首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A.F. Stelmakh 《Euphytica》1998,100(1-3):359-369
Genetic systems regulating bread wheat ontogenesis have been studied at Ukraine's Plant Breeding and Genetics Institute, for more than two decades. The influence of Vrn genes is the most obvious; dominant alleles of Vrn genes inhibit the vernalisation requirement. The Vrn genotypes of more than 1000 cultivars were determined and the peculiarities of gene geography were shown. Dominant Vrn1 or Vrn2 seemed to be replaced by Vrn3 in regions closer to the equator. In the developed sets of near-isogenic (congenic) lines, the value of different genes was characterised for certain environments (favourable – phytotron, natural – early or late drought) based on their effects. Methods of Vrn gene manipulation were elaborated, including methods for winter genotype selection from spring x spring crosses. The possibility of alien homoeologous Vrn loci introgression was shown. In the introgressed lines, the new genes were identified and found to be nonallelic to known Vrn genes in wheat. In studying congenic lines for three Ppd genes, differences were observed in duration and intensity of photoperiodic response, vernalisation requirement and effects on agronomic traits. For typical winter wheats, two loci were identified that influenced the duration of the vernalisation requirement. One system, controlling intrinsic earliness, might be responsible for the differences in reaction to light intensity, as selection of earlier genotypes is supposed to be more effective at lower light intensity. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
H. Kato    S. Taketa    T. Ban    N. Iriki  K. Murai 《Plant Breeding》2001,120(2):115-120
The adaptability of wheat cultivars to environmental conditions is known to be associated with a vernalization requirement, that is, spring/winter habit. To clarify the genetic effect of the spring habit gene, Vrn‐D1, on heading time in the field, recombinant inbred lines (RILs) with or without the Vrn‐D1 gene were produced from F2 plants of the cross between ‘Nanbukomugi’ and ‘Nishikazekomugi’, non‐carrier and carrier cultivars of this gene, respectively. Using growth chambers with a controlled temperature and photoperiod, three components of heading time, i.e. vernalization requirement, photoperiodic sensitivity and narrow‐sense earliness (earliness per se), were evaluated in each RIL. RILs with the Vrn‐D1 gene (E lines) showed greatly reduced vernalization requirements and slightly shorter narrow‐sense earliness than RILs without Vrn‐D1 (L lines), although no difference in photoperiodic sensitivity was observed between the two groups. RILs were planted at four different sites in Japan and examined for their heading time in the field. E lines headed significantly earlier than L lines at all locations, indicating that the earliness of E lines is stable in various environmental conditions. These results indicated that spring habit caused by Vrn‐D1 gene, as well as narrow‐sense earliness, was responsible for heading time in the field.  相似文献   

3.
Summary Development in wheat is strongly controlled by sensitivity to vernalization and photoperiod, and to a lesser degree by non-vernalizing temperature and intrinsic earliness. A method to measure effect of vernalization in wheats with winter habit is described. Twenty seven wheats with winter habit and eight with spring/facultative habit were studied, comprising breeding lines and cultivars with maturities suited to south-central New South Wales. Effect of vernalization on the development of these wheats was quantified by integrating responses to vernalizing treatments of differing duration. Intrinsic earliness was measured as time for vernalized seedlings to grow to ear emergece in an 18h photoperiod with day/night temperature of 21/16°C, and response to photoperiod as the difference in time to ear emergence between 9 and 18h daylengths. Integrated response to vernalization is sensitive to both cumulative and thresh-hold responses and is applicable to wheats of all habit type. Integrated response to vernalization and intrinsic earliness were positively associated within wheats with winter habit. Wheats were largely of restricted origin, so that there were few allelic differences at Vrn loci to disrupt this association, which suggests intrinsic earliness may modify response to vernalization. Though integrated response to vernalization was measured with artificial treatments, it was strongly associated with ear emergence for wheats with winter habit when grown at a site in New South Wales.  相似文献   

4.
Investigations were carried out under phytotronic conditions to study the effect of daylength on the frost resistance of a ‘Chinese Spring’/‘Cheyenne’ chromosome substitution series. The frost resistance of the 5A, 7A, 4B, 5B, 1D and 5D lines was significantly better when raised and hardened with long-day (16 h) rather than short-day (8h) illumination. The frost resistance-increasing effect of daylength could be demonstrated after freezing lines 5A and 5D at both - 10°C and -12°C. An increase in the duration of illumination in the course of preliminary growth and hardening promoted the development of a higher level of frost resistance. This positive effect was most pronounced for chromosome substitution lines, where the frost resistance was significantly better than that of ‘Chinese Spring’ even with normal daylengths.  相似文献   

5.
Marker‐assisted selection may be useful for combining specific vernalization response (Vrn) alleles into a single wheat genotype for yield enhancement; however, DNA markers are only available for two of the three genes identified to date. The objectives of this study were to investigate reciprocal effects on days to heading using F2 populations generated by cross‐hybridizing near‐isogenic lines (NILs) carrying spring (Vrn‐B1; TDB) and winter (vrn‐B1; TDC) alleles, and to identify markers linked to Vrn‐B1 through genetic linkage analysis. Heading data were recorded for 91 and 89 progeny from reciprocal mapping populations TDB/TDC and TDC/TDB, respectively, and significant (P < 0.0001) reciprocal and dominance effects were detected. Among 207 amplified fragment length polymorphisms primer pairs and seven wheat microsatellite markers screened, two and one, respectively, were linked distally to Vrn‐B1 on wheat chromosome 5BL. Microsatellite Xgwm408 was most closely linked to Vrn‐B1 at 3.9 and 1.1 cM in the TDB/TDC and TDC/TDB map, respectively. Reciprocal differences in recombination distances emphasize the importance of female parent choice when generating mapping populations. Molecular markers are now available for three Vrn loci in wheat.  相似文献   

6.
The stem elongation phase in wheat [Triticum aestivum (L.)] is considered critical for yield determination. A longer duration of this phase could hypothetically increase grain set and therefore yield. Genetic variation in the relative duration of the stem elongation phase having been reported, the aim was to pinpoint whether this variability was associated with sensitivity to photoperiod, vernalizing temperatures or to differences in intrinsic earliness. Pairs of cultivars identified as having different duration of the stem elongation phase (from the appearance of the first visible node to anthesis) were grown under natural (short) or extended photoperiod, with or without vernalization. Variability in the duration of this phase, in the cultivars analysed, was related to different sensitivity to photoperiod, while differences in the previous phases were related to sensitivity to both photoperiod (though different to the sensitivity of the following phase) and vernalization.  相似文献   

7.
Summary Experiments to assess variation in the resistance of winter wheat to infection by Microdochium nivale were conducted over two consecutive years. Resistance was evaluated using an agar disk technique to reproduce stem lesions and by spraying a conidial suspension to reproduce head blight symptoms. Significant variation for stem reaction measured as stem lesion area (SLA), and head reaction measured as disease severity (DS) was found in the 33 winter wheat genotypes tested. Data obtained over two years in controlled environment conditions were significantly correlated (r=0.713 for SLA and r=0.738 for DS), whereas field data showed a significant genotype x year interaction for disease severity. Quantitative variation for susceptibility to stem and head infection by M. nivale was found among the 33 genotypes tested. The majority of genotypes expressed moderate susceptibility, with cultivar Goupil being very susceptible to both stem and head infection, and the remainder, Renan, Arminda, Munstertaler and Saint-Johann were the most resistant. Resistance to stem and head to M. nivale were not correlated (r=0.358).  相似文献   

8.
The aim of this investigation was to test the developmental patterns of deletion lines, generated for chromosome arms 5AL and 5DL in the variety ‘Chinese Spring’ (CS) under vernalized and non‐vernalized treatments. Plants were grown in controlled conditions under saturating daylength. Time to heading and the duration of particular phases before flowering were recorded, and leaf and spikelet production rates and numbers were analysed. The lines lacking Vrn‐A1 and Vrn‐D1 were delayed in time to heading under non‐vernalized conditions, because of the lengthening of the emergence to floral initiation phase (EM‐FI) and the terminal spikelet to heading phase (TS‐H). Differences in final leaf numbers corresponded to longer durations of the EM‐FI phase. The absence of Vrn‐A1 and Vrn‐D1 apparently decreased the number of spikelets by a lower primordium production rate, even though the duration of the FI‐TS phase was longer or equal to CS. The sensitivity to vernalization in lines where the Vrn genes were deleted was much higher.  相似文献   

9.
The related concepts of basic vegetative period, intrinsic earliness and basic development rate in wheat are examined. These concepts have the common assumption that, if plants are vernalised fully and then grown at long daylength in order to remove any responses to vernalisation and photoperiod, the calendar or thermal time then taken to anthesis will be a characteristic of a genotype that will be heritable. Thus, regardless of temperature, early genotypes will always be earlier than late genotypes (providing there are no vernalisation and photoperiod responses).Using four genotypes, exposed to 50 days of vernalisation, and then grown at 18 h photoperiod under six temperature regimes ranging between 10 and 25°C, it is shown that; (1) no genotype had an absolute basic period as, depending on temperature, durations to anthesis for any one genotype varied by more than 50 days; (2) no genotype had an absolute value for intrinsic earliness (to anthesis), ranging for any genotype by more than 300°Cd depending on temperature; (3) basic development rate was not a single value for a genotype but varied with stage of development; (4) some genotypes changed their ranking for earliness depending on the temperature regime; and (5) genotypes were differentially sensitive to temperature for the subphases prior to anthesis.  相似文献   

10.
Six ‘Chinese Spring/Triticum spelta’ substitution lines for chromosomes 1A, 1D (duplicates), 3D (duplicates), 6D, and one ‘Chinese Spring/ Marquis’ substitution line for chromosome 2B were studied for tissue-culture response (TCR). The results reported here indicate that chromosomes 2B and 6D are critical for TCR, whereas chromosome ID affects callus weight only. Chromosomes 1A and 3D were not found to be critical, however, these chromosomes may carry genes with minor effects.  相似文献   

11.
K. Iwaki    S. Haruna    T. Niwa  K. Kato 《Plant Breeding》2001,120(2):107-114
Geographical variation of growth habit was studied for 749 landraces from various parts of the world, with special reference to their adaptation and ecogeographical differentiation. The total frequency of spring‐type landraces was 49.9%, and varied between localities. Spring‐type landraces were frequent in two distinct areas where the average January temperature was either below ‐7°C or above 4°C, with winter‐type landraces in areas from ‐7°C to 4°C. These results indicated that geographical variation of growth habit is closely related to the degree of winter coldness. An analysis of the Vrn genotype for 216 spring‐type landraces demonstrated the uneven distribution of four Vrn genes, with Vrn4 being the least frequent. The adaptive Vrn genotype was different between localities. Genotypes carrying Vrn‐A1 and additional Vrn gene(s) were frequent in two distinct areas where the average January temperature was either below ‐7°C or over 10°C, while genotypes with any of three Vrn genes, except Vrn‐A1, adapted to areas with temperatures from 4°C to 10°C. Therefore, it was concluded that the adaptability of wheat landraces differed depending on their growth habit and Vrn genotype, and that ecotypes with different Vrn genotypes were allopatrically distributed as a result of adaptation to different winter temperature. However, the differential distribution of Vrn‐B1, Vrn‐D1 and Vrn4 could not be explained by their adaptability, and might reflect the polyphyletic origin of common wheat.  相似文献   

12.
Summary The effects of the addition of sulfurous acid into culture solution and of cold treatment of the solution were examined to simplify the culture of detached wheat ears. In the simplified method, detached ears could be cultured at room temperature on the liquid medium containing 100 g/l sucrose and 0.075% sulfurous acid without any sterilization. The immature seeds in detached ears cultured by this method were treated with low temperature or with chemicals known to have vernalizing effect. The chemical treatment did not affect the chilling requirement of immature embryos, although photoperiodic response and narrow-sense earliness were reduced by kinetin and trypsin. The low temperature treatment drastically affected the chilling requirement, and fully vernalized mature seeds having normal germinability were obtained by treating the detached ears in culture with low temperature from 10 days after anthesis.  相似文献   

13.
14.
QEet.ocs‐5A.1, a quantitative trait locus controlling ear emergence time, has been detected on wheat chromosome 5AL using single chromosome recombinant lines (SCRs) developed from a cross between ‘Chinese Spring’ (CS) (‘Cappelle‐Desprez’ 5A) and CS (Triticum spelta 5A). This locus has little influence on grain yield and its components, and thus has breeding potential for changing ear emergence time without yield reduction. To characterize the phenotypic expression of QEet.ocs.1 and to test its interaction with the Vrn‐A1 gene for vernalization response, six near‐isogenic SCRs differing for these two gene regions were grown together with the parental controls under different vernalization and photoperiod regimes. The T. spelta allele of QEet.ocs.1 accelerated heading time when vernalization and photoperiod were satisfied, demonstrating that the function of this QTL is earliness per se. There was no interaction between Vrn‐A1 and QEet.ocs.1.  相似文献   

15.
Control of ear emergence time by chromosome 3A of wheat   总被引:5,自引:0,他引:5  
Chromosome 3A of wheat is known to carry earliness per se genes. To determine the number of genes and their arm location, ear emergence time under a controlled environment was nvestigated using ditelosomic lines and homozygous recombinant substitution lines developed between chromosome 3A homologues from (Timstein) and (Chinese Spring) (CS) in a CS genetic background. Because the ear emergence distribution was discontinuous and two separate modes were produced, the 86 recombinant lines could be divided into 21 lines as the early ‘Timstein’3A type and 65 lines as the late CS type. This agrees with the 1:3 independent segregation of two genes both located on chromosome 3A. Therefore, two hypotheses can be proposed, either CS(‘Timstein’ 3A) carries two genes and both are necessary to give early ear emergence, or one gene for early ear emergence is present on (Timstein) 3A, but a suppressor is on CS 3A. The behaviour of ditelosomic 3AL and 3AS lines, with an ear emergence time identical to that of CS, suggested that one gene is located on the long arm and the other is on the short arm.  相似文献   

16.
The responses to salt stress in NFT (nutrient film) hydroponics of ‘Chinese Spring’ wheat and a number of its aneuploids involving the chromosomes of homoeologous group 5 were studied. This showed that the absence of chromosome 5D allowed plants to survive better than in the euploid condition. Much of this response could be related to the effects of Vrn3, which conditions the spring habit of ‘Chinese Spring’. The ability to survive relatively high levels of stress was promoted by the group 5 homoeologue from Thinopyrum bessarabicum.  相似文献   

17.
L. Reddy    R. E. Allan    K. A. Garland  Campbell 《Plant Breeding》2006,125(5):448-456
In wheat, variation at the orthologus Vrn‐1 loci, located on each of the three genomes, A, B and D, is responsible for vernalization response. A dominant Vrn‐1a allele on any of the three wheat genomes results in spring habit and the presence of recessive Vrn‐1b alleles on all three genomes results in winter habit. Two sets of near‐isogenic lines (NILs) were evaluated for DNA polymorphisms at their Vrn‐A1, B1 and D1 loci and for cold hardiness. Two winter wheat cultivars, ‘Daws’ and ‘Wanser’ were used as recurrent parents and ‘Triple Dirk’ NILs were used as donor parents for orthologous Vrn‐1 alleles. The NILs were analysed using molecular markers specific for each allele. Only 26 of 32 ‘Daws’ NILs and 23 of 32 ‘Wanser’ NILs had a plant growth habit that corresponded to the marker genotype for the markers used. Freezing tests were conducted in growth chambers programmed to cool to ?21.5°C. Relative area under the death progress curve (AUDPC), with a maximum value of 100 was used as a measure of death due to freezing. The average relative AUDPC of the spring habit ‘Daws’Vrn‐A1a NILs was 86.15; significantly greater than the corresponding winter habit ‘Daws’Vrn‐A1b NILs (42.98). In contrast, all the ‘Daws’Vrn‐A1bVrn‐B1aVrn‐D1b and Vrn‐A1bVrn‐B1bVrn‐D1a NILs (spring habit) had relative AUDPC values equal to those of their ‘Daws’ sister genotypes with Vrn‐A1bVrn‐B1bVrn‐D1b NILs (winter habit). The average AUDPC of spring and winter habit ‘Wanser’ NILs differed at all three Vrn‐A1, Vrn‐B1 and Vrn‐D1 locus comparisons. We conclude that ‘Daws’ and ‘Wanser’ have different background genetic interactions with the Vrn‐1 loci influencing cold hardiness. The marker for Vrn‐A1 is diagnostic for growth habit and cold hardiness but there is no relationship between the Vrn‐B1 and Vrn‐D1 markers and the cold tolerance of the NILs used in this study.  相似文献   

18.
V. Korzun    M. Röder    A. J. Worland  A. Börner 《Plant Breeding》1997,116(3):227-232
For intrachromosomal mapping of the dominant GA-sensitive dwarfing gene Rht12 and the vernalization response gene Vrn1 on chromosome 5 A, an F2 population was established using a wide (synthetic) wheat cross. In addition to restriction fragment length polymorphism (RFLP) probes four microsatellite markers were incorporated. Rht12 was mapped distally to four RFLP loci (Xmwg616, Xpsr164, Xwg114, Xpsr1201) and three microsatellite markers (Xgwm179, Xgwm410, Xgwm291), known to be located on the segment of chromosome SAL which was ancestrally translocated and is homoeologous to Triticeae 4 L. The map position of Rht12 suggests that it is homoeologous to the dominant GA-sensitive dwarfing gene Ddw1, present on chromosome 5RL. The vernalization response gene Vrn1 showed linkage to Xwg644, as might be expected from comparative maps.  相似文献   

19.
Sharma  H. C.  Gill  B. S. 《Euphytica》1982,31(3):629-634
Summary Embryo age and composition of nutrient medium affected plant growth and response to vernalization in winter wheat (Triticum aestivum L.). Root and shoot development was more in older than in younger excised embryos, and more in a medium without kinetin than in one with kinetin. Kinetin (2 mg/l) in the medium did not accelerate vernalization, probably because it tended to inhibit seedling and plant growth.Embryo age and media did not completely replace vernalization. Twenty- and 16-day-old embryos responded by flowering after 4 weeks of vernalization. Among plants raised on a standard medium from 20-day-old embryos and vernalized for 4 weeks, 84.2% flowered by or before 50 days after transplanting. Time from embryo culture to heading for 20-day-old embryos with-4-week vernalization averaged 84.6 days. Immature embryos (16–20 days old) needed only 4 weeks of vernalization compared to 6 weeks for mature embryos. Excised embryos could be vernalized as efficiently as seedlings raised by embryo culture. Embryo culture at 16–20 days after anthesis coupled with 4-week cold treatment shortens generation time of winter wheat by about 40 days.Contribution No. 82-131-j, Department of Plant Pathology, Kansas Agricultural Experiment Station, Manhattan, KS 66506, USA.  相似文献   

20.
Heat stress during grain filling has been documented to decrease wheat grain yield and quality in arid regions worldwide. We studied the effect of heat stress on wheat flour quality in heat tolerant cultivars to define the effects of heat stress on flour quality and to identify germplasm combining traits for heat tolerance and good flour quality. We studied the kernel phenotypic traits, the expression of seed storage proteins (SSPs), and the resulting flour quality under heat and normal conditions. Under heat stress, all cultivars yielded narrow-shaped seeds, and increased protein contents as compared to the control plants grown under normal conditions. The specific sedimentation values used to estimate the gluten quality varied between cultivars. We identified cultivars that could maintain good flour quality under heat stress conditions: ‘Imam’, which possessed the Glu-D1d allele responsible for the suitable bread-making; ‘Bohaine’, which displayed high expression level of SSPs; and ‘Condor’, which possessed slight variations in the ratio of each SSP under heat stress conditions. Combining the desirable traits from these cultivars could yield a wheat cultivar with heat tolerance and good flour quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号