首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
《Applied soil ecology》2007,35(2-3):93-102
A semi-arid soil treated with different concentrations of formulated atrazine in a laboratory experiment was studied over 45 days, by different biological and molecular parameters (bacterial enumeration (cfu), community level physiological profiles (CLPPs) measured by Biolog® and denaturing gradient gel electrophoresis (DGGE)), to study the bacterial community diversity.Formulated atrazine was almost totally degraded at different concentrations after this incubation time. The number of colony forming units (cfu) for soils with 100 and 1000 mg kg−1 atrazine was significantly (p  0.05) higher than for the control, 1 and 10 mg kg−1 treatments. DGGE banding patterns showed that regardless of time elapsed, concentrations of 10, 100 and 1000 mg kg−1 atrazine in soil, affected the bacterial community compared to control and 1 mg kg−1.The Shannon diversity index (H′) based on CLPP data showed a significant (p  0.05) decrease at atrazine concentrations of 100 and 1000 mg kg−1. The Shannon diversity indices for different guilds of source carbon and the parameters K and r (based on the kinetics of colour formation rather than on the degree of colour development) were related to guilds of carbon substrates and atrazine concentration at a sampling time. The parameter K was very sensitive to atrazine effects on microbial communities.These biological and molecular parameters can be used to monitor changes in soils treated with atrazine at different concentrations, even when the pesticide is degraded.  相似文献   

2.
The interrelationships between plants and rhizosphere bacteria are strongly dependent on the quality and quantity of root exudates. The ability to colonize roots is crucial for pseudomonads to function as biological control agents of root- and soil-borne pathogenic microbes. The multiplication of rhizosphere bacteria is restricted in the presence of simple phenolic compounds, which are components of the resistance mechanisms of plants to pathogens. Caffeic acid is a phenolic compound, which is commonly found in wheat tissues. It is prone to oxidation into o-quinones, which are toxic to microorganisms. The aim of the present study was to determine whether the ability of microorganisms to resist caffeic acid and its oxidation products could play a role in the early colonization of wheat seedlings. Among the fluorescent pseudomonads that we have studied, strain PSR114 is one of the most efficient colonizers of wheat seedlings during the first 48 h after seed germination, and it is particularly resistant to products resulting from the spontaneous oxidation of caffeic acid. This strain was isolated from the rhizosphere of oilseed rape and identified as being closely related to Pseudomonas proteolytica through the analysis of 16S rRNA and rpoB gene sequences. At pH 7.0, this strain grew intensively in the presence of 1.50 mg mL−1 of caffeic acid. Its multiplication was partially reduced in the presence of oxidized caffeic acid at concentrations above 0.21 mg mL−1, and completely inhibited at concentrations above 0.38 mg mL−1. A Tn5 transposon mutant of PSR114 had lower level of resistance to the oxidation products of caffeic acid, as well as reduced capacity to colonize wheat seedlings when compared to the wild type strain. This work demonstrates that resistance to oxidation products of caffeic acid can be important for successful bacterial colonization of wheat seedlings.  相似文献   

3.
We examined collembolan food preference for fungal mycelium grown on copper-contaminated medium, and the relationship between copper content, food selectivity and collembolan fitness when fed contaminated mycelium.To clarify whether collembolan food selectivity is related to fitness parameters, Folsomia candida were fed mycelium of the dark-pigmented fungus Alternaria alternata grown on medium with different copper concentrations. Copper-contaminated food (fungus grown on 50, 125, 250 and 500 μg Cu g?1 medium, fresh wt.) was offered together with untreated food for 4 weeks. F. candida fed selectively on the provided mycelium and discriminated clearly between mycelium grown on high and low levels of contamination, distinctly preferring fungus grown on medium with a total copper concentration of 50 and 125 μg g?1. In contrast, fungus grown on highly contaminated medium (250 and 500 μg g?1) was avoided. Collembolan food preference generally matched fitness parameters. Reproduction was significantly affected by the total copper concentration of the fungal growth medium. When fed their preferred mycelium, collembolan reproduction was enhanced, whereas a diet of highly contaminated mycelium (250 or 500 μg g?1) resulted in a strong decrease in reproduction. Adult survival was affected only marginally. Even though heavy metal contamination is a potential stress factor for many soil microarthropods, F. candida is able to discriminate between high and low quality food sources, and even benefits from moderately elevated copper concentrations.  相似文献   

4.
Studies were conducted to evaluate the survival and persistence of Sinorhizobium meliloti 104A14 and two acid phosphatase-negative mutants in Kirkland (fine, mixed, thermic Udertic Paleustolls) silt loam soils with various fertility levels, and to assess the impact of inoculation on nodule occupancy and soil microbial community structure in the inoculated alfalfa (Medicago sativa L.) rhizosphere. Recovery of the inoculated strains was 100% (in the order of 108 cells g−1 soil) immediately following inoculation to soils, but decreased from 108 cells g−1 soil to undetectable levels in a nutrient-poor soil within 32 days. In a nutrient-rich soil, approximately 2–3% (4.7–7.43×106 cells g−1 soil) of the mutants and 23% (5.84×107 cells g−1 soil) of the wild-type inocula persisted for more than 64 days. Survivability and persistence of the wild-type S. meliloti were significantly greater than that of the genetically modified acid phosphatase negative mutants in all the soils tested. The persistence and nodule occupancy of the introduced S. meliloti in sterile and non-sterile soils were also tested for two repeated alfalfa growth periods in the same plant growth units, with a 1 month interval in between and no additional inoculation for the second period. Nodule occupancy of the introduced S. meliloti in non-sterile soils ranged from 30 to 60% for the first period and 85 to 100% for the second period. Our results suggest that survival and persistence of S. meliloti was enhanced by alfalfa cultivation and increased soil fertility, but impaired by mutation of acid phosphatase genes regardless of phosphorus nutritional levels. Moreover, inoculation with genetically modified S. meliloti strain 104A14 promoted indigenous bacterial growth in soil (increased bacterial population from 1.4×106 to 4.3×106 cells g−1 soil), but not the growth of fungi and yeast. However, inoculation of the wild-type S. meliloti or genetically modified mutants did not result in significant changes in microbial community structure as indicated by EP indices and ratios of r/K strategists.  相似文献   

5.
We investigated the abundance and genetic heterogeneity of bacterial nitrite reductase genes (nir) and soil structural properties in created and natural freshwater wetlands in the Virginia piedmont. Soil attributes included soil organic matter (SOM), total organic carbon (TOC), total nitrogen (TN), pH, gravimetric soil moisture (GSM), and bulk density (Db). A subset of soil attributes were analyzed across the sites, using euclidean cluster analysis, resulting in three soil condition (SC) groups of increasing wetland soil development (i.e., SC1 < SC2 < SC3; less to more developed or matured) as measured by accumulation of TOC, TN, the increase of GSM, and the decrease of Db. There were no difference found in the bacterial community diversity between the groups (p = 0.4). NirK gene copies detected ranged between 3.6 × 104 and 3.4 × 107 copies g−1 soil and were significantly higher in the most developed soil group, SC3, than in the least developed soil group, SC1. However, the gene copies were lowest in SC2 that had a significantly higher soil pH (~6.6) than the other two SC groups (~5.3). The same pattern was found in denitrifying enzyme activity (DEA) on a companion study where DEA was found negatively correlated with soil pH. Gene fragments were amplified and products were screened by terminal restriction fragment length polymorphism (T-RFLP) analysis. Among 146 different T-RFs identified, fourteen were dominant and together made up more than 65% of all detected fragments. While SC groups did not relate to whole nirK communities, most soil properties that identified SC groups did significantly correlate to dominant members of the community.  相似文献   

6.
《Applied soil ecology》1999,11(2-3):189-197
Senescent leaves of Miscanthus sinensis contained 36% soluble polysaccharides, 26% cellulose and had a C/N ratio of 45. In 11 wild flower species contents of soluble polysaccharides (21–30%), cellulose (3–16%) and C/N ratio (13–31) were lower. Decomposing leaves of M. sinensis lost weight at a rate of 0.002 day−1, increased the C/N ratio from 45 to about 100, the bacterial biomass from 0.4 to 1 μg C mg−1 dry weight, and decreased the tensile strength from 35 to 10 N. The withdrawal rate of Lumbricus terrestris with senescent leaves of M. sinensis was 30 mg g−1 week−1; the feeding rate was lower. With most senescent wild flowers withdrawal and feeding rates were higher. During decomposition of M. sinensis withdrawal rates increased to about 90, and feeding rates to about 30 mg g−1 week−1. The rates were not related to soluble polysaccharides, cellulose, acid-insoluble residue, C/N ratio and the presence of trichomes on the leaves. The abundance of L. terrestris decreased in a meadow turned into a field of M. sinensis from 55 to 26 earthworms m−2 and increased in a rotational maize field turned into wild flower strips from 28 to 46 earthworms m−2. The species richness of earthworms decreased with M. sinensis from 7.2 to 4.7 and increased with wild flowers from 4.7 to 6.7 species per sampling unit.  相似文献   

7.
The large-scale production of biochar for carbon sequestration provides an opportunity for using these materials as inoculum carriers to deliver plant growth-promoting rhizobacteria (PGPR) into agricultural soils. Here, we evaluated the suitability of a biochar produced from pinewood pyrolyzed at 300 °C as a carrier for a well-studied PGPR strain, Enterobacter cloacae UW5. This strain was genetically modified to produce a green fluorescent protein marker that enabled tracking of the inoculum. Results from selective plate count assays and quantitative PCR (qPCR) confirmed that cell survival was slightly improved by addition of bacteria to soil using biochar as a carrier for the inoculant, as compared to soil directly inoculated. Total 16S rRNA genes were quantified using qPCR and DNA templates from the same soil treatments to distinguish the impact of biochar on total bacterial abundance from its influence on inoculum survival. Here total bacterial abundance was not influenced by biochar. All treatments resulted in bacterial colonization of roots at population densities of approximately 105 CFU g−1 root mass. Cucumber plants grown in the biochar amended soils had significantly greater biomass and root development than those planted in un-amended soil, regardless of the presence of inoculum. The ability of bacteria to colonize the plant roots and produce a plant growth hormone was not affected by biochar. However, UW5 inoculum did not promote root development in cucumber in any of the soils tested here. Overall, these experiments suggest that the 300 °C pine biochar is effective for evenly distributing inoculum into soil and promotes cucumber development in sandy loams.  相似文献   

8.
Arbuscular mycorrhizal fungus (AMF) can enhance plant growth and resistance to toxicity produced by heavy metals (HMs), affect the bioavailability of HMs in soil and the uptake of HMs by plants, and thus has been emerged as the most prominent symbiotic fungus for contribution to phytoremediation. A greenhouse pot experiment was conducted to assess the effect of Glomus versiforme BGC GD01C (Gv) on the growth and Cd accumulation of Cd-hyperaccumulator Solanum nigrum in different Cd-added soils (0, 25, 50, 100 mg Cd kg−1 soil). Mycorrhizal colonization rates were generally high (from 71% to 82%) in Gv-inoculated treatments at all Cd levels. Gv colonization enhanced soil acid phosphatase activity, and hence elevated P acquisition and growth of S. nigrum at all Cd levels. Moreover, the presence of Gv significantly increased DTPA-extractable (phytoavailable) Cd concentrations in 25 and 50 mg Cd kg−1 soils, but did not affect phytoavailable Cd in 100 mg Cd kg−1 soil. Similarly, inoculation with Gv significantly increased Cd concentrations of S. nigrum in 25 and 50 mg Cd kg−1 soils, but decreased Cd concentrations of the plants in 100 mg Cd kg−1 soil. Overall, inoculation with Gv greatly improved the total Cd uptakes in all plant tissues at all Cd levels. The present results indicated that S. nigrum associated with Gv effectively improved the Cd uptake by plant and would be a new strategy in microbe-assisted phytoremediation for Cd-contaminated soils.  相似文献   

9.
A real-time PCR assay was developed to quantify in soil the fungus Hirsutella minnesotensis, an important parasite of secondary-stage juvenile (J2) of the soybean cyst nematode. A primer pair 5′-GGGAGGCCCGGTGGA-3′ and 5′-TGATCCGAGGTCAACTTCTGAA-3′ and a TaqMan probe 5′-CGTCCGCCGTAAAACGCCCAAC-3′ were designed based on the sequence of the ITS region of the rRNA gene. The primers were highly species-specific. The PCR reaction system was very sensitive and able to detect as few as 4 conidia g?1 soil. Regression analysis showed similar slopes and efficiency on DNA from pure culture (y = ?3.587x + 41.017, R2 = 0.9971, E = 0.9055) and from Log conidia g?1 soil (y = ?3.855x + 37.669, R2 = 0.9139, E = 0.8172), indicating that the real-time PCR protocol can reliably quantify H. minnesotensis in the soil. The real-time PCR assay was applied to 20 soil samples from soybean fields, and compared with a parasitism assay. The real-time PCR assay detected H. minnesotensis in six of the soils, whereas the parasitism assay detected H. minnesotensis in the same six soils and three additional soils. The real-time PCR assay was weakly correlated (R2 = 0.49) with the percentage of parasitized J2 in the six soils, indicating that different types of soil may interfere the efficiency of the real-time PCR assay, possibly due to the effect of soil types on efficacy of DNA extraction. The parasitism assay appeared to be more sensitive than real-time PCR in detecting presence of H. minnesotensis, but real-time PCR was much faster and less costly and provided a direct assessment of fungal biomass. Using the two assays in combination can obtain more complete information about the fungus in soil than either assay alone. Hirsutella parasitism was widespread and detected in 13 of the 20 field soils, indicating that these fungi may contribute to suppressiveness of soybean cyst nematode in nature and likely have high biological control potential for the nematode.  相似文献   

10.
It is known that carbon (C) amendments increase microbial activity in anoxic soil microcosm studies, however the effects on abundance of total and denitrifier bacterial communities is uncertain. Quantitative PCR was used to target the 16S rRNA gene for the total bacterial community, the nosZ functional gene to reflect a broad denitrifier community, and functional genes from narrow denitrifier communities represented by Pseudomonas mandelii and related species (cnorBP) and Bosea/Bradyrhizobium/Ensifer spp. (cnorBB). Repacked soil cores were amended with varying amounts of glucose and red clover plant tissue (0–1000 mg C kg? 1 of soil) and incubated for 96 h. Carbon amendment significantly increased respiration as measured by cumulative CO2 emissions. Inputs of red clover or glucose at 1000 mg C kg? 1 of soil caused increased abundance in the total bacteria under the conditions used. There was about an approximate 2-fold increase in the abundance of bacteria bearing the nosZ gene, but only in treatments receiving 500 or 1000 mg C kg? 1 of soil of glucose or red clover, respectively. Additions of ≥ 500 mg C kg? 1 soil of red clover and ≥ 250 mg C kg? 1 of glucose increased cnorBP-gene bearing denitrifiers. Changes in abundance of the targeted communities were related to C availability in soil, as indicated by soil respiration, regardless of C source. Applications of C amendments at rates that would occur in agricultural soils not only increase microbial activity, but can also induce changes in abundance of total bacterial and denitrifier communities in studies of anoxic soil microcosms.  相似文献   

11.
12.
Soil microarthropods colonize a wide range of habitats including microhabitats such as earthworm burrows, ant nests, tree trunks, moss mats and wood decaying fungi. While many of these microhabitats have been investigated intensively, the role of wood decaying fungi as a habitat and food resource for microarthropods found little attention. We investigated the density, community structure, reproductive mode and trophic structure of microarthropods, in particular oribatid mites, in the wood decaying fungus Fomitopsis pinicola (Schwarts: Fr) Karst. along an altitudinal gradient in Germany spanning from 350 m to 1160 m. Microarthropods were extracted from sporocarps, and stable isotope ratios (15N/14N; 13C/12C) of the fungus and the microarthropods were measured. Densities of most microarthropod taxa were highest at lower altitudes and decreased with increasing altitude. Oribatid mites were the dominant animal taxon. Their community structure gradually changed with altitude. Stable isotope ratios indicated that oribatid mite and other arthropod species occupy distinct trophic niches but most do not feed on F. pinicola. Notably, species of the same genus, e.g. Carabodes, occupied different trophic niches. Most oribatid mite species in F. pinicola reproduced sexually which is similar to the bark of trees but in contrast to the soil where most species reproduce via parthenogenesis. The findings indicate that (1) at high altitudes microarthropod density in fungal fruiting bodies is limited by low temperatures reducing animal metabolism and reproduction, and this also affects oribatid mite community structure, (2) despite the uniform habitat trophic niches of oribatid mite species differ and this also applies to morphologically similar species of the same genus, and (3) feeding on F. pinicola or associated resources facilitates the dominance of sexual reproducing species.  相似文献   

13.
Napropamide is one of the most commonly used herbicide in agricultural practice and can exhibit toxic effect to soil microorganisms. Therefore, the main objective of this study was to examine the genetic and functional diversity of microbial communities in soil treated with napropamide at field rate (FR, 2.25 mg kg−1 of soil) and 10 times the FR (10 × FR, 22.5 mg kg−1 of soil) by the denaturing gradient gel electrophoresis (DGGE) and the community level physiological profile (CLPP) methods. In addition, the r/K-strategy approach was used to evaluate the effect of this herbicide on the community structure of the culturable soil bacteria. DGGE patterns revealed that napropamide affected the structure of microbial community; however, the richness (S) and genetic diversity (H) values indicated that the FR dosage of napropamide experienced non-significant changes. In turn, the 10 × FR dosage of herbicide caused significant changes in the S and H values of dominant soil bacteria. DGGE profiles suggest an evolution of bacteria capable of degrading napropamide among indigenous microflora. Analysis of the CLPPs indicated that the catabolic activity of microbial community expressed as AWCD (average well-color development) was temporary positively affected after napropamide application and resulted in an increase of the substrate richness (SR) as well as functional biodiversity (H) values. Analysis of the bacterial growth strategy revealed that napropamide affected the r- or K-type bacterial classes (ecotypes). In treated-soil samples K-strategists dominated the population, as indicated by the decreased ecophysiological (EP) index. Napropamide significantly affected the physiological state of culturable bacteria and caused a reduction in the rate of colony formation as well as a prolonged time of growth rate. Obtained results indicate that application of napropamide may poses a potential risk for soil functioning.  相似文献   

14.
Polycyclic aromatic hydrocarbons (PAH) are ubiquitous pollutants that are toxic and recalcitrant to degradation by bacteria. This research evaluated the toxicity of different concentrations [10, 20, 40, 60, 80 and 100 μg mL−1] of phenanthrene (PHE) or benzo[a]pyrene (BaP) on the growth of Rhizobium tropici CIAT899 under in vitro conditions as well as the potential degradation of PHE and BaP by this bacterium. At 24 h, a 40% decrease in Rhizobium growth was observed when exposed to 40 μg mL−1 of either PHE or BaP. Furthermore, bacterial growth was completely inhibited by PHE or BaP applied in 80 and 100 μg mL−1. After 96 h, the growth of R. tropici at 40 μg PHE mL−1 or 60 μg BaP mL−1 was similar to those treatments without PAH. To evaluate R. tropici degrading capabilities, supernatants of cultures with 40 μg PHE mL−1 or 60 μg BaP mL−1 were analyzed by gas chromatography coupled to mass spectrophotometer (GC–MS). R. tropici was able to degrade either PHE or BaP diminishing its concentration in 20% and 25% during the first 24 h, degradation obtained at 120 h was 50% and 45% for PHE or BaP, respectively. This research shows for the first time that R. tropici CIAT 899 grows in liquid culture medium contaminated with PAH, and moreover is able to growth and to degrade either PHE or BaP.  相似文献   

15.
Soil N fertilization stimulates the activity of the soil bacterial species specialized in performing the different steps of the denitrification processes. Different responses of these bacterial denitrifiers to soil N management could alter the efficiency of reduction of the greenhouse gas N2O into N2 gas in cultivated fields. We used next generation sequencing to show how raising the soil N fertility of Canadian canola fields differentially modifies the diversity and composition of nitrite reductase (nirK and nirS) and nitrous oxide reductase (nosZ) gene-carrying denitrifying bacterial communities, based on a randomized complete blocks field experiment. Raising soil N levels increased up to 60% the ratio of the nirK to nirS genes, the two nitrite reductase coding genes, in the Brown soil and up to 300% in the Black soil, but this ratio was unaffected in the Dark Brown soil. Raising soil N levels also increased the diversity of the bacteria carrying the nitrite reductase gene nirK (Simpson index, P = 0.0417 and Shannon index, 0.0181), and changed the proportions of the six dominant phyla hosting nirK, nirS, and nosZ gene-carrying bacteria. The level of soil copper (Cu) and the abundance of nirK gene, which codes for a Cu-dependent nitrite reductase, were positively related in the Brown (P = 0.0060, R2 = 0.48) and Dark Brown (0.0199, R2 = 0.59) soils, but not in the Black soil. The level of total diversity of the denitrifying communities tended to remain constant as N fertilization induced shifts in the composition of these denitrifying communities. Together, our results indicate that higher N fertilizer rate increases the potential risk of nitrous oxide (N2O) emission from canola fields by promoting the proliferation of the mostly adaptive N2O-producing over the less adaptive N2O-reducing bacterial community.  相似文献   

16.
Polar ecosystems are currently experiencing some of the fastest rates of climate warming. An increase in soil temperature in High Arctic regions may stimulate soil permafrost melting and microbial activity, thereby accelerating losses of greenhouse gases. It is therefore important to understand the factors regulating the rates of C turnover in polar soils. Consequently, our aims were to: (1) assess the concentration of low molecular weight (MW) dissolved organic carbon (DOC) in soil, (2) to investigate the temperature-dependent turnover of specific low MW compounds, and (3) to analyse the influence of substrate concentration on C cycling. Microbial mineralisation of labile low MW DOC in two High Arctic tundra soils was investigated using soil solutions spiked with either 14C-labelled glucose or amino acids. Spiked solutions were added to the top- and sub-soil from two ecosystem types (lichen and Carex dominated tundra), maintained at three temperatures (4–20 °C), and their microbial mineralisation kinetics monitored. 14CO2 evolution from the tundra soils in response to 14C-glucose and -amino acid addition could best be described by a double first order exponential kinetic equation with rate constants k1 and k2. Both forms of DOC had a short half-life (t1/2) in the pool of microbial respiratory substrate (t1/2 = 1.07 ± 0.10 h for glucose and 1.63 ± 0.14 h for amino acids; exponential coefficient k1 = 0.93 ± 0.07 and 0.64 ± 0.06 h?1 respectively) whilst the second phase of mineralisation, assumed to be C that had entered the microbial biomass, was much slower (average k2 = 1.30 × 10?3 ± 0.49 × 10?4 h?1). Temperature had little effect on the rate of mineralisation of 14C used directly as respiratory substrate. In contrast, the turnover rate of the 14C immobilized in the microbial biomass prior to mineralisation was temperature sensitive (k2 values of 0.99 × 10?3 h?1 and 1.66 × 10?3 h?1 at 4 and 20 °C respectively). Concentration-dependent glucose and amino acid mineralisation kinetics of glucose and amino acids (0–10 mM) were best described using Michaelis–Menten kinetics; there was a low affinity for both C substrates by the microbial community (Km = 4.07 ± 0.41 mM, Vmax = 0.027 ± 0.005 mmol kg?1 h?1). In conclusion, our results suggest that in these C limiting environments the flux of labile, low MW DOC through the soil solution is extremely rapid and relatively insensitive to temperature. In contrast, the turnover of C incorporated into higher molecular weight microbial C pools appears to show greater temperature sensitivity.  相似文献   

17.
Soil archaeal population dynamics at two experimental sites of the same clay-loam type in Ottawa and Woodslee, Ontario, were investigated to determine fertilizer and manure effects following their different long-term crop rotation and fertilization schemes. Phylogenetic analysis of cloned soil archaeal 16S rRNA gene libraries of both sites identified them with group 1.1b of Thaumarchaeota. The gene population dynamics subtly varied in the order of 107 copies g−1 soil when monitored by quantitative real-time PCR during three growing seasons (2007–2009). In Ottawa, where plots were amended with dairy-farm manure, soil thaumarchaeal gene abundance was double of the unamended plots. At the Woodslee N-P-K-fertilized plots, it remained at least 30% fewer than that of the unfertilized ones. These cultivated plots showed soil carbon limitation while the fertilized ones were low in soil pH (ca. 5.5). Surface soils from an unfertilized sod plot and an adjacent deciduous forest had higher total carbon content (C:N ratio of 9 and 11, respectively). Their thaumarchaeal gene abundance varied up to 4.8 × 107 and 7.0 × 107 copies g−1 soil, respectively. The former value was also attained at the manure-amended plots in Ottawa, where the C:N ratio was just below 10. Where soil pH was above 6.0, there was a weak and positive correlation between soil total C and the estimated gene abundance. Such gene population dynamics consistently demonstrated the stimulating and suppressive effects of dairy-farm manure (Ottawa site) and inorganic fertilizers (Woodslee site), respectively, on soil thaumarchaea. At both sites archaeal amoA and 16S rRNA gene abundance were similarly affected. Archaeal amoA gene abundance also outnumbered bacterial amoA abundance, suggesting that ammonia-oxidizing archaea might be dominant in these soils. Only minor crop effects on gene population dynamics were detected.  相似文献   

18.
The veterinary antibiotic sulfadiazine (SDZ), labelled by 14C, was administered to pigs to follow the fate of the drug and its metabolites in manure and manure-amended soil, and to investigate the dynamics of drug effects on resistance genes and bacterial communities. In the manure sampled over 10 days, more than 96% of the drug was found as parent compound or metabolites N-acetyl-SDZ and 4-hydroxy-SDZ. While the manure was stored the concentration of SDZ increased by 42% due to deacetylation of the metabolite N-acetyl-SDZ, whereas the minor metabolite 4-hydroxy-SDZ kept constant. In the soil the extractable amounts of the compounds decreased exponentially to less than 1 mg kg?1 within 11 days after manure amendment. The abundances of SDZ resistance genes sul1 and sul2 were determined by qPCR relative to 16S rRNA genes in total DNA from manure and manure-amended soil. In manure both genes increased exponentially in copy number during the first 60 days of storage, suggesting preferential growth of resistant populations. However, the abundance of sul1 and sul2 decreased below 10?5 copies per 16S rRNA gene after 175 days. With manure high amounts of sul1 and sul2 were introduced into the soil which were reduced by more than 10 times within 24 days. Thereafter, sul1 was stably maintained in soil, while sul2 further decreased between day 60 and day 165. A mathematical model was developed that could well explain the time course of sul gene abundance by considering the cost of sul genes, horizontal gene transfer, and selection of the resistant populations in the presence of SDZ. Modelling revealed a selective effect of SDZ on sul2 even at low concentrations down to 0.15 mg kg?1 soil. Bacterial community profiles of manure and manure-amended soil were distinct, indicating that bacteria introduced with manure do not become prominent in soil. The composition of the bacterial community in manure constantly changed during storage, but mainly during the first 10 days. Profiles of soil bacterial communities revealed only a transient perturbation by manure containing SDZ.  相似文献   

19.
《Applied soil ecology》2005,28(1):23-36
This study assessed the effect of mycorrhizal colonization by Glomus intraradices (Gi) and G. versiforme (Gv) on the bacterial community composition in the rhizosphere of canola, clover and two tomato genotypes (wild type (76R) and its mutant with reduced mycorrhizal colonization (rmc)). Additionally, the effect of light intensity on the rhizosphere bacterial community composition of the tomato genotypes was studied. The bacterial community composition was assessed by denaturing gradient gel electrophoresis (DGGE). In canola, which is considered to be a non-mycorrhizal species, inoculation with Gi increased the shoot dw compared to Gv and the non-mycorrhizal control plants and also induced changes in the bacterial community composition in the rhizosphere. These fungal effects were observed although less than 8% of the root length of canola was colonized. On the other hand, about 50% of the root length of clover was colonized and inoculation with Gv resulted in a higher shoot dw compared to Gi or the control plants but the rhizosphere bacterial community composition was not affected by inoculation. Plant growth, mycorrhizal colonization and bacterial community composition of the two tomato genotypes were affected by a complex interaction between tomato genotype, AM fungal species and light intensity. Low light intensity (photosynthetic photon flux 200–250 μmol m−2 s−1) increased the shoot–root ratio in both genotypes and reduced colonization in the wild type. The differences in bacterial community composition between the two genotypes were more pronounced at low than at high light intensity (550–650 μmol m−2 s−1).  相似文献   

20.
The effect of six phosphate-solubilizing fungi (PSF, two strains of Aspergillus awamori, and four of Penicillium citrinum) isolated from rhizosphere of various crops, was observed on the growth and seed production of chickpea plants (Cicer arietinum L. cv. GPF2) in pot experiments. The phosphate (P) solubilizing activity of PSF in liquid varied from 38 to 760 μg ml?1 for tricalcium phosphate (TCP) and 28–248 μg ml?1 for mussoorie rock phosphate (MRP). All PSF isolates were biocompatible and produced growth-promoting hormone, Indole acetic acid (IAA), varying in concentration from 2.5 to 9.8 μg ml?1. Of the various pot experiments carried out in green house, maximum stimulatory effect on chickpea plants growth was observed by inoculation of two A. awamori strains. This treatment resulted in 7–12% increase in shoot height, nearly three-fold increase in seed number and two-fold increase in seeds weight as compared to the control (un-inoculated) plants. Inoculation of four strains of P. citrinum exhibited lesser stimulatory effect. It showed 7% increase in shoot height, two-fold increase in seed number and 87% increase in seeds weight as compared to the control plants. However, a consortium of all the six fungal isolates showed no stimulatory effect on chickpea plants growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号