首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Agricultural management can affect soil organic matter chemistry and microbial community structure, but the relationship between the two is not well understood. We investigated the effect of crop rotation, tillage and stubble management on forms of soil phosphorus (P) as determined by solution 31P nuclear magnetic resonance spectroscopy and microbial community composition using fatty acid methyl ester analysis in a long-term field experiment (26 years) on a Chromic Luvisol in New South Wales, Australia. An increase in soil organic carbon, nitrogen and phosphorus compared to the beginning of the experiment was found in a rotation of wheat and subterranean clover with direct drill and mulching, while stubble burning in wheat–lupin and wheat–wheat rotations led to soil organic matter losses. Microbial biomass was highest in the treatment with maximum organic matter contents. The same soil P forms were detected in all samples, but in different amounts. Changes in organic P occurred mainly in the monoester region, with an increase or decrease in peaks that were present also in the sample taken before the beginning of the experiment in 1979. The microbial community composition differed between the five treatments and was affected primarily by crop rotations and to a lesser degree by tillage. A linkage between soil P forms and signature fatty acids was tentatively established, but needs to be verified in further studies.  相似文献   

2.
Eurasian Soil Science - The depiction of soil delineations on a public cadastral map clearly demonstrates the potentialities of large-scale soil mapping. The development of land legislation...  相似文献   

3.
Frequently occurring freeze–thaw events can affect soil nutrients. Available phosphorus (AP) is one of the most important plant nutrients in a brown forest soil. Initial soil moisture (15%, 20%, 25%, and 30%), fertilizer concentrations [0, 20, 40, and 60 ppm monopotassium phosphate (KH2PO4)], and freeze–thaw cycles (0, 1, 3, and 6) were considered to determine the effects of freeze–thaw events on AP, and the results indicated that (1) when variables initial soil moisture and fertilizer concentrations were defined, AP concentrations decreased with the increase of freeze–thaw cycles; (2) when variables freeze–thaw cycles and fertilizer concentrations were defined, AP concentrations presented decreased trend with the increase of initial soil moisture, especially initial soil moisture increase from 20% to 30%; and (3) when variables freeze–thaw cycles and initial soil moisture were defined, freeze–thaw events has more obvious influence on AP concentrations in soil samples with no fertilization added than mixed monopotassium phosphate (KH2PO4) before experiment.  相似文献   

4.
Abstract

Five levels of S (as gypsum) were topdressed on to a pasture containing subterranean clover. Yield responses by the clover fraction of the pasture were measured, together with the total S concentration, the sulphate S concentration and the N:S ratio in young clover plants collected in autumn prior to the fertilizer application, and in plants from the control plots collected in winter and in spring.

As there were irregular changes in analytical values from autumn through winter to spring, a more detailed series of samples was taken in the second year. Therein, values for total S and sulphate S in clover plants from each treatment rose during the winter and fell during the spring, so that the critical concentration of sulphur or sulphate varied during the growing period. However, the critical N:S ratio was relatively stable, and in view of previously demonstrated correlations with response to added S, appears to be the more useful index for both diagnosis and prognosis.  相似文献   

5.
In this study, four soil extraction methods (Olsen, Soltanpour, Mehlich 3, and water saturation) were used to identify optimal concentrations of phosphorus (P) required for plant growth. Olsen soil extraction for P was the most appropriate method for soil types of this study as the greatest correlation coefficient for soil-test P and with plant factors was achieved. The optimal amount of soil features (pH, organic carbon, lime, gypsum, and clay) determined by using response surface methodology (a new optimization method) were 7.49, 0.66, 41.82, 4.21, and 31.34, respectively. More soil P was extracted when the soil had optimal amounts of these features, showing each feature had a significant effect on extracted soil P. Furthermore, the graphical method of Cate–Nelson determined the optimal amounts of P using Olsen, Soltanpour, Mehlich 3, and saturation extract methods for wheat as 15, 6.5, 35, and 1.5 mg kg?1 soil in nongypsic soils and 17, 3.5, 45, and 2.5 mg kg?1 soil in gypsic soils.  相似文献   

6.
The research aimed to study the effect of presown application of primary biomethanated spentwash (PBSW) on soil properties, nutrient availability, uptake and yield of soybean–wheat sequence on Inceptisol. The field experiment with randomised block design was initiated during 2007–8 and present observation was recorded during 2009–10 and 2010–11.The five treatments were, recommended dose (RD) of NPK (T1), 100% RD of N through PBSW without (T2) and with P chemical fertilizer (T3), 50 and 25% RD of N through PBSW + remaining N and P through chemical fertilizers (T4,T5), respectively. The results revealed that the soil physical properties and microbial populations were improved in T2 and T3. The lowest soil pH and pHs were observed in T2. The soil electrical conductivity, organic carbon, exchangeable sodium percentage and sodium adsorption ratio of soil extracts and available K were increased with the increase in PBSW as compared to RD-NPK. The soil available N and P were decreased as PBSW increased at all the soil depths. The greatest yields and total N,P,K uptake of soybean and wheat were observed in T5.  相似文献   

7.
Reduced tillage and no-tillage systems provide shallow incorporation of surface applied materials at best. Due to concern of over-liming the surface of agricultural soils, producers either reduce lime rates (and apply more often) or perform some sort of soil inversion to mix the lime deeper into the soil profile. The objective of the authors in this field study was to evaluate the effects of tillage, lime rate, and time of limestone application on corn and soybean growth, and assess the changes in soil acidity to an already acidic soil. Treatments consisted of a no lime check, two no-tillage systems with either a 4.5 ton ha?1 lime application every two years or an annual application of 450 kg pelleted lime ha?1, a continuous annual chisel tillage system with a 9.0 ton ha?1 lime application every four years, and two inversion systems utilizing a rotary tiller (Howard Rotovator) where 9.0 ton lime ha?1 was mixed into the soil followed by either continuous chisel tillage or continuous no-tillage. Inversions occurred in 1999, 2003, and 2007. Soil samples were collected annually in increments of 5 cm to a 30 cm depth for pH determinations. After 10 years, the continuous chisel system increased soil pH in the top 20 cm and had grain yields comparable to the no-tillage system, but not different than the no lime treatment. The no-tillage system increased the pH in the surface 15 cm of soil. The inversion treatments after soybean mixed the lime more thoroughly in the top 15 cm than inversion after corn and also increased the pH to a deeper depth. The pelleted lime had no effect on soil acidity. Soybean yields were affected by lime treatment with the no lime and pelleted lime having the lowest yields. This is most likely due to manganese (Mn) toxicity with these treatments. There was no perceived benefit of inversion of the soil with no-till or chisel systems.  相似文献   

8.
A transition period of at least 2 years is required for annual crops before the produce may be certified as organically grown. There is a need to better understand the various management options for a smooth transition from conventional to organic production. The purpose of this study was to evaluate the effects of different organic amendments and biofertilizers (BFs) on productivity and profitability of a bell pepper–french bean–garden pea system as well as soil fertility and enzymatic activities during conversion to organic production. For this, the following six treatments were established in fixed plots: composted farmyard manure (FYMC, T1); vermicompost (VC, T2); poultry manure (PM, T3) along with biofertilizers (BF) [Rhizobium/Azotobacter + phosphorus solubilizing bacteria (Pseudomonas striata)]; mix of three amendments (FYMC + PM + VC + BF, T4); integrated nutrient management (FYMC + NPK, T5); and unamended control (T6). The yields of bell pepper and french bean under organic nutrient management were markedly lower (25.2–45.9% and 29.5–46.2%, respectively) than with the integrated nutrient management (INM). Among the organic treatments, T4 and T1 produced greater yields of both bell pepper (27.96 Mg ha?1) and french bean (3.87 Mg ha?1) compared with other treatments. In garden pea, however, T4 gave the greatest pod yield (7.27 Mg ha?1) and was significantly superior to other treatments except T5 and T1. The latter treatment resulted in the lowest soil bulk density (1.19 Mg m?3) compared with other treatments. Similarly, soil organic C was significantly greater in all the treatments (1.21–1.30%) except T2 compared to T6 (1.06%). Plots under INM, however, had greater levels of available nitrogen–phosphorus–potassium (NPK) than those under organic amendments. T1 plots showed greater dehydrogenase and acid phosphatase activities compared with other treatments. However, T4 and T5 plots had greater activities of β-glucosidase and urease activities, respectively. The cost of cultivation was greater under organic nutrient management (except T2) compared with INM. The latter treatment gave greater gross margin and benefit/cost (B/C) ratio for all vegetables, except that T2 gave greater B/C ratio in garden pea compared with other treatments. We conclude that T1 and T4 were more suitable for enhancing the productivity of bell pepper–french bean–garden pea system, through improved soil properties, during transition to organic production.  相似文献   

9.

Purpose

For an alkaline?Csaline region in Northwest China, we examined the responses of soil microbial communities to flue gas desulfurization gypsum by-products (FGDB), a new ameliorant for alkaline?Csaline soils. In 2009 and 2010, we collected soils from 0?C20?cm and 20?C40?cm depths along an experimental FGDB gradient (0, 0.74, 1.49, 2.25, and 3.00?kg FGDB m?2).

Materials and methods

As a measure of microbial community composition and biomass, we analyzed phospholipid fatty acids (PLFAs). We used real-time quantitative polymerase chain reaction (qPCR) to measure abundance of bacterial 16?S rRNA copy numbers. Additionally, physicochemical soil parameters were measured by common laboratory methods.

Results and discussion

Microbial community composition differed along the FGDB gradient; however, the microbial parameters did not follow a linear response. We found that, in 2009, total PLFA concentrations, and concentrations of total bacterial and Gram-negative bacterial PLFAs were slightly higher at intermediate FGDB concentrations. In 2010, total PLFA concentrations, and concentrations of total bacterial, Gram-positive bacterial, Gram-negative bacterial, and fungal PLFAs as well as the fungal:bacterial PLFA ratio were highest at 1.49?kg FGDB m?2 and 3.00?kg FGDB m?2. PLFA concentrations often differed between 2009 and 2010; however, the patterns varied across the gradient and across microbial groups. For both years, PLFA concentrations were generally higher at 0?C20?cm depth than at 20?C40?cm depth. Similar results were obtained for the 16?S rRNA copy numbers of bacteria at 0?C20?cm depth. FGDB addition resulted in an increase in soil Ca2+ and NO 3 ? ?CN and a decrease in pH and electrical conductivity (EC). Shifts in PLFA-based microbial community composition and biomass could partly be explained by pH, soil organic carbon, total nitrogen (TN), soil moisture, EC, inorganic nitrogen, C/N, and Ca2+. Indirect effects via shifts in abiotic soil properties, therefore, seem to be an important pathway through which FGDB affect soil microbial communities.

Conclusions

Our results demonstrate that addition of FGDB leads to significant changes in soil physicochemical and microbial parameters. As such, addition of FGDB can have large impacts on the functioning of soil ecosystems, such as carbon and nitrogen cycling processes.  相似文献   

10.
The rehabilitation of indurate pyroclastic formations of the Ecuadorian Sierra (cangahua) paves the way for the development of new agricultural areas. The material derived from the fragmentation of the hardened volcanic ashes is strongly prone to pluvial erosion, essentially because it has a fine silty–sandy texture, and because contains no organic matter and no clay minerals. Rainfall simulation was implemented before and after three cycles of cultivation to asses the evolution of soil structure and its susceptibility to erosion. The cultivated plots were < 1% slope and the rainfall simulation tests were conducted after the harvest on bare surfaces. Two soil preparations, (coarse and fine) and four different agricultural practices, (organic matter, green manure, mineral fertilization, and zero fertilization) were evaluated; as well reference/control plots (uncultivated bare plots).  相似文献   

11.
Long-term effects of continuous use of chemical fertilizers and manure on soil fertility and productivity of a maize–wheat system were investigated in the ongoing long-term fertilizer experiment, during rabi (2007–2008) and kharif (2008) seasons at the research farm of Chaudhary Sarwan Kumar Himachal Pradesh Agricultural University–Hill Agricultural Research and Extension Centre, Dhaulakuan. After 16 cropping cycles, bulk density decreased in plots where farmyard manure (FYM) was applied, whereas pH decreased in all the treatments. The organic carbon content of the soil increased in all the treatments except 100% nitrogen (N). Cation exchange capacity (CEC) increased in all the treatments over the initial status of the soil. Available N showed buildup over the initial status in most of the treatments. Available phosphorus (P) declined from initial status in treatments where only N was applied alone or with FYM. There was reduction in available potassium (K) status in all the treatments except 100% NPK. Continuous addition of FYM with balanced application of inorganic fertilizers improved content of exchangeable calcium (Ca) and magnesium (Mg) over initial status compared to imbalanced application of fertilizers. Continuous use of imbalanced inorganic fertilizers resulted in lesser crop yields and nutrient uptake compared to that with the application of balanced dose of inorganic fertilizers with FYM.  相似文献   

12.
Zhuo  Tianyu  Ding  Yi  Wan  Qiong  Li  Simin  Chai  Beibei  Lei  Xiaohui 《Journal of Soils and Sediments》2021,21(10):3367-3379
Journal of Soils and Sediments - The release of endogenous phosphorus from sediments leads to the eutrophication of water bodies. Bacteria in sediments play a vital role in phosphorus cycling. A...  相似文献   

13.
Rice husk ash (RHA) and bagasse ash (BA) are available in large quantities in South Asian countries growing rice and sugarcane. Land application of RHA and BA is likely to influence chemistry of soil phosphorus (P) and thereby P adsorption and desorption. Laboratory studies were carried out to investigate the short-term and long-term effects of RHA and BA application on P adsorption and desorption in an alkaline soil under a wheat–rice system. Addition of RHA or BA (10 Mg ha?1) resulted in a significant decrease in P adsorption compared to the control. The decrease in P adsorption was lower when RHA and BA were applied to either rice or wheat as compared with when applied to both the crops. The BA was more effective in reducing P adsorption than RHA because of its greater P concentration. Fresh addition of RHA and BA at 1% (dry-weight basis) showed a small effect on P adsorption as compared to their long-term application. The Frendulich isotherm equation gave better fit with the experimental data than the Langmuir equation and is reliable to describe the P quantity/intensity relationships of this soil as affected by the additions of RHA and BA. The P-adsorption capacities (revealed from the Langmuir isotherms) of the unamended control, RHA, and BA (applied to both wheat and rice) were 256, 313, and 385 mg kg?1, respectively; the corresponding bonding energies for the three treatments are 0.0085, 0.0041, and 0.0026 L kg?1, respectively. Desorption of P was minimum in the control plots and maximum with BA followed by RHA, especially when applied to both the crops.  相似文献   

14.
Abstract. A lysimeter study from April 1993 to June 1997 assessed the effects of winter cover crops and unfertilized grass on both the volume of water draining over winter and the amounts of nitrate leached. There were three to five replicates of each treatment in a fully randomized design. The lysimeters were undisturbed monoliths of loamy medium sand, 1.2 m deep and 0.8 m diameter. There were six treatments: sown cover before spring-sown crops (SC), natural regeneration (‘tumbledown’) before spring-sown crops (T), unfertilized grass (UG), bare soil permanent fallow, (PF), winter barley (WB) and conventional overwinter fallow before spring-sown crops (WF). Sugarbeet replaced cereals in 1996 as a disease break, and in consequence no cover was established in SC and T in autumn 1996. Of the four years of the study, two were above-average rainfall, while two were of less than average rainfall. Results are only quoted if statistically significantly different from WB (P=0.10). Over the first winter, NO3―N losses were similar under UG (26 kg ha?1) and PF (29 kg ha?1), due to the slow establishment and growth of the grass. In the following three winters NO3―N losses under UG were small (c. 6 kg ha?1), giving an overall mean of c. 11 kg ha?1. Sown cover crops and T gave means of c. 16 and 22 kg ha?1 respectively, compared with c. 27–31 kg ha?1 under PF, WB and WF. Mean NO3―N concentrations were smallest under UG (4.4 mg l?1) and SC (10.6 mg l?1), although both T (13.7 mg l?1) and PF (12.4 mg l?1) were less than under WB and WF (15.8–18.7 mg l?1). Overwinter drainage was greatest from UG and PF, at 239 and 247 mm respectively. In the three winters that cover crops were grown, drainage was decreased by, on average, 30 mm year?1 compared with WF. However, there were large differences in effects between years, with significant decreases in only one year. We conclude that the widespread adoption of cover crops before spring-sown crops will reduce overwinter drainage in UK Nitrate Vulnerable Zones by no more than c. 2%, compared with no cover before spring-sown crops.  相似文献   

15.
In a series of laboratory experiments, we presented carnivorous Macrobiotus richtersi (Tardigrada, Macrobiotidae) with nematode prey to assess their importance as predator. We investigated consumption rate for (a) different prey densities (10–400 prey individuals), (b) different prey biomasses (22–80 ng), (c) different prey species (Pelodera teres, Rhabditidae, versus Acrobeloides nanus, Cephalobidae) and (d) different environments (2-D agar surface versus 3-D sand fractions of three different textures). M. richtersi consumed up to 4.6 g nematode prey in 4 h, that is, 43% of the tardigrades body mass. Predation rate was positively correlated with prey density. The optimal prey in the present investigation was the biggest prey because it yielded the highest biomass uptake per time. In addition, the size of M. richtersi played an important role in consumption rate. Bacterivorous nematodes reacted differently to attack. Even in a water film on stiff agar where nematode agility was limited, a vigorous undulation reaction of P. teres led to a measurable reduction in consumption rate. A. nanus, in contrast, showed little response to attack. Microcosm experiments with sands of different particle size demonstrated that M. richtersi is able to chase and consume small bacterivorous nematodes in a 3-D soil matrix. However, consumption rate in sand microcosms was significantly reduced compared with pure agar. The sand matrix improved nematode agility and possibly provided small pores as refuge for the nematodes. The lowest consumption rate was observed in fine sand. Effects of predatory tardigrades on nematode numbers in the field are discussed.  相似文献   

16.
In recent years alternative farming practices have received considerable attention from Canadian producers as a means to improve their net return from grain and oilseed production. Enhancing the efficiency of nitrogen fertilizer use, including a pulse crop in the rotation, reducing tillage and pesticide use are seen as viable options to reduce reliance on fossil fuel, lower input costs and decrease the risk of soil, air and water degradation. The objective of this study was to determine the effects of 16 alternative management practices for a 2-year spring wheat (Triticum aestivum L.)–field pea (Pisum sativum L.) rotation on economic returns, non-renewable energy use efficiency, and greenhouse gas emissions. The alternative management methods for wheat consisted of a factorial combination of high vs. low soil disturbance one pass seeding, four nitrogen (N) fertilizer rates (20 kg N ha?1, 40 kg N ha?1, 60 kg N ha?1 and 80 kg N ha?1), and recommended vs. reduced rates of in-crop herbicide application. Alternative management practices for field pea were high vs. low soil disturbance one pass seeding. The resulting 16 cropping systems were evaluated at the whole farm level based on 4 years (two rotation cycles) of data from field experiments conducted on two Orthic Black Chernozem soils (clay loam and loam textures) in Manitoba, Canada. The highest net returns on the clay loam soil were for the high disturbance system with 60 kg N ha?1 applied to wheat and the recommended rates of in-crop herbicides. The lowest application rate of N, together with low disturbance seeding, provided the highest economic returns on the loam soil. Energy use efficiency was highest for the lowest rate of N application for both tillage systems. The highest rate of N fertilizer and recommended rates of in-crop herbicide produced little additional yield response, lower net returns, and higher GHG emissions. An increase in N fertilizer application from 20 kg ha?1 to 80 kg ha?1 increased whole farm energy requirements by about 40%, while reducing herbicide rates had negligible effects on grain yields and total energy input. Overall, as N fertilizer rate increased, the associated GHG emissions were not offset by an increase in carbon retained in the above-ground crop biomass. Moderate to high soil test NO3-N levels at experimental sites reduced the potential for positive yield responses to N fertilizer in this study, thus minimizing the economic benefits derived from N fertilizer application.  相似文献   

17.
With the help of computed X-ray microtomography with a resolution of 2.75 μm, changes in the microstructure and pore space of aggregates of 3 mm in diameter from the virgin soddy-podzolic soil (Glossic Retisol (Loamic)) in the air-dry, capillary-moistened, and frozen states after five freeze–thaw cycles were studied in a laboratory experiment. The freezing of the samples was performed at their capillary moistening. It was shown that capillary moistening of initially air-dry samples from the humus (AY), eluvial (EL), and illuvial (BT1) horizons at room temperature resulted in the development of the platy, fine vesicular, and angular blocky microstructure, respectively. The total volume of tomographically visible pores >10 μm increased by 1.3, 2.2, and 3.4 times, respectively. After freeze–thaw cycles, frozen aggregates partly preserved the structural arrangement formed during the capillary moistening. At the same time, in the frozen aggregate from the AY horizon, the total tomographic porosity decreased to the initial level of the air-dry soil. In the frozen aggregate from the EL horizon, large vesicular pores were formed, owing to which the total pore volume retained its increased values. The resistance of aggregate shape to the action of freeze–thaw cycles differed. The aggregate from the EL horizon completely lost its original configuration by the end of the experiment. The aggregate from the AY horizon displayed definite features of sagging after five freeze–thaw cycles, whereas the aggregate from the BT1 horizon preserved its original configuration.  相似文献   

18.
Spatial and seasonal mobilization trends of metals in surface water were evaluated in the US–Mexico San Pedro River (SPR). Water samples were collected at five sampling stations for the analysis of dissolved oxygen, pH, electric conductivity, sulfates, and metals (Cd, Cu, Fe, Mn, Pb, and Zn). Quality of the water was characterized through Ecological Criteria of Water Quality (ECWQ) established in Mexico and Water Quality Criteria (Environmental Protection Agency (EPA)). High total metal concentrations were detected as follows: Fe?>?Cu?>?Mn?>?Zn?>?Pb?>?Cd. Metal concentrations were slightly higher in dry season than in rainy season: Cd (below detection limit (BDL)–0.21 mg L?1), Cu (BDL–13 mg L?1), Fe (0.16–345 mg L?1), Mn (0.12–52 mg L?1), Pb (BDL–0.48 mg L?1), and Zn (0.03–17.8 mg L?1). Low pH and dissolved oxygen values as well as high sulfate content were detected in both seasons. High values of metals (Cd, Cu, Fe, Mn, Pb, Zn) were detected at station E1 representing pollution source, as well as at stations E2 (Cd, Cu, Fe, Mn), E3 (Fe, Mn, Pb), and E4 and E5 (Fe, Mn). Detected concentrations exceeded maximum permissible established in ECWQ and Water Quality Criteria (EPA). Efflorescence salts on sediments in the dry season could increase levels of metals in water column. This study provides valuable information on the potential mobility of metals in surface water of SPR located in an arid environment where transport processes are strongly linked to climate. The information derived from this study should help the regional and national authorities to address present environmental regulations.  相似文献   

19.
Rainfed Inceptisol soils, despite their agricultural potential, pose serious problems, including soil erosion, low fertility, nutrient imbalance, and low soil organic matter, and ultimately lead to poor soil quality. To address these constraints, two long-term experiments were initiated to study conservation agricultural practices, comprising conventional and low tillage as well as conjunctive use of organic and inorganic sources of nutrients in Inceptisol soils of Agra center of the All-India Coordinated Research Project for Dryland Agriculture (AICRPDA). The first experiment included tillage and nutrient-management practices, whereas the second studied only conjunctive nutrient-management practices. Both used pearl millet (Pennisetum americanum (L.) Linn) as test crop. These experiments were adopted for soil quality assessment studies at 4 and 8 years after their completion, respectively, at the Central Research Institute for Dryland Agriculture (CRIDA), Hyderabad, India. Soil quality assessment was done by identifying the key indicators using principal component analysis (PCA), linear scoring technique (LST), soil quality indices (SQI), and relative soil quality indices (RSQI). Results revealed that most of the soil quality parameters were significantly influenced by the management treatments in both the experiments. In experiment 1, soil quality indices varied from 0.86 to 1.08 across the treatments. Tillage as well as the nutrient-management treatments played a significant role in influencing the SQI. Among the tillage practices, low tillage with one interculture + weedicide application resulted in a greater soil quality index (0.98) followed by conventional tillage + one interculture (0.94), which was at par with low tillage + one interculture (0.93). Among the nutrient-management treatments, application of 100% organic sources of nutrients gave the greatest SQI of 1.05, whereas the other two practices of 50% nitrogen (N) (organic) + 50% (inorganic source) (0.92) and 100% N (inorganic source) (0.88) were statistically at par with each other. The various parameters that emerged as key soil quality indicators along with their percentage contributions toward SQI were organic carbon (17%), exchangeable calcium (Ca) (10%), available zinc (Zn) (9%), available copper (Cu) (6%), dehydrogenase assay (6%), microbial biomass carbon (25%) and mean weight diameter of soil aggregates (27%). In experiment 2, SQI varied from 2.33 to 3.47, and 50% urea + 50% farmyard manure (FYM) showed the greatest SQI of 3.47, which was at par with 100% RDF + 25 kg zinc sulfate (ZnSO4) (3.20). Under this set of treatments, the key soil quality indicators and their contributions to SQI were organic carbon (19%), available N (20%), exchangeable Ca (3%), available Zn (4%) and Cu (17%), labile carbon (20%), and mean weight diameter of soil aggregates (17%). The quantitative relationship established in this study between mean pearl millet yields (Y) and RSQI irrespective of the management treatments for both the experiments together could be quite useful to predict the yield quantitatively with respect to a given change in soil quality for these rainfed Inceptisols. The methodology used in this study is not only useful to these Inceptisols but can also be used for varying soil types, climate, and associated conditions elsewhere in the world.  相似文献   

20.
Poultry manure and nitrogen–phosphorus–potassium (N–P–K) fertilizer application and their residual effects on soil physical properties were investigated with soils drawn from two distinct ecological zones, Agbede (derived savanna) and Obadan (forest), of Edo State of southern Nigeria in 2005 and 2006 rainy seasons. The treatments consisted of three levels of poultry manure (0, 4, and 6 tons/PM/ha) and four levels of NPK 15:15:15 fertilizer (0, 50, 100, and 150 kg NPK ha?1), which were combined factorially, arranged in a randomized complete block design, and replicated three times. Poultry manure, combined application of poultry manure and NPK fertilizer in 2005, and their residual effects in 2006 gave greater degree of saturation and soil moisture content and lower soil bulk density in both locations but were significantly better in the Obadan location in 2006. The lowest bulk densities of 1.16 and 1.15g cm2 were obtained with the application of 6 tons PM ha?1 + 50 kg NPK ha?1 in Obadan soils in 2005 and 2006, respectively. Water-stable aggregate, porosity, void ratio, and air-filled porosity were greater in 2006 due to the residual effects of poultry manure and its combined application with NPK fertilizer than in 2005. In contrast, fertilizer application alone reduced void ratio, porosity, and air-filled porosity of the soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号