首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以高灰分含量麦糠(WWS)为原料,考察了水热预处理,以及预水洗后水热预处理对麦糠化学组分及其酶水解性能的影响。研究结果表明:麦糠在固液比1∶10(g∶mL)和180℃条件下水热预处理40 min,预处理麦糠的酶水解性能和酶解可发酵糖生成量最高,葡聚糖和木聚糖酶水解得率分别为40.84%和39.67%,可发酵糖生成量为15.74 g(其中葡萄糖11.68 g、木糖4.06 g)。进一步对预处理麦糠酶水解过程中酶用量进行优化,发现在纤维素酶用量40 FPU/g(以葡聚糖质量计)、木聚糖酶用量140 U/g(以木聚糖质量计)和β-葡萄糖苷酶用量48 U/g(以葡聚糖质量计)条件下,预处理麦糠葡聚糖和木聚糖酶水解得率可达最优值,分别为48.98%和49.06%。麦糠吸附型灰分的酸缓冲作用是制约其水热预处理效果的关键因素,预水洗可有效降低麦糠的灰分,同时提高葡聚糖和木聚糖含量;麦糠经洗涤比500∶1(mL∶g)预水洗后进行水热预处理,预处理麦糠的葡聚糖和木聚糖酶解得率分别从未水洗时的48.98%和49.06%提高到65.59%和70.11%,此时酶水解液中葡萄糖和木糖质量浓度分别可达17.50和4.75 g/L。同时,麦糠预水洗可有效降低后续酶解过程的纤维素酶用量。  相似文献   

2.
为改善高底物浓度酶水解过程中产物抑制问题,采用三段酶水解方法,通过在水解过程中及时移除反应产物纤维二糖和葡萄糖,降低产物抑制作用,增加酶反应速率,从而提高酶水解得率、缩短酶反应时间。与原料和经NaOH预处理的桑木比较,NaOH-Fenton预处理后的桑木中木聚糖含量明显降低,纤维素含量相对增加,木质素含量变化较小。无论是一段水解还是三段水解,纤维素酶水解得率均随底物质量浓度的升高而下降。在0.30 g/m L(m/V)底物质量浓度下,当酶用量增加为40 U/g(以纤维素质量计)时,三段(10+10+10)h酶水解得率74.16%,比一段水解72 h得率45.61%增长了62.60%,并且水解时间缩短了42 h。该研究结果对提高纤维素酶水解得率、降低纤维资源制取燃料乙醇成本具有指导意义。  相似文献   

3.
4种木质纤维素预处理方法的比较   总被引:3,自引:0,他引:3  
采用4种方法对玉米秸秆预处理,研究了不同预处理方法对酶水解性能和可发酵性糖得率的影响,分析了预处理物料主要成分,预水解液中糖组成、碳水化合物降解产物及木质素降解产物含量.100 g玉米秸秆经稀酸、稀酸磨浆、中性蒸汽爆破和稀酸蒸汽爆破预处理、洗涤后,物料中纤维素由37.17g分别降为33.96、33.54、32.63和32.88 g,木聚糖由22.84 g分别降为2.77、2.47、3.56和2.05 g,木质素由18.76 g分别降为17.63、17.42、16.90和17.25 g.稀酸蒸汽爆破预处理物料在底物质量浓度100 g/L、纤维素酶用量20 FPIU/g(以纤维素计,下同)、β-葡萄糖苷酶用量3 IU/g下酶水解48 h,纤维素水解得率为75.91%.玉米秸秆经稀酸蒸汽爆破预处理、纤维素酶水解后可发酵性糖得率为44.93%(以玉米秸秆为基准).  相似文献   

4.
研究了绿液预处理对麦秆酶水解的影响.比较了不同绿液预处理条件下麦秆的浆得率、成分组成与纤维素酶解率,结果表明,预处理条件越剧烈,原料损失越大,而木质素脱除率越高,且在相同酶水解条件下,纤维素酶解率却越高,其中适宜的条件是预处理温度150℃,总碱量8%(Na2O计,对绝干原料)和硫化度40%,浆得率62.0%,葡聚糖、木聚糖和木质素质量分数50.0%、18.9%和16.2%,葡萄糖和木糖得率分别为74.2%和73.5%.考察了质量浓度和酶用量对绿液预处理麦秆酶水解的影响,优化了商品纤维素酶酶系结构和Tween-80的添加量,表明绿液预处理麦秆纤维素酶水解的适宜条件为质量浓度100 g/L,纤维素酶用量15 FPU/g(以纤维素计,下同),β-葡萄糖苷酶9 IU/g,木聚糖酶30 IU/g,Tween-800.05 g/g.在以上条件下,酶水解72 h,葡萄糖得率和木糖得率分别达到了82.5%和77.8%,是优化前的2.6和1.6倍.  相似文献   

5.
β-葡萄糖苷酶的制备及在纤维素辅助水解上的应用研究   总被引:1,自引:0,他引:1  
研究了固体发酵法制备β-葡萄糖苷酶及其在纤维素水解上的应用.黑曲霉NL02以玉米芯和麸皮为碳源固体发酵制备β-葡萄糖苷酶,培养5d,酶活力达到225.43IU/g(以干曲计).粗β-葡萄糖苷酶酶液经硫酸铵沉淀、离子交换层析、凝胶过滤层析纯化,获得单一β-葡萄糖苷酶组分,酶活回收率和比活力分别为69.34%和133.88IU/mg.底物质量浓度为100g/L的稀硫酸预处理玉米秸秆,经酶用量为20FPIU/g(以纤维素计)的里氏木霉纤维素酶和4IU/g(以纤维素计)的β-葡萄糖苷酶水解48h,水解糖液中纤维二糖和葡萄糖质量浓度分别为1.12和42.68g/L,纤维素水解得率和可发酵性糖的比例分别为62.85%和97.44%.  相似文献   

6.
以慈竹为原料,研究了甲醛/二氧六环预处理对竹材纤维素酶水解糖得率的影响,并探索了酶水解液发酵生产乳酸工艺。研究结果表明:该预处理可以脱除木质素,大幅提高预处理得到的底物中纤维素的含量,纤维素质量分数可达75.6%~90.7%;预处理后底物酶水解的葡萄糖最高得率为92.8%;酶水解液可以直接用于发酵生产乳酸,葡萄糖转化为乳酸得率可以达73.2%。借助扫描电子显微镜(SEM)、X射线衍射(XRD)仪和离子色谱仪等手段分析预处理前后竹材结构的变化情况,发现预处理后竹材表面卷曲,蜡质几乎被完全溶解脱除,结构疏松。  相似文献   

7.
以玉米秸秆酸爆渣为研究对象,通过物料组成、比表面积和元素组成分析酶解原料的理化特性,研究了聚乙二醇(PEG4000)对玉米秸秆酸爆渣酶解的辅助效果以及作用机理,并利用FT-IR和SEM分析了酸爆玉米秸秆酶解前后的结构变化。结果表明,木质素含量较高的酸爆玉米秸秆具有较大的比表面积,酶解效率较高,在纤维素酶用量15 FPIU/g(以纤维素计,下同)、β-葡萄糖苷酶用量30 U/g,纤维素质量浓度50g/L条件下水解24 h,葡萄糖得率可达76.4%,PEG4000的添加可以使葡萄糖得率达到82.6%,提高8.1%。对酶解上清液的分析表明,PEG4000改善玉米秸秆酸爆渣酶解性能的作用机制在于其能够有效地与酸爆渣结合,减少酶在酸爆渣上的无效吸附。PEG4000的添加使上清液中可溶性蛋白、滤纸酶活和β-葡萄糖苷酶活分别上升了15.0%、112.5%和24.8%。FT-IR和SEM分析显示玉米秸秆酸爆渣为纤维素类物质,晶型以纤维素II型为主,且加入PEG辅助酶解导致纤维结构几乎完全坍塌,残余物表现出无规则的块状结构。  相似文献   

8.
几种纤维素酶制剂水解和吸附性能的研究   总被引:3,自引:0,他引:3  
比较了商品纤维素酶和自产纤维素酶在蛋白组分及蛋白组分含量上存在的差异。商品纤维素酶水解稀酸预处理和蒸汽爆破预处理的玉米秸秆,其水解得率均低于自产纤维素酶。以蒸汽爆破的玉米秸秆为碳源制备纤维素酶,添加外源8 IU/g(以纤维素计)的β-葡萄糖苷酶,水解蒸汽爆破的玉米秸秆48 h,纤维素水解得率为90.08%;水解液中纤维二糖的质量浓度从17.06 g/L降低到1.12 g/L,相应葡萄糖质量浓度从21.09 g/L提高到44.01 g/L,可发酵性糖从55.28%提高到97.52%。微晶纤维素对商品酶和自产酶的吸附在30 m in达到平衡,且符合Langmu ir等温吸附方程;由Langmu ir常数分析得知两类酶均来自里氏木霉,且对微晶纤维素的亲和力相差不大。  相似文献   

9.
在木质纤维素的生物降解和转化过程中,木质纤维素的复杂结构和木质素组分限制了碳水化合物的高效酶水解。过氧化氢预处理可以通过破坏木质纤维素的物理化学结构并氧化降解部分木质素,从而改善原料的酶水解效率。过氧化氢预处理主要有过氧化氢-酸、过氧化氢-碱、活化过氧化氢这3类预处理方法。笔者主要归纳了不同预处理过程中的木质素降解机理,总结了过氧化氢预处理强化木质纤维原料酶水解的效果,探讨了预处理对木质纤维原料降解产物的影响,评价了各类过氧化氢预处理的可行性和优缺点。最后,根据过氧化氢预处理的特点分析了过氧化氢预处理的研究策略,展望了过氧化氢预处理的发展趋势。从安全性和经济可行性的角度来看,低试剂用量、低温和低压的预处理条件是未来过氧化氢预处理的主要研究方向。  相似文献   

10.
对造纸废弃物麦草废渣进行高温自水解预处理,并对预处理后的麦草废渣进行组成分析和酶解,以纤维素和木聚糖的酶解得率为考核指标,研究了不同自水解预处理条件对麦草废渣酶解的影响。研究表明,预处理后麦草废渣的化学组成和物理结构均发生了改变,纤维素的含量增加,比表面积增大且促进了纤维素的酶解。酶解结果显示,温度对预处理麦草废渣的酶水解得率有着极其显著的影响。以200℃自水解预处理60 min的麦草废渣为酶水解底物(质量浓度50 g/L),添加纤维素酶35 FPIU/g(以纤维素计,下同)、β-葡萄糖苷酶25 IU/g、木聚糖酶120 U/g及2 g/L聚乙二醇(PEG6000),酶解体系50 m L,于50℃酶解36 h,其纤维素和木聚糖酶解得率分别达86.29%和74.03%,是麦草废渣经170℃自水解40 min后酶解得率的2.3倍和2.8倍。  相似文献   

11.
亚硫酸氢盐预处理对玉米秸秆酶水解的影响   总被引:2,自引:0,他引:2  
研究了亚硫酸氢钠对玉米秸秆进行预处理的条件,主要考察了亚硫酸氢钠用量、预处理温度和pH值对玉米秸秆酶水解效率的影响。结果表明:在温度180℃、保温30min时,随着亚硫酸氢钠用量的增加,木质素和半纤维素的溶出量增大,从而促进玉米秸秆预处理后底物的酶水解,当亚硫酸氢钠用量为7%时,酶水解转化率和葡萄糖得率分别为69.40%和62.44%;预处理温度越高,酶水解效率越高,温度190℃、保温30min时底物酶水解转化率达到了81.04%,葡萄糖得率71.91%;预处理pH值升高,酶水解效率相应增大,pH值在4.2~4.7之间时,酶解效率增加明显。  相似文献   

12.
以亚硫酸盐蔗渣浆为研究对象,研究了底物浓度、外源添加物种类和浓度对纤维素酶解工艺的影响以及PEG6000强化酶解效率的作用机理。研究结果表明,纤维素酶用量15 FPIU/g(以绝干纤维素计,下同)、β-葡萄糖苷酶用量30 CBU/g,纤维素质量浓度80 g/L条件下水解48 h,葡萄糖质量浓度达72.51 g/L,葡萄糖得率、纤维素酶解得率和总糖得率达81.58%、86.79%和84.23%。PEG6000可有效强化酶解,添加量为2 g/L时,水解48 h葡萄糖质量浓度可升至78.54 g/L,葡萄糖得率、纤维素酶解得率和总糖得率达88.36%、95.02%和92.54%。添加2 g/L的PEG6000使纤维素酶Celluclast1.5 L滤纸酶活力提高到原酶活力的117.33%;同时50℃,pH值4.8,保温48 h,残余酶活力同比增加38.99%。  相似文献   

13.
木质生物资源的水解   总被引:17,自引:3,他引:14  
水解是利用木质生物资源以生物转化法制取乙醇的重要步骤,水解技术主要包括稀酸水解、浓酸水解和酶水解。酶水解的特点是具有选择性,降解产物少,葡萄糖得率高,能耗较低,不要求反应器具有高耐腐蚀性,被视为最有潜力降低乙醇生产成本的突破口。目前,利用木质生物资源制取乙醇还没有进入工业化生产。其原因在于成本高于利用淀粉和糖料,原料的预处理成本高、纤维素酶的生产成本高、酶活力低、纤维素的酶水解效率低、酶用量大、对半纤维素的有效利用不够。因此,需要研发有效的预处理工艺,提高纤维素底物的生物酶可及度;筛选高效纤维素酶、优化酶水解工艺,提高纤维素的水解率;利用基因重组的发酵性微生物,把戊糖发酵成乙醇,提高乙醇的产量,降低生产成本。  相似文献   

14.
研究了玉米芯的酶法水解及酶解液的乙醇发酵。采用里氏木霉ZU-02纤维素酶水解酸预处理后的玉米芯为原料,适宜的酶用量为20 FPIU(以每克底物计,下同),48 h后酶解得率为67.5%;添加黑曲霉ZU-07所产纤维二糖酶可有效解除纤维二糖累积引起的反馈抑制作用,当纤维二糖酶用量为6.5 CB IU时,48 h后酶解得率提高到83.9%。采用分批补料酶解工艺,使底物质量浓度提高到200 g/L,酶解60 h后还原糖质量浓度达到116.3 g/L,酶解得率为80.1%。利用一株耐高温酿酒酵母HTR-11在38℃下对酶解液进行乙醇发酵,质量浓度95.3 g/L的葡萄糖在18 h内发酵生成质量浓度为45.7 g/L的乙醇,其得率达到理论值的94%。  相似文献   

15.
针对己糖(葡萄糖)、戊糖(木糖)共发酵产纤维素乙醇抑制物控制的关键性瓶颈,分别以玉米秸秆及玉米秸秆中非木质素的4类组分纤维素、半纤维素、热水提取物和乙醇提取物为原料,并以0.75%稀硫酸和180℃预处理40 min得到5种稀酸预处理液。以60 g/L葡萄糖和30 g/L木糖为碳源,分别添加上述稀酸预处理液,比较了5种预处理液对休哈塔假丝酵母(Candida shehatae)共发酵产乙醇的影响,并探究主要抑制物来源。结果表明:133 g/L全玉米秸秆稀酸预处理的降解物会完全抑制C.shehatae糖代谢和共发酵。在玉米秸秆稀酸预处理过程中,4类非木质素组分降解物均会导致乙醇得率下降,其中100 g/L纤维素降解物完全抑制木糖的发酵,半纤维素降解物同时抑制葡萄糖和木糖的发酵,甚至对酵母产生致死毒性,热水提取物和乙醇提取物降解物延滞糖利用和酵母生长。玉米秸秆共发酵产乙醇抑制物主要来自于纤维素和半纤维素在稀酸预处理中的降解反应,主要为甲酸、乙酸、乙酰丙酸、5-羟甲基糠醛和糠醛,同时还存在着其他降解产物的毒性或协同毒性。  相似文献   

16.
固体磷酸铁催化纤维素液化制备乙酰丙酸及乙酰丙酸甲酯   总被引:1,自引:0,他引:1  
以纤维素为原料、固体FePO4为催化剂,在水/甲醇溶液中制备乙酰丙酸及乙酰丙酸甲酯。通过比较液体酸、金属氯盐、金属硫酸盐以及磷酸铁的催化作用发现,FePO4催化作用下纤维素的转化效率、乙酰丙酸及乙酰丙酸甲酯的总产率均与H2SO4、Al2(SO4)3催化作用结果相当。其催化作用主要归结为固体FePO4通过水解形成Br?nsted酸及Lewis酸酸性位点,为纤维素水解、葡萄糖异构化及脱水形成乙酰丙酸/酯提供催化活性,实现纤维素定向液化选择性制备乙酰丙酸及乙酰丙酸甲酯。在反应温度220℃、反应时间2 h、微晶纤维素2 g、水/甲醇体积比1∶19(溶剂总体积40 mL)、催化剂用量1.5 g的最佳反应条件下,乙酰丙酸及乙酰丙酸甲酯总收率为62.2%。FT-IR、XRD及TG/DTG对纤维素、固体残渣和FePO4催化剂表征结果表明:反应后纤维素得到了有效地液化,催化剂则通过重结晶形式从溶剂体系中分离。...  相似文献   

17.
利用磷酸联合过氧化氢(H_3PO_4-H_2O_2,PHP)预处理玉米芯,并以纤维素酶水解预处理后玉米芯,以酶解效率为指标优化预处理条件。研究结果表明:玉米芯经H_3PO_4-H_2O_2混合液(H_3PO_4质量分数80%)于50℃下预处理4 h后,纤维素质量分数57.38%,纤维素回收率95.84%,半纤维素和木质素的脱除率分别为62.36%和68.97%。在酶用量10 FPIU/g(以葡聚糖质量计)的条件下,72 h酶水解得率为39.12%,相比未经预处理玉米芯的72 h酶水解得率(10.84%)提高了2.61倍。利用红外光谱分析物料预处理后结构的变化,H_3PO_4和H_2O_2在预处理过程中起到了协同作用,能同时去除半纤维素和木质素。相比单独使用H_3PO_4预处理(16.78%)或H_2O_2预处理(20.71%),H_3PO_4-H_2O_2预处理玉米芯的72 h酶水解得率分别提高了133.13%和88.89%。  相似文献   

18.
以玉米秸秆为原料,研究稀硫酸-氢氧化钙联合预处理秸秆制备燃料乙醇的方法。玉米秸秆经稀硫酸预处理、固液分离后得到的预水解液(主要含有木糖)进行戊糖发酵;而残渣采用氢氧化钙进一步预处理后,经酶水解得到的葡萄糖进行己糖发酵,从而实现戊糖和己糖分开发酵产乙醇。研究结果表明,玉米秸秆稀硫酸预处理最佳条件为:硫酸用量1.00%(以绝干玉米秸秆计),反应温度130℃,反应时间70 min,此时木聚糖水解得率为80.45%;采用树干毕赤酵母对玉米秸秆稀硫酸预水解液原液、浓缩液Ⅰ(浓度为原液的2倍)和浓缩液Ⅱ(浓度为原液的3.5倍)进行戊糖发酵,乙醇得率分别为82.52%、85.13%和73.64%。氢氧化钙进一步预处理玉米秸秆稀硫酸预处理渣的最佳条件为:氢氧化钙用量0.125 g/g(以绝干玉米秸秆计),反应温度90℃,时间24 h,此时纤维素酶水解得率为84.92%;采用酿酒酵母对两步预处理残渣的酶水解液原液、浓缩液Ⅲ和浓缩液Ⅳ(浓度为原液的2倍和3倍)进行己糖发酵,乙醇得率分别为92.22%、91.89%和85.54%。  相似文献   

19.
以贵州慈竹为研究对象,对其进行水热预处理(LHWP),研究不同预处理强度系数对竹材化学组分、酶水解性能及低聚木糖(XOS)浓度的影响。利用X射线衍射(XRD)和傅里叶转换红外线光谱分析仪(FT-IR)分析预处理前后物料的物理和化学结构变化。研究结果表明:水热预处理过程中竹材的半纤维素含量显著降低,而纤维素及木质素的含量则有所增加;水热预处理能够显著提升竹材的酶解效率,在预处理强度系数为4.50时,预处理竹材的酶水解性能最高,葡聚糖和木聚糖酶水解得率分别为79.0%和92.0%;而XOS质量浓度则在强度系数为3.96时,达到最大值8.7 g/L(得率55.3%),继续提高预处理强度,XOS质量浓度降低,在强度系数为4.50时,体系中仅检测到0.5 g/L(得率3.1%)XOS。  相似文献   

20.
徐红  徐勇  勇强  余世袁 《林业科学》2012,48(11):92-97
以红柳为材料研究蒸汽爆破预处理强度系数lgR对木质组分和纤维素酶水解性能的影响。结果表明:蒸汽爆破处理对红柳中纤维素和木质素含量的影响并不显著,但是它可以有效破坏红柳的天然物理结构,并且导致大部分半纤维素(木聚糖)产生自水解反应生成单糖和低聚糖溶出,同时产生乙酸、甲酸和糠醛等小分子降解产物。基于纤维素回收率和纤维素酶水解得率分析,在蒸汽爆破强度系数达到4.239时(爆破温度210℃和保温时间10min)对红柳的预处理效果最佳,汽爆物料中纤维素的含量可达到52.4%,残余木聚糖含量仅为2.01%,并生成0.76%甲酸和3.17%乙酸。采用每克纤维素20.0FPIU的纤维素酶用量水解5%(w/w)该汽爆红柳物料48h,纤维素酶水解得率可达到86.6%(未处理的原料仅为15.5%)。这表明无化学品添加的蒸汽爆破是适于红柳糖化及生物炼制的一种有效的预处理方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号