首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
OBJECTIVE: To evaluate sedative, antinociceptive, and physiologic effects of acepromazine and butorphanol during tiletamine-zolazepam (TZ) anesthesia in llamas. ANIMALS: 5 young adult llamas. PROCEDURES: Llamas received each of 5 treatments IM (1-week intervals): A (acepromazine, 0.05 mg/kg), B1 (butorphanol, 0.1 mg/kg), AB (acepromazine, 0.05 mg/kg, and butorphanol, 0.1 mg/kg), B2 (butorphanol, 0.2 mg/kg), or C (saline [0.9% NaCl] solution). Sedation was evaluated during a 30-minute period prior to anesthesia with TZ (2 mg/kg, IM). Anesthesia and recovery characteristics and selected cardiorespiratory variables were recorded at intervals. Antinociception was assessed via a toe-clamp technique. RESULTS: Sedation was not evident following any treatment. Times to sternal and lateral recumbency did not differ among treatments. Duration of lateral recumbency was significantly longer for treatment AB than for treatment C. Duration of antinociception was significantly longer for treatments A and AB, compared with treatment C, and longer for treatment AB, compared with treatment B2. Treatment B1 resulted in a significant decrease in respiratory rate, compared with treatment C. Compared with treatment C, diastolic and mean blood pressures were lower after treatment A. Heart rate was increased with treatment A, compared with treatment B1 or treatment C. Although severe hypoxemia developed in llamas anesthetized with TZ alone and with each treatment-TZ combination, hemoglobin saturation remained high and the hypoxemia was not considered clinically important. CONCLUSIONS AND CLINICAL RELEVANCE: Sedation or changes in heart and respiratory rates were not detected with any treatment before administration of TZ. Acepromazine alone and acepromazine with butorphanol (0.1 mg/kg) prolonged the duration of antinociception in TZ-treated llamas.  相似文献   

2.
The optimum dose of dexmedetomidine for antinociception to a thermal stimulus was determined in a crossover study of 12 cats. In five treatment groups ( n  = 10 per group), dexmedetomidine was administered intramuscularly (i.m.) at 2, 5, 10, 20 and 40 μg/kg; positive and negative controls were administered buprenorphine (20 μg/kg, i.m.) and 0.9% saline (0.006 mL/kg, i.m.) respectively. Baseline thermal thresholds and visual analogue scale (VAS) sedation scores were obtained prior to drug treatment and then at regular intervals until 24 h after administration. The summary measures of overall mean thresholds and overall mean VAS scores were investigated using a univariate general linear model for multiple factors with post hoc Tukey's tests ( P  < 0.05). Only dexmedetomidine at 40 μg/kg displayed an analgesic effect (less than that of buprenorphine). The VAS for sedation did not significantly affect the thresholds obtained and treatment was the only significant factor to influence VAS. Dexmedetomidine resulted in higher VAS for sedation than saline and buprenorphine. Dexmedetomidine at 40 μg/kg significantly increased nociceptive thresholds compared with saline control, but less than buprenorphine. Dexmedetomidine produced dose-dependent sedation, but only the highest dose produced analgesia, suggesting that induction of analgesia requires the highest dose (or an additional analgesic) in the clinical setting.  相似文献   

3.
Naloxone can enhance the antinociceptive/analgesic effects of buprenorphine in humans and rats. The antinociceptive effects of a patented 15:1 buprenorphine:naloxone combination was investigated in cats using a thermal and mechanical nociceptive model. Twelve cats received buprenorphine 10 μg/kg, naloxone 0.67 μg/kg or a buprenorphine-naloxone combination intramuscularly in a randomised cross over study. Using thermal and mechanical analgesiometry validated in the cat, pre-treatment baselines were measured. Following test drug administration, thresholds were studied for the next 24h. Naloxone did not enhance the thermal antinociceptive effect of buprenorphine. The results from this study are in agreement with previously published work showing that naloxone antagonises the effects of clinically analgesic doses of buprenorphine. Mechanical nociceptive thresholds were not affected by buprenorphine.  相似文献   

4.
Nineteen dogs were assigned randomly to one of three groups. Animals in Group 1 were pre-medicated with acepromazine, 50 μg/kg bodyweight (bwt) intramuscularly (im) and received 10 ml of 0.9 per cent saline intravenously (iv) at the time of skin incision. Dogs in Group 2 were pre-medicated with acepromazine, 50 μg/kg bwt im, and received fentanyl 2 μg/kg bwt iv at skin incision. Dogs in Group 3 were pre-medicated with acepromazine, 50 μg/kg bwt and atropine, 30 to 40 μg/kg bwt, im and received fentanyl, 2 μg/kg bwt iv at skin incision. Pulse rate, mean arterial blood pressure, respiratory rate and end tidal carbon dioxide were measured before and after fentanyl or saline injection. Fentanyl caused a short-lived fall in arterial blood pressure that was significant in dogs premedicated with acepromazine, but not in dogs pre-medicated with acepromazine and atropine. A significant bradycardia was evident for 5 mins in both fentanyl treated groups. The effect on respiratory rate was most pronounced in Group 3, in which four of seven dogs required intermittent positive pressure ventilation (IPPV) for up to 14 mins. Two of six dogs in Group 2 required IPPV, whereas respiratory rate remained unaltered in the saline controls. The quality of anaesthesia was excellent in the fentanyl treated groups; however, caution is urged with the use of even low doses of fentanyl in spontaneously breathing dogs under halothane-nitrous oxide anaesthesia.  相似文献   

5.
Effects of tramadol and acepromazine on pressure and thermal thresholds were examined in eight cats. After baseline measurements, subcutaneous (SC) tramadol 1 mg/kg, acepromazine 0.1 mg/kg, tramadol 1 mg/kg with acepromazine 0.1 mg/kg, or saline 0.3 ml were given. Serial measurements were made for 24 h. Mean thermal thresholds did not change significantly [analysis of variance (ANOVA)] from baseline. The maximum thermal threshold increase above baseline was 2.8+/-2.8 degrees C at 6 h (P>0.05) after tramadol; it was above the 95% confidence interval (CI) at 0.75, 3 and 6 h. Pressure thresholds increased above baseline from 0.25 to 2 h after acepromazine (P<0.05) and from 0.5 to 3 h after the combination (P<0.05), with a maximum increase of 132+/-156 mmHg 0.25 h after acepromazine and 197+/-129 mmHg 0.5 h after the combination. Pressure thresholds were above the 95% CI from 0.25 to 2 h after acepromazine and from 0.5 to 3 h after the combination. SC tramadol at 1 mg/kg in cats had limited effect on thermal and pressure nociception, but this was enhanced by acepromazine. Acepromazine alone had pressure antinociceptive effects.  相似文献   

6.
Objective—To determine the antinociceptive effects of oxymorphone, butorphanol, and acepromazine individually and in combination to a noxious visceral stimulus in cats. Study Design—Randomized, blinded controlled study. Animals—Eight healthy mixed-breed cats (four male, four female) weighing 4.4 ± 1.2 kg and aged 1 to 2 years old. Methods—A silastic balloon catheter was inserted per rectum and inflated at various pressures. Physiological parameters (respiratory rate, pulse rate, and blood pressure) were also recorded. Subjects were administered individual and combined intravenous (IV) doses of 0.025, 0.05, 0.10, and 0.20 mg/kg oxymorphone and 0.025, 0.05, 0.10, and 0.20 mg/kg butorphanol. A further study of various ratios of butorphanol and oxymorphone (3:1, 2:1, 1:1, 1:2, and 1:3), at a combined equivalent dose of 0.1 mg/kg, was performed in four cats per dose combination. In a separate study, four cats were administered combined IV doses of 0.05 mg/kg each of oxymorphone and butorphanol or 0.05 mg/kg each of oxymorphone, butorphanol, and acepromazine. Results—Combined doses of 0.05 and 0.10 mg/kg of oxymorphone and butorphanol showed mainly additive with some synergistic antinociceptive interactions and the combined dose of 0.2 mg/kg of each agent demonstrated additional antinociceptive effects, P < .05. Additional studies showed that various ratios of the two agents at a total combined dose of 0.10 mg/kg IV did not produce levels of antinociception that were significantly different from each other, P > .05. Acepromazine (ACE) significantly increased the magnitude of antinociception at 15 minutes when administered in combination with oxymorphone and butorphanol, P < .05. Also, physiological variables were unaffected by these drug combinations. Conclusions—Low doses of oxymorphone and butorphanol in combination can produce greater levels of antinociception than when used individually. ACE, in conjunction with oxymorphone and butorphanol, produced even greater levels of antinociception than the two-opioid drug combination. Clinical Relevance—Oxymorphone, butorphanol, and ACE can be used in combination to produce additive or synergistic effects without adverse effects in cats. These data suggest that ACE and butorphanol at low doses given as preanesthetic medication followed by a mu opioid (eg, oxymorphone) after surgery at low doses may provide an effective method of pain management in the cat.  相似文献   

7.
The goal of this study was to assess the antinociceptive activity of a single dose of hydromorphone or butorphanol and to examine the effect of their coadministration on thermal thresholds in cats. Thermal thresholds were measured after IM administration of hydromorphone (0.1 mg/kg), butorphanol (0.4 mg/kg), a combination of butorphanol and hydromorphone (0.4 and 0.1 mg/kg), or saline to each of 6 cats in a randomized, blinded, crossover study design. There were at least 12 days between treatments. Thermal thresholds were measured by a thorax-mounted thermal threshold-testing device specifically developed for cats. Thermal thresholds were measured before treatment, at varying intervals to 12 hours, and at 24 hours after treatments. Data were analyzed by an analysis of variance with a repeat factor of time. Dysphoria was associated with butorphanol administration but not with hydromorphone or hydromorphone-butorphanol combined administration. Vomiting was seen with hydromorphone but not with butorphanol or hydromorphone-butorphanol combined. The control treatment group was stable over time (P = .22; mean threshold, 40.1 degrees C). Thresholds were significantly (P < .05) higher than the control treatment between 15 and 165 minutes for butorphanol, between 15 and 345 minutes for hydromorphone, and between 15 and 540 minutes for hydromorphone-butorphanol combined. The addition of butorphanol to hydromorphone decreased the intensity of antinociception during the 1st 2 hours but extended the duration of observable antinociception from 5.75 to 9 hours. The present study suggests that the combination of butorphanol and a pure OP3 (mu) receptor agonist clinically does not produce increased analgesia and indeed may result in decreased analgesia.  相似文献   

8.
OBJECTIVE: To evaluate effects of butorphanol, acepromazine, and N-butylscopolammonium bromide (NBB) on visceral and somatic nociception and duodenal motility in conscious, healthy horses. ANIMALS: 6 adult horses. PROCEDURES: Visceral nociception was evaluated by use of colorectal distention (CRD) and duodenal distention (DD) threshold. Somatic nociception was evaluated via thermal threshold (TT). Nose-to-ground height, heart rate, and respiratory rate were also measured. Each horse received each treatment in randomized order; investigators were not aware of treatments. Butorphanol was administered IV as a bolus (18 microg/kg) followed by constant rate infusion at 13 microg/kg/h for 2 hours, whereas acepromazine (0.04 mg/kg), NBB (0.3 mg/kg), and saline (0.9% NaCl) solution (2 mL) were administered IV as a bolus followed by constant rate infusion with saline solution (10 mL/h) for 2 hours. Variables were measured before and for 3 hours after treatment. Data were analyzed by use of a 3-factor ANOVA followed by a Bonferroni t test for multiple comparisons. RESULTS: Nose-to-ground height decreased after acepromazine. Respiratory rate decreased after acepromazine and increased after butorphanol. Heart rate increased briefly after NBB. Some horses had an increase in TT after butorphanol and acepromazine, but there was not a significant treatment effect over time. Drug effect on DD or motility was not evident. The CRD threshold increased significantly at 5, 65, 155, and 185 minutes after acepromazine and from 5 to 65 minutes after NBB. CONCLUSIONS AND CLINICAL RELEVANCE: Each drug caused predictable changes in sedation and vital signs, but consistent anti-nociceptive effects were not evident.  相似文献   

9.
Objective: To determine the antinociceptive effects of epidural administration of morphine or buprenorphine in cats by use of a thermal threshold model. ANIMALS: 6 healthy adult cats. PROCEDURES: Baseline thermal threshold was determined in duplicate. Cats were anesthetized with isoflurane in oxygen. Morphine (100 microg/kg diluted with saline [0.9% NaCl] solution to a total volume of 0.3 mL/kg), buprenorphine (12.5 microg/kg diluted with saline solution to a total volume of 0.3 mL/kg), or saline solution (0.3 mL/kg) was administered into the epidural space according to a Latin square design. Thermal threshold was determined at various times up to 24 hours after epidural injection. RESULTS: Epidural administration of saline solution did not affect thermal threshold. Thermal threshold was significantly higher after epidural administration of morphine and buprenorphine, compared with the effect of saline solution, from 1 to 16 hours and 1 to 10 hours, respectively. Maximum (cutout) temperature was reached without the cat reacting in 0, 74, and 11 occasions in the saline solution, morphine, and buprenorphine groups, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Epidural administration of morphine and buprenorphine induced thermal antinociception in cats. At the doses used in this study, the effect of morphine lasted longer and was more intense than that of buprenorphine.  相似文献   

10.
Thermal thresholds were measured in eight cats after the intramuscular administration of morphine (0.2 mg/kg), buprenorphine (0.01 mg/kg) or butorphanol (0.2 mg/kg), doses commonly used in clinical practice; 0.9 per cent saline (0.3 ml) was injected as a control. Groups of six cats were used and each cat participated in at least two treatments, according to a randomised design. The investigator was blinded to the treatments. The thermal thresholds were measured with a testing device developed specifically for cats, and measurements were made before and five, 30, 45 and 60 minutes and two, four, six, 12 and 24 hours after the injections. There was no significant change in thermal threshold after the injection of saline. With butorphanol, the threshold was increased only at five minutes after the injection and was decreased two hours after the injection; with morphine it was increased from between four and six hours after the injection, and with buprenorphine it was increased from between four and 12 hours after the injection.  相似文献   

11.
The aim of this randomised, observer-blinded, crossover study was to compare the effects of six treatments, administered intravenously to six horses: saline and saline (S/S); detomidine and saline (D/S); detomidine and 5 μg/kg buprenorphine (D/B5); detomidine and 7.5 μg/kg buprenorphine (D/B7.5); detomidine and 10 μg/kg buprenorphine (D/B10); and detomidine and 25 μg/kg butorphanol (D/BUT). The detomidine dose was 10 μg/kg for all treatments in which it was included. Sedation was subjectively assessed and recorded on a visual analogue scale. Peak sedation, duration of sedation and the area under the curve (AUC) for sedation scores were investigated using a univariate general linear model with post-hoc Tukey tests (P<0.05). Peak sedation and duration of sedation were statistically significantly different between treatments (P<0.001). No sedation was apparent after administration of S/S. The AUC was significantly different between treatments (P=0.010), with S/S being significantly different from D/S, D/BUT, D/B5 and D/B7.5, but not D/B10 (P=0.051).  相似文献   

12.
13.
Combined use of detomidine with opiates in the horse   总被引:2,自引:0,他引:2  
The effects of administration of one of four opiates (pethidine 1 mg/kg bodyweight (bwt), morphine 0.1 mg/kg bwt, methadone 0.1 mg/kg bwt, and butorphanol 0.05 mg/kg bwt) given intravenously to horses and ponies already sedated with detomidine (10 micrograms/kg bwt) were investigated. Behavioural, cardiovascular and respiratory effects of the combinations were compared with those occurring with detomidine alone. Addition of the opiate increased the apparent sedation and decreased the response of the animal to external stimuli. At doses used, butorphanol produced the most reliable response. Side effects seen were increased ataxia (greatest following methadone and butorphanol) and excitement (usually muzzle tremors and muscle twitching). Following pethidine, generalised excitement was sometimes seen. Marked cardiovascular changes occurred in the first few minutes after morphine or pethidine injection, but within 5 mins cardiovascular changes were minimal. Following morphine or pethidine there was a significant increase in arterial carbon dioxide tension. Fourteen clinical cases were successfully sedated using detomidine/butorphanol combinations.  相似文献   

14.
Six domestic shorthair cats, aged three to four years and weighing 5.1 to 7.4 kg, were used to assess the thermal antinociceptive effect of a transdermal buprenorphine patch, designed to supply 35 mug buprenorphine/hour, which was applied to the shaved thorax. The cats' thermal thresholds were tested before the patch was applied and two, four, six, eight, 10, 12, 14 and 16 hours after it had been applied, and then every six hours until it was removed after 72 hours, and for a further 24 hours afterwards. Blood was collected at each time to measure the plasma concentration of buprenorphine. The patches did not produce a significant change in the thermal thresholds of the cats throughout the testing period. The mean (sd) peak plasma buprenorphine concentration was 10 (0.81) ng/ml.  相似文献   

15.
The aim of this randomised, observer-blinded, crossover study was to compare the effects of four treatments, administered intravenously to six horses: saline and saline; 10 μg/kg detomidine and 7.5 μg/kg buprenorphine; 20 μg/kg detomidine and 7.5 μg/kg buprenorphine; and 20 μg/kg detomidine and 10 μg/kg buprenorphine. Sedation was subjectively assessed and recorded on a visual analogue scale. Peak sedation and duration of sedation were investigated using a univariate general linear model with post-hoc Tukey tests (P<0.05). Increasing the dose of detomidine from 10 to 20 μg/kg increased the degree of sedation when administered with the same dose of buprenorphine (7.5 μg/kg). When administered with 20 μg/kg detomidine, increasing the dose of buprenorphine from 7.5 to 10 μg/kg did not influence the degree of sedation achieved.  相似文献   

16.
The thermal and mechanical analgesic profile of buprenorphine at a dose rate of 1.5 micrograms/kg i.v. was investigated in five sheep. This dose produced significant analgesia for 40 min against the thermal stimulus, but no mechanical antinociception. A higher dose rate of 12 micrograms/kg also failed to produce antinociception to a mechanical stimulus. In addition, the effect of the drug (6 micrograms/kg) on respiratory gas tensions was determined and no significant changes were observed.  相似文献   

17.
Cardiovascular, pulmonary and anaesthetic-analgesic responses were evaluated in 18 male and female dogs to determine the effect of the injectable anaesthetic propofol used in conjuction with acepromazine and butorphanol. The dogs were randomly divided into three groups. Dogs in Group A were premeditated with 0.1 mg/kg of intramuscular acepromazine followed by an induction dose of 4.4 mg/kg of intravenous propofol; Group B received 0.2 mg/kg of intramuscular butorphanol and 4.4 mg/kg of intravenous propofol; dogs in Group AB were administered a premeditation combination of 0.1 mg/kg of intramuscular acepromazine and 0.2 mg/kg of intramuscular butorphanol, followed by induction with 3.3 mg/kg of intravenous propofol. The induction dose of propofol was given over a period of 30-60 seconds to determine responses and duration of anaesthesia. Observations recorded in the dogs included heart and respiratory rates, indirect arterial blood pressures (systolic, diastolic and mean), cardiac rhythm, end-tidal CO, tension, oxygen saturation, induction time, duration of anaesthesia, recovery time and adverse reactions. The depth of anaesthesia was assessed by the response to mechanical noxious stimuli (tail clamping), the degree of muscle relaxation and the strength of reflexes. Significant respiratory depression was seen after propofol induction in both groups receiving butorphanol with or without acepromazine. The incidence of apnea was 4/6 dogs in Group B, and 5/6 dogs in Group AB. The incidence of apnea was also correlated to the rate of propofol administration. Propofol-mediated decreases in arterial blood pressure were observed in all three groups. Moderate bradycardia (minimum value > 55 beats/min) was observed in both Groups B and AB. There were no cardiac dysrhythmias noted in any of the 18 dogs. The anaesthetic duration and recovery times were longer in dogs premeditated with acepromazine/butorphanol.  相似文献   

18.
Reasons for performing study: No studies have determined the pharmacokinetics of low‐dose amikacin in the mature horse. Objectives: To determine if a single i.v. dose of amikacin (10 mg/kg bwt) will reach therapeutic concentrations in plasma, synovial, peritoneal and interstitial fluid of mature horses (n = 6). Methods: Drug concentrations of amikacin were measured across time in mature horses (n = 6); plasma, synovial, peritoneal and interstitial fluid were collected after a single i.v. dose of amikacin (10 mg/kg bwt). Results: The mean ± s.d. of selected parameters were: extrapolated plasma concentration of amikacin at time zero 144 ± 21.8 µg/ml; extrapolated plasma concentration for the elimination phase 67.8 ± 7.44 µg/ml, area under the curve 139 ± 34.0 µg*h/ml, elimination half‐life 1.34 ± 0.408 h, total body clearance 1.25 ± 0.281 ml/min/kg bwt; and mean residence time (MRT) 1.81 ± 0.561 h. At 24 h, the plasma concentration of amikacin for all horses was below the minimum detectable concentration for the assay. Selected parameters in synovial and peritoneal fluid were maximum concentration (Cmax) 19.7 ± 7.14 µg/ml and 21.4 ± 4.39 µg/ml and time to maximum concentration 65 ± 12.2 min and 115 ± 12.2 min, respectively. Amikacin in the interstitial fluid reached a mean peak concentration of 12.7 ± 5.34 µg/ml and after 24 h the mean concentration was 3.31 ± 1.69 µg/ml. Based on a minimal inhibitory concentration (MIC) of 4 µg/ml, the mean Cmax : MIC ratio was 16.9 ± 1.80 in plasma, 4.95 ± 1.78 in synovial fluid, 5.36 ± 1.10 in peritoneal fluid and 3.18 ± 1.33 in interstitial fluid. Conclusions: Amikacin dosed at 10 mg/kg bwt i.v. once a day in mature horses is anticipated to be effective for treatment of infection caused by most Gram‐negative bacteria. Potential relevance: Low dose amikacin (10 mg/kg bwt) administered once a day in mature horses may be efficacious against susceptible microorganisms.  相似文献   

19.
OBJECTIVE: To compare the perioperative stress response in dogs administered medetomidine or acepromazine as part of the preanesthetic medication. ANIMALS: 42 client-owned dogs that underwent elective ovariohysterectomy. PROCEDURE: Each dog was randomly allocated to receive medetomidine and butorphanol tartrate (20 microgram/kg and 0.2 mg/kg, respectively, IM) or acepromazine maleate and butorphanol (0.05 and 0.2 mg/kg, respectively, IM) for preanesthetic medication. Approximately 80 minutes later, anesthesia was induced by administration of propofol and maintained by use of isoflurane in oxygen. Each dog was also given carprofen before surgery and buprenorphine after surgery. Plasma concentrations of epinephrine, norepinephrine, cortisol, and beta-endorphin were measured at various stages during the perioperative period. In addition, cardiovascular and clinical variables were monitored. RESULTS: Concentrations of epinephrine, norepinephrine, and cortisol were significantly lower for dogs administered medetomidine. Concentrations of beta-endorphin did not differ between the 2 groups. Heart rate was significantly lower and mean arterial blood pressure significantly higher in dogs administered medetomidine, compared with values for dogs administered acepromazine. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicate that for preanesthetic medications, medetomidine may offer some advantages over acepromazine with respect to the ability to decrease perioperative concentrations of stress-related hormones. In particular, the ability to provide stable plasma catecholamine concentrations may help to attenuate perioperative activation of the sympathetic nervous system.  相似文献   

20.
AIM: To determine the suitability of a reversible, injectable anaesthetic combination including medetomidine, butorphanol and atropine to produce the degree of immobilisation required to allow blood sampling in young pigs.

METHODS: Twenty 6-week-old crossbred, intact male pigs were sedated with an intramuscular (I/M) injection of 80 µ'g/kg medetomidine, 200 µ'g/kg butorphanol and 25 µ'g/kg atropine. Heart and respiratory rates and rectal temperatures were monitored. Excessive salivation, gagging, laryngeal reflex, presence of pedal reflex and deep and surface analgesia were noted. Time of injection and the time when pigs reached mild and full sedation were also recorded.

RESULTS: Mild sedation was produced in 90% of pigs after 5.6 (SEM 0.96) min (n=18; median 5, range 2–16 min), and full sedation (lateral recumbency and loss of jaw tone) in 60% of pigs after 12.5 (SEM 2.14) min (n=12; median 10, range 5-28 min). The depth and duration of sedation were very variable and most animals were easily aroused. Ninety percent of the animals required the administration of halothane by mask to allow blood sampling, but the amount of halothane required was small. Heart and respiratory rates decreased (p<0.001) but remained within the normal range. Rectal temperature was above normal at the time of sedation and at the time of blood sampling when the ambient temperature was 29° C but not when the ambient temperature was reduced to 25°C.

CONCLUSIONS: The combination of medetomidine, butorphanol and atropine at these doses produced sedation of variable depth and duration that was insufficient on its own to allow blood sampling in the majority of pigs. Hyperthermia can occur in temperature-controlled environments when using medetomidine, butorphanol and atropine in pigs. Reduction of stress and a quieter environment may improve the effects of the anaesthetic combination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号