首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six heifers were vaccinated intranasally with the live bovine herpesvirus 1 (BHV1) temperature-sensitive (ts) vaccine strain RBL106 within 3 weeks of birth. These calves most likely still had maternal antibodies against BHV1. Thereafter, these heifers were vaccinated several times with an experimental BHV1 glycoprotein-D (gD) subunit vaccine. At the age of 3 years these 6 heifers were seronegative in the BHV1 gB and gE blocking ELISAs, but had neutralizing antibodies against BHV1, probably induced by the vaccinations with the gD subunit vaccine. Five of these 6 heifers excreted BHV1 after treatment with dexamethasone. Restriction enzyme analysis of the genome of the excreted viruses revealed that all 5 isolates had a BHV1.1 genotype and that isolates of 3 heifers were not obviously different from the ts-vaccine strain. The restriction enzyme fragment pattern of the isolate of 1 heifer was clearly different from the pattern of the ts-vaccine strain. It is concluded that cattle can be seronegative against BHV1 gB and gE but can still carry BHV1 in a latent form. This finding strongly suggests that there are completely BHV1 seronegative cattle that are latently infected with BHV1. The impact of this finding on BHV1 eradication programmes is discussed.  相似文献   

2.
AIM: To detect the presence of bovine herpesvirus (BoHV) type 4 in New Zealand dairy cows with clinical metritis.

METHODS: Serum samples taken from 92 dairy cows with clinical metritis, each from a different farm, were tested for the presence of antibodies against BoHV-4 using a commercially available, indirect ELISA. Peripheral blood mononuclear cells (PBMC) were collected from 10 BoHV-4 seropositive cows, and PBMC were examined by a pan-herpesvirus nested PCR to detect herpesvirus. PCR products were sequenced directly and a proportion of the PCR products were cloned and sequenced to identify the virus present.

RESULTS: Antibodies to BoHV-4 were detected in 23/92 (25%) serum samples. The pan-herpesvirus PCR was positive in 8/10 PBMC samples. Cloning and sequencing identified that all of the eight PCR-positive PBMC contained bovine lymphotropic herpesvirus (BLHV); no BoHV-4 DNA was detected.

CONCLUSIONS: This study reports the finding of the presence of apparent antibodies to BoHV-4, and BLHV DNA in New Zealand dairy cows affected by metritis.

CLINICAL RELEVANCE: Bovine herpesvirus type 4 and BLHV are reported to have the potential to cause reproduction failure in cows. This is the first report of apparent BoHV-4 antibodies, and BLHV in New Zealand. The importance and epidemiology of these viruses in cattle in New Zealand requires further investigation.  相似文献   

3.
Artificial insemination is widely used in the cattle industry and a major challenge is to ensure that semen is free of infectious agents. A healthy donor bull was tested for freedom from infectious agents. A bovine herpesvirus was isolated in testis cells and identified as bovine herpesvirus type 5 (BoHV-5) by polymerase chain reaction and by direct amplicon sequencing. The amplicon sequence shared 100% similarity with the published sequence of BoHV-5. This is the first report in Australia of BoHV-5 in semen. The implications of this finding are discussed.  相似文献   

4.
《Veterinary parasitology》2015,207(1-2):7-16
Livestock animals are a potential risk for transmission of toxoplasmosis to humans. Sheep and pigs still remain an important source because their meat is often eaten undercooked which has been regarded as a major route of infection in many countries. Moreover, porcine tissues are processed in many food products.In the current study, the IFN-gamma (T-helper 1 cells), IL-4 (Th2 cells) and IL-10 mRNA (Treg cells) expression by blood mononuclear cells, and the serum antibody response against Toxoplasma gondii total lysate antigen, recombinant T. gondii GRA1, rGRA7, rMIC3 and rEC2, a chimeric antigen composed of MIC2, MIC3 and SAG1, was studied in sheep the first two months after a T. gondii infection and compared with these responses in pigs. At the end of this period, the parasite distribution in heart, brain and two skeletal muscles in sheep was compared with this in pigs.Whereas the parasite distribution was similar in sheep and pigs, the antibody response differed considerably. In sheep, antibodies appeared against all tested T. gondii antigens, but mainly against rGRA7, rMIC3234307 and TLA whereas in pigs only rGRA7-specific antibodies could be demonstrated. Also, the cytokine response differed. Both in sheep and pigs an IFN-gamma response occurred which seemed to be a slightly more pronounced in sheep. In sheep, also IL-10 and IL-4 mRNA expression showed an increase, but later than IFN-gamma and with more variation. However, in pigs no such increase was seen.As concerning diagnosis, results indicate that serum antibodies against GRA7 in live sheep and pigs and heart tissue for bioassay and qPCR in slaughtered animals are the best targets to demonstrate presence of T. gondii infection.  相似文献   

5.
The ability of alphaherpesviruses to infect different ruminant species may have important implications for control/eradication efforts. Serological data indicate that goats may be naturally infected with bovine herpesviruses. To investigate the susceptibility of goats to bovine herpesvirus-5 (BoHV-5), 3-4-month-old kids were inoculated intranasally with each of three Brazilian BoHV-5 isolates (G1, n=8; G2, n=5; G3, n=5). The acute infection was characterized by virus shedding in nasal secretions for up to 14 days (titers up to 10(5.97)TCID(50)/mL), mild respiratory signs and conjunctivitis. All animals seroconverted to BoHV-5, developing virus neutralizing (VN) titers from 4 to 32 to the homologous viruses. At day 60 post inoculation (pi), two animals from each group were euthanized for tissue collection and the remaining goats were submitted to dexamethasone administration (0.4 mg kg(-1) for 5 days). Dexamethasone treatment resulted in virus reactivation in 9 out of 12 animals, as ascertained by virus shedding and/or by increase in VN titers. Virus shedding was detected in 8/12 animals and lasted from 1 to 9 days. Latent viral DNA was detected by PCR in the olfactory bulb and/or trigeminal ganglia of 6/6 goats euthanized at day 60 pi and in 12/12 animals euthanized 40 days post-dexamethasone. These results show that young goats are susceptible to BoHV-5 and may shed virus upon reactivation of latent infection. Thus, it is reasonable to expect that goats raised in close contact with cattle in areas where BoHV-5 is endemic may be infected and therefore should be considered potential reservoirs of the virus.  相似文献   

6.
Uteri from 31 infertile cattle were examined for the presence of bovine herpesvirus 4 (BoHV-4) by nested polymerase chain reaction (PCR). Samples were also tested for bacteria, including chlamydiae and Mycoplasma bovis. BoHV-4 was detected by PCR in 27/31 (87.1%) samples, but the presence and amount of viral DNA was not correlated with histological and bacteriological findings. Arcanobacterium pyogenes, Histophilus somni and Pasteurella multocida were isolated from five cows with endometritis. Chlamydiae were detected in four cases (12.9%), but only two of these had endometritis. The study does not support a role for BoHV-4 as primary agent in bovine endometritis.  相似文献   

7.
In this study, cellular localization and the distribution pattern of BVDV genome in lymphoid tissues during the course of experimental acute BVDV-1 infection of sheep was investigated. Tonsils, mesenteric lymph nodes (MLN) and spleen were collected on 3, 6, 9, 12 and 15 days post infection (dpi) from twenty 4-month-old lambs, experimentally inoculated intra-nasally with 5?×?105 TCID50 of a non-cytopathic (ncp) BVDV-1 isolate, Ind-17555. Tissues collected from ten mock-infected lambs served as controls. In situ hybridization (ISH) was carried out in paraformaldehyde fixed paraffin embedded tissue sections using digoxigenin labelled riboprobe targeting 5′-UTR of BVDV-1. BVDV genome was detected at all the intervals from 3 dpi to 15 dpi in the lymphoid tissues with variations between the intervals and also amongst the infected sheep. During the early phase of acute infection, presence of viral genome was more in tonsils than MLN and spleen, whereas the distribution was higher in MLN during later stages. BVDV-1 genome positive cells included lymphocytes, macrophages, plasma cells, reticular cells and sometimes crypt epithelial cells. Genome distribution was frequently observed in the lymphoid follicles of tonsils, MLN and spleen, besides the crypt epithelium in tonsils, paracortex and medullary sinus and cords of MLN. Most abundant and widespread distribution of BVDV-1 genome was observed on 6 dpi while there was a reduction in number and intensity of positive signals by 15 dpi in most of the infected animals. This is the first attempt made to study the localisation of BVDV-1 in lymphoid tissues of acutely infected sheep by in situ hybridization. The results show that the kinetics of BVDV-1 distribution in lymphoid tissues of experimentally infected non-pregnant sheep follows almost a similar pattern to that demonstrated in BVDV infected cattle.  相似文献   

8.
Bovine herpesvirus type 5 (BoHV-5) is the causative agent of bovine herpetic encephalitis. In countries where BoHV-5 is prevalent, attempts to vaccinate cattle to prevent clinical signs from BoHV-5-induced disease have relied essentially on vaccination with BoHV-1 vaccines. However, such practice has been shown not to confer full protection to BoHV-5 challenge. In the present study, an inactivated, oil adjuvanted vaccine prepared with a recombinant BoHV-5 from which the genes coding for glycoprotein I (gI), glycoprotein E (gE) and membrane protein US9 were deleted (BoHV-5 gI/gE/US9), was evaluated in cattle in a vaccination/challenge experiment. The vaccine was prepared from a virus suspension containing a pre-inactivation antigenic mass equivalent to 107.69 TCID50/dose. Three mL of the inactivated vaccine were administered subcutaneously to eight calves serologically negative for BoHV-5 (vaccinated group). Four other calves were mock-vaccinated with an equivalent preparation without viral antigens (control group). Both groups were boostered 28 days later. Neither clinical signs of disease nor adverse effects were observed during or after vaccination. A specific serological response, revealed by the development of neutralizing antibodies, was detected in all vaccinated animals after the first dose of vaccine, whereas control animals remained seronegative. Calves were subsequently challenged on day 77 post-vaccination (pv) with 109.25 TCID50 of the wild-type BoHV-5 (parental strain EVI 88/95). After challenge, vaccinated cattle displayed mild signs of respiratory disease, whereas the control group developed respiratory disease and severe encephalitis, which led to culling of 2/4 calves. Searches for viral DNA in the central nervous system (CNS) of vaccinated calves indicated that wild-type BoHV-5 did not replicate, whereas in CNS tissues of calves on the control group, viral DNA was widely distributed. BoHV-5 shedding in nasal secretions was significantly lower in vaccinated calves than in the control group on days 2, 3, 4 and 6 post-challenge (pc). In addition, the duration of virus shedding was significantly shorter in the vaccinated (7 days) than in controls (12 days). Attempts to reactivate latent infection by administration of dexamethasone at 147 days pv led to recrudescence of mild signs of respiratory disease in both vaccinated and control groups. Infectious virus shedding in nasal secretions was detected at reactivation and was significantly lower in vaccinated cattle than in controls on days 11–13 post-reactivation (pr). It is concluded that the inactivated vaccine prepared with the BoHV-5 gI/gE/US9 recombinant was capable of conferring protection to encephalitis when vaccinated cattle were challenged with a large infectious dose of the parental wild type BoHV-5. However, it did not avoid the establishment of latency nor impeded dexamethasone-induced reactivation of the virus, despite a significant reduction in virus shedding after challenge and at reactivation on vaccinated calves.  相似文献   

9.
Bovid herpesvirus 2 infection was studied in calves exposed to the virus by intradermal inoculation of the skin of the left cheek or by nasal spray.

In either case a localised infection developed and virus replication was shown to occur mostly in the tissues of its primary localisation, i.e. the skin of the left cheek or the nasal mucosa. There were neither secondary lesions, except at the site of virus injection, nor any serious systemic involvement on the part of the animals.

The virus was also recovered from some areas of the skin (right cheek, perineum and scrotum) that were free of macroscopic lesions; moreover, intranuclear inclusions were found in several tissues of the nervous system (brain, superior cervical, stellate and Gasserian ganglia) which did not show any signs of inflammatory or degenerative changes. These findings suggest that the skin and the nervous system play an important role in the naturally-occurring disease since they could be the sites where the virus is maintained latently in the host.  相似文献   


10.
The role of suppressors of cytokine signaling (SOCS) in meningoencephalitis caused by Bovine herpesvirus 5 (BoHV-5) was evaluated by intracranial infection in C57BL/6 wild-type mice (WT) and SOCS2 deficient mice (SOCS2−/−). Both infected groups presented weight loss, ruffled fur and hunched posture. Additionally, infected SOCS2−/− mice showed swollen chamfer and progressive depression. Infected WT animals developed mild meningitis, characterized by infiltration of mononuclear cells. Moreover, viral DNA was detected in liver and lung from infected WT group. This group also showed elevated brain levels of IFN-γ, IL-10, CXCL1 and CCL5, when compared with non-infected WT animals. Brain inflammation was exacerbated in infected SOCS2−/− mice with widespread distribution of the virus and increased brain levels of TNF-α, IFN-γ, IL-10, IL-12, CXCL1 and CCL5, when compared with WT infected mice. Moreover, infected SOCS2 deficient mice exhibited reduced brain mRNA expression of IFNα and IFNβ and increased expression of mRNA of SOCS1, compared with infected WT mice. Taken together, our study provides an insight into the role of SOCS2 in modulating the immune response to BoHV-5 infection.  相似文献   

11.
Bovine herpesvirus 4 (BoHV-4) has been isolated from cattle throughout the world. Interestingly, a survey of wild African buffaloes mainly from the Maasai Mara Game Reserve in Kenya revealed that 94% of the animals tested had anti-BoHV-4 antibodies [Rossiter, P.B., Gumm, I.D., Stagg, D.A., Conrad, P.A., Mukolwe, S., Davies, F.G., White, H., 1989. Isolation of bovine herpesvirus-3 from African buffaloes (Syncerus caffer). Res. Vet. Sci. 46, 337–343]. These authors also proposed that the serological antigenic relationship existing between BoHV-4 and alcelaphine herpesvirus 1 (AlHV-1) could confer to BoHV-4 infected buffaloes a protective immune response against lethal AlHV-1 infection. In the present study, we addressed two questions related to Rossiter et al. paper. Firstly, to investigate the role of the African buffalo as a natural host species of BoHV-4, the seroprevalence of anti-BoHV-4 antibodies was analysed in wild African buffaloes throughout eastern and southern Africa. A total of 400 sera was analysed using two complementary immunofluorescent assays. These analyses revealed that independently of their geographical origin, wild African buffaloes exhibit a seroprevalence of anti-BoHV-4 antibodies higher than 68%. This result is by far above the seroprevalence generally observed in cattle. Our data are discussed in the light of our recent phylogenetic study demonstrating that the BoHV-4 Bo17 gene has been acquired from a recent ancestor of the African buffalo. Secondly, we investigated the humoral antigenic relationship existing between BoHV-4 and AlHV-1. Our results demonstrate that among the antigens expressed in AlHV-1 infected cells, epitope(s) recognised by anti-BoHV-4 antibodies are exclusively nuclear, suggesting that the putative property of BoHV-4 to confer an immune protection against AlHV-1 relies on a cellular rather than on a humoral immune response.  相似文献   

12.
13.
A BHV-4 specific nested PCR was used for the detection of viral DNA in serum samples of rabbits and calves. All animals were followed up for 62 days, blood samples were taken for PCR studies every second day. Maternal infection of calves resulted in the repeated regular reappearance (10-14 days) of the virus (DNA) in serum samples. When PCR positive five-day-old calves were infected with tissue culture adapted virus, the reappearance of the DNA in the serum was shown to be irregular, nevertheless, DNA peaks reappeared during the whole observation period. A PCR negative calf infected at the age of 60 days was found to possess viraemia until p.i.d. 32. In rabbits treated intravenously with BHV-4 the inoculum or a primary viraemia was detected at p.i.d. 2-3 and p.i.d. 14-16. Published data on human herpesviruses suggest, that the target cells might be a pluripotent stem cell population of the bone marrow and differentiated virus-infected cells destroyed by the immune system might be the source of viral DNA detected in the serum. Frequency of DNA reappearance was depended on the age of the infected animals but not on the inoculated amount of BHV-4. The described phenomenon might be part of BHV-4 infection of very young animals.  相似文献   

14.
OBJECTIVE: To compare the diagnostic performance of a complement fixation test, an agar gel immunodiffusion test, an enzyme-linked immunosorbent assay, and a whole-blood interferon-gamma assay for paratuberculosis in 14 sheep experimentally infected with Mycobacterium avium subsp paratuberculosis. EXPERIMENTAL DESIGN: Longitudinal study. RESULTS: The IFN-gamma assay detected more experimentally infected sheep, and earlier, than any of the serological tests. None of the antibody assays was able to detect all sheep with histologically confirmed paratuberculosis. CONCLUSIONS: The superior performance of the IFN-gamma assay in detecting infected sheep in this small experimental population warrants its further evaluation in a larger population of sheep naturally exposed to M a paratuberculosis.  相似文献   

15.
The presence and numbers of bovine herpesvirus 4 (BoHV-4) infected CD11b+ leukocytes were investigated during experimental infections of New Zealand White rabbits by Fluorescence Activated Cell Sorter (FACS) analysis. Peripheral blood leukocytes (PBL) were collected every second day, and the cells were stained with phycoerythrin-labelled CD11b-specific mouse monoclonal antibody and fluorescein-conjugated bovine herpesvirus 4-specific mouse monoclonal antibody. The numbers of double-stained cells from PBLs of the control and inoculated groups were measured and compared in FACSTREK analyser. Double-stained cells were detected in the virus-inoculated group on postinoculation days (PID) 2-5 and 9-12. The results indicated that CD11b+ PBLs were permissive for BoHV-4 infection, and are probably the main reservoir of the virus during the latent period. The data did not indicate production of infectious viral particles, but virus-specific proteins were expressed on the surface of CD11b+ cells. The two waves of double-stained cells gave similar results to the PCR assays from serum samples, which showed the presence of viral DNA in the serum on the same days when virus-infected CD11b cells were also present. Productive BoHV-4 infection of mast cells or undifferentiated leukocytes in the bone marrow and the antiviral immune response might be responsible for this periodic appearance of the virus in CD11b+ PBLs and in the serum. The paper provides evidence that CD11b+ PBLs are the main target cell populations in the blood for BoHV-4.  相似文献   

16.
The authors report CapHV.1 reactivation in two latently infected adult goats treated with dexamethasone (DMS) (4.40 mg/kg BW) for 6 days. Virus was reisolated from vaginal swabs from the 3rd to the 12th day post-treatment with DMS and from nasal swabs for 2 days (6th and 7th day post-treatment). The animals also showed an increase of neutralizing antibody (SN) titer to CapHV.1 3 weeks after the end of treatment with DMS.  相似文献   

17.
Background: Substantial bovine viral diarrhea virus (BVDV)‐related production losses in North American alpaca herds have been associated with BVDV type Ib infection. Objectives: To classify and differentiate the long‐term clinicopathological characteristics of BVDV type Ib infection of alpaca crias, after natural virus exposure. We hypothesized that persistently infected (PI) alpacas specifically demonstrate growth retardation, clinicopathological evidence of opportunistic infections, and early mortality. Animals: Thirty‐five crias naturally exposed to BVDV (18 acute, 3 chronic, 14 PIs), and 19 healthy cohort controls of 5 northeastern alpaca farms were prospectively evaluated over 2 years (September 2005–September 2008). Methods: Observational cohort‐control study. Results: Chronically (viremia >3 weeks) and PI crias demonstrated significantly lower birth weights, decreased growth rates, anemia, and monocytosis compared with control animals. Common clinical problems of PI alpacas included chronic wasting, diarrhea, and respiratory disease. Median survival of PI alpacas that died was 177 days (interquartile range, 555) with a case fatality rate of 50% within 6 months of life. Transplacental infection was confirmed in 82% (9/11) of pregnant females on 1 farm, resulting in the birth of 7 PI crias (7/10 deliveries; 1 animal was aborted). Mean gestation at the beginning and end of BVDV exposure was 64 and 114 days, respectively. Conclusions and Clinical Importance: Natural BVDV type 1b infection during early pregnancy resulted in a high incidence of PI offspring. Although PI alpacas may have distinct clinical characteristics, verification of persistent viremia in the absence of endogenous, neutralizing antibodies is essential to differentiate persistent from chronic infection.  相似文献   

18.
In this study, natural cycling of BoHV-1 infection was investigated in two groups of dairy cattle containing 2120 head. Group 1 comprised 127 animals and they were monitored for BoHV-1 infection virologically and serologically in six consecutive sampling periods. It consisted of naive heifers between 6 and 8 months of age, while in group 2, age, sex and the BoHV-1 serostatus of the animals were disregarded. The animals in group 1 were found to have seroconverted at the second sampling. Results of the serological study showed slight antibody response after natural BoHV-1 infection in the herd and neutralizing titres fell below protective levels in the 6–8 months after the peak. During the 2-year study period, one recurrence was detected after primary infection. Virus isolation studies revealed a cytopathic effect indicative of BoHV-1 in two nasal swabs taken during the fifth sampling period from animals with mild upper respiratory tract symptoms. As the study was carried out under natural conditions, it is not known whether the viruses isolated were from recurrences or re-infections. Data from cross-neutralization tests with herd isolates showed higher antibody response than those with the reference virus. The dynamics of BoHV-1 in both groups were found to be statistically similar.  相似文献   

19.
20.
The organisation of animal populations in social groupings may play a crucial role in the transmission of any infectious disease that requires close contact. The objective of this study was to quantify the contact structure of part of the Heck cattle population in a Dutch nature reserve and its hypothetical effect on the transmission of bovine herpesvirus 1 (BHV1). The contact structure was quantified by observing the number of different animals with whom contact was made (i.e. the number of contactees) within a fixed time period. Two types of behaviour sampling methods, namely focal sampling and scan sampling were used to observe the contact structure. In this study only those contacts between individuals were observed that were assumed to be a proxy measure of an at-risk event for BHV1-infection. Two reproduction ratios (R), i.e. the average number of new cases caused by a typical infected individual, were estimated, one for the observed contact structure and another for a random mixing contact structure. The two reproduction ratios were then compared to study the hypothetical effect on BHV1 transmission.

The overall number of contactees was highest during summer and lowest during winter-spring. The contact structure of the homogeneous population did differ significantly from a random mixing contact structure, resulting in that the variation in the number of contactees was higher than under random mixing. Bulls, young bulls and cows had the highest number of contactees during, respectively, summer, autumn and winter-spring. From the analysis of the contingency tables it was clear that contacts between animal types did not occur at random during summer and autumn. For example, during summer more contacts than expected occurred between bulls and cows. This heterogeneity at animal type level was taken into account in the calculation for R, which resulted for the observed contact structure in higher estimates for R than for the homogeneous population.

When looking at heterogeneity at individual level it was found that during summer almost all individuals were observed together direct or indirect in the same group except for certain bull groups. During autumn and winter-spring almost all individuals were seen together in the same group when considering a long contact period of 14 days but the groups were fallen apart in smaller groups and solitary individuals for a short contact period of 5 days.

It could be concluded that based on the observed contact structure transmission would be favoured most during summer.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号