碳源(纤维素、乳糖、甘油、葡萄糖)及浓度和不同的初始pH(3.0、4.0、5.0、6.0、7.0)对产酶的影响,在此基础上选取氮源、碳源和pH为影响因子采用正交试验探讨里氏木霉RutC-30产纤维素酶的优化条件。[结果]正交试验分析表明,各因素对产酶影响顺序依次为碳源>氮源>pH,里氏木霉RutC-30产纤维素酶的最佳条件是:以1%纤维素为碳源、以0.5%蛋白胨为氮源,初始pH值为4.0,在30℃产酶发酵培养5 d,纤维素酶活力高达7.303 U。[结论]里氏木霉RutC-30经优化培养后,产酶能力可得到大幅度提高,具有潜在的工业应用价值。  相似文献   

12.
里氏木霉产纤维素酶碳源优化   总被引:1,自引:0,他引:1  
分别使用不同预处理的纸浆、麸皮和玉米秸秆为碳源,诱导里氏木霉产纤维素酶。结果显示,使用φ(H2SO4)1.5%处理纸浆对里氏木霉产纤维素酶诱导效果最好,产酶历程中,最大的滤纸酶活、CMC酶活和β-葡萄糖苷酶活分别为2.92 IU/mL、2.20 IU/mL和0.89 IU/mL。处理玉米秸秆有较好的产酶诱导作用,分别使用10 g/L、50 g/L NaOH处理或φ(H2SO4)=1.5%处理玉米秸秆,滤纸酶活最大分别达到2.37 IU/mL、2.33IU/mL和2.53 IU/mL。麸皮是较差的里氏木霉产纤维素酶诱导物,分别使用φ(H2SO4)=1.5%、10 g/LNaOH,10 g/L NaOH或苯醇处理的麸皮为碳源,滤纸酶活最大分别仅有2.16 IU/mL、1.76 IU/mL和1.84 IU/mL。  相似文献   

13.
纤维素酶提取工艺及酶学性质的研究   总被引:3,自引:0,他引:3  
[目的]探讨纤维素酶的最佳提取工艺和最佳反应条件。[方法]以里氏木霉Rut C-30为发酵菌种,在30℃、摇床转速170 r/min条件下培养8 d,发酵生产纤维素酶,用盐析技术对粗酶液进行分离纯化,通过正交实验法探讨了纤维素酶的提取工艺条件。并以羧甲基纤维素钠酶活力为指标,对该酶的最佳反应条件和稳定性进行了研究。[结果]纤维素酶的最佳提取条件是:提取时间为16 h、盐析饱和度为70%、pH值为4.8。纤维素酶的最佳反应条件是:pH值为4.8、温度为60℃。酶在pH 3.6~7.0时较稳定,在78℃保温30 min下的残留酶活为50%。[结论]该研究为酶的工业化生产提供参考数据。  相似文献   

14.
酸-超声波预处理及糖化水解稻草研究   总被引:2,自引:2,他引:2  
采用室内实验方法,研究了酸-超声联合预处理稻草对其化学组成以及糖化效果的影响,并与传统酸预处理法的效果进行了对比.结果表明,与未经处理的稻草相比,经酸-超声波处理的稻草其半纤维素、木质素含量最高分别减少了64.46%、62.19%,纤维素含量最高则上升了73.20%,而酸处理的稻草相应数值只能达到56.72%、59.90%及53.41%.同时分别对两种方法的稻草糖化的工艺条件通过正交试验进行了优化,得出两种方法的稻草最佳糖化条件均为:pH值为4.8,温度为45℃,酶浓度为20mg·g-1.在该条件下,对于酸-超声波预处理稻草,在糖化108 h以后还原糖浓度稳定并达到最大值26.4 g·L-1而对于酸预处理稻草,在糖化120h以后还原糖浓度才稳定并达到最大值26.2 g·L-1,且前者能比后者产生更多的葡萄糖以及更少的木糖,更有利于提高后续酒精发酵的效率.  相似文献   

15.
白洪志  杨谦  王希国  李晶 《安徽农业科学》2007,35(17):5033-5034
在环境破坏较少的野生森林土样中,通过刚果红平板、滤纸条液体培养等初筛,并在摇瓶发酵复筛的基础上得到1株高效纤维素降解菌绿色木霉C-08,同时对其最适酶活、最适温度及其稳定性进行了测定。结果表明:CMCase的最适pH值为3.6,最适温度是60℃,在30-50℃稳定性较强;FPase的最适pH值为4.8,最适温度是50℃,在30-40℃稳定性较强。  相似文献   

16.
利用摇瓶确定的优化培养基配方和产酶条件,在30 L罐中研究了里氏木霉HC -415菌利用稻草液体发酵产纤维素酶发酵液pH值、纤维素酶活性等随时间变化的动态规律,研究了发酵液纤维素酶的提取及得率等.所得未脱盐冻干纤维素酶粉CMC酶活性平均为355.0 IU/g, FPA平均为44.3 IU/g.相对发酵液得率平均为16.00 g/L.酶粉对发酵液CMC酶活性平均得率为77.16%, FPA酶活性平均得率为58.10%.  相似文献   

17.
李飒  聂俊华  韩玮 《安徽农业科学》2005,33(8):1381-1383,1563
研究了分别以CMC(羧甲基纤维素钠)、玉米秸秆、小麦秸秆作底物情况下,土壤中施加外源纤维素酶对土壤原生酶活性及其底物酶解率的影响。结果表明:以CMC为底物时,加酶处理的各项酶活与酶解率一直明显高于不加酶处理,加酶处理总的最大酶解率与其土壤部分的最大酶解率分别为1.39%和1.22%,不加酶处理的为0.73%。在以玉米秸秆与小麦秸秆为底物时,加酶处理的总酶活与总酶解率一直明显高于不加酶处理,而加酶处理中的土壤自身酶活与酶解率在前2d明显高于不加酶处理。两种秸秆加酶处理的酶解率均在第2天达到最高值,不加酶处理的在第4天达到最高值。玉米秸秆加酶处理总的最大酶解率与其土壤部分的最大酶解率分别为0.45%和0.28%,不加酶处理的为0.26%;小麦秸秆加酶处理总的最大酶解率与其土壤部分的最大酶解率分别为0.49%和0.33%,不加酶处理的为0.28%。3种底物下土壤酶活与酶解率大小顺序为CMC>小麦秸秆>玉米秸秆。  相似文献   

18.
对影响里氏木霉(Trichoderma reesei )40359原生质体制备和再生的条件:包括茵龄、水解酶液的种类及浓度、酶解温度、酶解时间、再生培养基的稳渗剂进行了研究.结果表明:当茵龄为12 h,采用2%纤维素酶和2%蜗牛酶混合液,酶解温度30℃,酶解时间2h,用0.6 mol·L-1蔗糖作再生培养基的稳渗剂,原...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号