首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In September 1999, unusually high mortality rates in white-tailed deer and California bighorn sheep occurred in the southern Okanagan Valley. Necropsy and histopathologic findings were compatible with epizootic hemorrhagic disease (EHD); the presence of virus was not demonstrated. Subsequent serologic and polymerase chain reaction assays on sentinel cattle suggested an EHD virus incursion.  相似文献   

2.
Bluetongue virus was isolated from a sentinel herd in British Columbia. Virus isolation was by intravenous inoculation of embryonated chicken eggs and subculture in BHK-21 cells. The cytopathic agent was identified as bluetongue virus by electron microscopy and the immunoperoxidase test. The serotype was identified as serotype 11 by virus neutralization.  相似文献   

3.
In 1987 a serological survey of cattle for antibodies (Ab) to bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) was undertaken in British Columbia and southwestern Alberta after infection with the viruses was diagnosed in wild and domestic ruminants in the Okanagan Valley. Of 4610 cattle tested, five had Ab only to BTV, 125 had antibodies only to EHDV and 16 had Ab to both viruses. The Ab were identified as specific for BTV type 11 (BT-11) or EHDV type 2 (EHDV-2). All but one of the seropositive cattle originated in the Okanagan Valley of British Columbia. The remaining one seropositive animal which had Ab to EHDV-2 was pastured with a bull purchased from the Okanagan Valley.  相似文献   

4.
Outbreaks of epizootic hemorrhagic disease of deer and of bluetongue began in British Columbia in August and October 1987 respectively and recrudescence of infection by both viruses was detected the following year in August. Weather records for up to 18 days before the initial outbreaks of disease, isolation of virus or seroconversion were examined to determine if the viruses could have been introduced by infected Culicoides carried on the wind. Data on temperature, rainfall, wind speed and direction and pressure together with backward trajectory analysis showed that there were suitable winds which could have introduced Culicoides infected with epizootic hemorrhagic disease of deer virus on 13 August 1987 (14 days before disease was observed), Culicoides infected with bluetongue virus on 1 October 1987 (7 days before virus was isolated and 13 days before disease in sheep) and Culicoides infected with bluetongue or epizootic hemorrhagic disease of deer viruses on 20 July 1988 (15 days before seroconversion was detected). The arrival on 13 August 1987 coincided with the passage of a cold front and rain and that on 1 October 1987 with a fall in temperature and calm winds. The source of the Culicoides before arrival could have been the Okanogan Valley as far south as the junction of the Okanogan and Columbia rivers in Washington, USA. Flight would have been at temperatures of 12.6 degrees C or higher and at heights up to 1.5 km.  相似文献   

5.
Continuous cell lines from the ticks Dermacentor variabilis, D. parumapertus, D. nitens, Rhipicephalus sanguineus and R. appendiculatus, the mosquitoes Aedes albopictus and Culex quinquefasciatus and the African toad Xenopus laevis were tested for their ability to replicate bluetongue (BT) and epizootic hemorrhagic disease of deer (EHD) viruses, and for their sensitivity as potential isolation systems. BT serotype 17 grew to peak titers of 10(4.5)-10(7.5) TCID50 ml-1 in all except one of the tick cell lines, EHD 2 virus attained titers similar to that of BT 17 in the mosquito and toads cells, but failed to replicate in tick cells. Only Aedes albopictus and Xenopus laevis cells were as sensitive to infection with low-passage BT 11 and EHD 2 viruses as control cultures of Vero and BHK cells. At 27 degrees C, persistent infection of Xenopus laevis cells occurred, producing low yields of BT 17 and EHD 2. When shifted to 32 degrees C, these cultures expressed virus in exponential increments. No cytopathic effect (CPE) was seen in any of the tick-virus systems, but infected mosquito and toad cells detached from the monolayer within 3-6 days after inoculation with either virus. In the toad cells, this CPE was presaged by the development of plaques within 48 h after infection. Potential applications of poikilotherm systems in orbivirus research are discussed.  相似文献   

6.
Intramuscular or intravenous inoculation of 5 Columbia black-tailed deer (Odocoileus hemionus columbianus) with virus of epizootic hemorrhagic deer disease (EHD) did not produce overt clinical disease. Two white-tailed deer (Odocoileus virginianus) exposed identically died in 5 to 6 days. There were no significant lesions in 1 black-tailed deer euthanatized on postinoculation day 5. The EHd virus was not isolated from the spleen of that deer. Seroconversion occurred in black-tailed deer, from zero EHD virus antibody titer before inoculation to titers of 1:128 to 1:256 after inoculation.  相似文献   

7.
Plaque assay and plaque neutralization of blue-tongue virus and epizootic hemorrhagic disease virus were studied in baby hamster kidney (BHK21) cells grown under an overlay containing gum tragacanth. Tests were done in plastic panels, each with 24 wells, and variables were established for achieving reproducible results. Four serotypes of bluetongue virus were compared, and their antigenic differences were confirmed with this new plaque-neutralization test.  相似文献   

8.
The virus-specific double-stranded genome RNA of 2 serotypes of epizootic hemorrhagic disease of deer virus (EHDV) was evaluated by use of coelectrophoresis in polyacrylamide and agarose gel systems. The molecular weights of virion RNA segments were 0.32 to 2.57 X 10(6) for EHDV-1 and 0.33 to 2.54 X 10(6) for EHDV-2. Seven of 10 double-stranded RNA segments of the 2 serotypes had different electrophoretic mobilities in the polyacrylamide-gel electrophoresis system. Although the individual RNA segments of each serotype contained unique RNA sequences determined on the basis of 2-dimensional polyacrylamide-gel electrophoresis analysis of oligonucleotides, the corresponding segments of the 2 serotypes were found to be comparable and at least 1 pair of RNA segment was almost identical. Virus-specific polypeptides for the 2 serotypes were compared by use of gel electrophoresis. Eleven polypeptides were detected for EHDV-1 and 10 for EHDV-2. Six corresponding polypeptides of these 2 serotypes had different electrophoretic mobilities, indicating that these corresponding polypeptides differ in their molecular weights. A genetic relationship was not determined between the 2 EHDV serogroups and the blue-tongue serogroup viruses, using oligonucleotides mapping.  相似文献   

9.
OBJECTIVE: To compare replication of bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) in pulmonary artery endothelial cells (ECs) obtained from juvenile cattle, sheep, white-tailed deer (WTD; Odocoileus virginianus), and black-tailed deer (BTD; O hemionus columbianus). SAMPLE POPULATION: Cultures of pulmonary artery ECs obtained from 3 cattle, 3 sheep, 3 WTD, and 1 BTD. PROCEDURE: Purified cultures of pulmonary artery ECs were established. Replication, incidence of infection, and cytopathic effects of prototype strains of BTV serotype 17 (BTV-17) and 2 serotypes of EHDV (EHDV-1), and (EHDV-2) were compared in replicate cultures of ECs from each of the 4 ruminant species by use of virus titration and flow cytometric analysis. RESULTS: All 3 viruses replicated in ECs from the 4 ruminant species; however, BTV-17 replicated more rapidly than did either serotype of EHDV. Each virus replicated to a high titer in all ECs, although titers of EHDV-1 were significantly lower in sheep ECs than in ECs of other species. Furthermore, all viruses caused extensive cytopathic effects and a high incidence of cellular infection; however, incidence of cellular infection and cytopathic effects were significantly lower in EHDV-1-infected sheep ECs and EHDV-2-infected BTD ECs. CONCLUSIONS AND CLINICAL RELEVANCE: There were only minor differences in replication, incidence of infection, and cytopathic effects for BTV-17, EHDV-1, or EHDV-2 in ECs of cattle, sheep, BTD, and WTD. It is not likely that differences in expression of disease in BTV- and EHDV-infected ruminants are attributable only to species-specific differences in the susceptibility of ECs to infection with the 2 orbiviruses.  相似文献   

10.
Blood samples were obtained from sentinel beef cattle at monthly intervals, and the sera were tested for antibodies, using a bluetongue virus (BTV) immunodiffusion test (IDT) and virus-neutralization test (VNT), for 5 BTV serotypes (2, 10, 11, 13, and 17) and 2 epizootic hemorrhagic disease virus (EHDV) serotypes (1 and 2). The cattle tested were transported from Tennessee to Texas in 1984 and 1985. All cattle were seronegative by the BTV IDT at the initial bleeding in Texas in 1984 and 1985. In 1984, 16 of 40 (40%) cattle seroconverted as assessed by results of the BTV IDT. In the 16 seropositive cattle in 1984, neutralizing antibodies were detected to BTV serotypes 10 (n = 7), 11 (n = 3), and 17 (n = 11), and EHDV serotypes 1 (n = 1) and 2 (n = 7). In 1984, no cattle seroconverted to BTV-2 or BTV-13. In 1985, 10 of 36 (27.8%) cattle seroconverted as assessed by results of the IDT. Of the 10 seropositive cattle in 1985, neutralizing antibodies were detected to BTV serotypes 10 (n = 10), 11 (n = 10), 13 (n = 7), and 17 (n = 5), and EHDV serotypes 1 (n = 1) and 2 (n = 7). In 1985, no cattle seroconverted to BTV-2. Clinical diseases attributable to BTV or EHDV was not detected in these cattle in 1984 or 1985.  相似文献   

11.
Sera from male mule deer (Odocoileus hemionus) collected in November 1977 in Otero County, New Mexico were tested fro antibodies to bovine virus diarrhea virus (BVDV), bluetongue virus (BTV), and epizootic hemorrhagic disease virus (EHDV). Neutralizing antibodies were detected in 26 of 76 (34%) sera tested for BVDV (titer greater than or equal to 1:16). Of 46 sera tested for antibodies to BTV and EHDV, 10 (22%) and 3 (7%), respectively, were positive. Three (7%) of 46 sera were suspect (titer < 1:20) for BTV, and 18 (38%) sera were suspect (titer < 1:20) for EHDV.  相似文献   

12.
An indirect enzyme-linked immunosorbent assay (I-ELISA) is described for simultaneous screening of bovine sera for detection of antibodies to bluetongue (BT) and epizootic hemorrhagic disease of deer (EHD) viruses (V). Optimal dilutions of BTV and EHDV antigens were combined and allowed to absorb on to the wells of microtiter plates. Appropriately diluted (1:100) bovine sera were allowed to incubate and the bound antibodies were detected by a murine monoclonal antibody (MAb) to bovine immunoglobulin (H-Chain) conjugated with horseradish peroxidase. The performance of the combined (C) I-ELISA in detecting antibodies to BTV and EHDV in sequential serum samples from calves experimentally inoculated with BTV, serotype 10, EHDV, serotype 1 (New Jersey) or EHDV serotype 2 (Alberta) was evaluated. Comparable antibody profiles were demonstrable by the CI-ELISA and separate I-ELISAs using either BTV or EHDV antigens. The results suggest that the CI-ELISA offers many advantages over the standard agar gel immunodiffusion (AGID) test and has potential application as a rapid, sensitive, inter-group-specific and inexpensive test for simultaneous screening of bovine sera for antibodies to BTV and/or EHDV.  相似文献   

13.
Three viruses isolated from anopheline mosquitoes in Indonesia have been identified as bluetongue and epizootic hemorrhagic disease viruses. Another virus isolate showed no relationship to other orbiviruses tested and should be regarded as a new virus; the name Golok is proposed for it. The mosquitoes were collected in 1980 and 1981 in a program designed to isolate flaviviruses infecting humans. It is apparent that such collections of arthropods which feed on large mammals could be screened for other viruses which may infect domestic livestock.  相似文献   

14.
Immunisation of mice with recombinant VP7 antigen of epizootic hemorrhagic disease virus of deer (EHDV) induced serum antibody responses to EHDV. However, from the 19 monoclonal antibodies (Mab) produced from these mice, 15 were specific for EHDV and four for bluetongue virus (BTV). No Mabs were identified with the specificity for an epitope of VP7 shared by both EHDV and BTV in spite of the fact that they share a large portion of homology in VP7 amino acids composition. These Mabs were divided into five groups based on their specificity and interaction with each other. Group II Mabs, consisting of 13 Mabs, recognises a potential serogroup specific, linear epitope of EHDV VP7 antigen. One of the Mabs to BTV (Group V) was identified as BTV VP7 specific with the possibility of being the serogroup specific and recognizes a potential conformational epitope. Two Mabs from these VP7 specific groups were further analysed and found to be useful in a competitive enzyme-linked immunosorbent assay (C - ELISA) for detection of specific antibodies against EHDV and BTV in bovine sera.  相似文献   

15.
An enzyme-linked immunosorbent assay has been developed to detect antibodies to epizootic hemorrhagic disease of deer virus (EHDV). The assay incorporates a monoclonal antibody to EHDV serotype 2 (EHDV-2) that demonstrates specificity for the viral structural protein, VP7. The assay was evaluated with sequential sera collected from cattle experimentally infected with EHDV serotype 1 (EHDV-1) and EHDV-2, as well as the four serotypes of bluetongue virus (BTV), BTV-10, BTV-11, BTV-13, and BTV-17, that currently circulate in the US. A competitive and a blocking format as well as the use of antigen produced from both EHDV-1- and EHDV-2-infected cells were evaluated. The assay was able to detect specific antibody as early as 7 days after infection and could differentiate animals experimentally infected with EHDV from those experimentally infected with BTV. The diagnostic potential of this assay was demonstrated with field-collected serum samples from cattle, deer, and buffalo.  相似文献   

16.
Thirty-two bovine field isolates of bluetongue virus (BTV), 6 field isolates of epizootic hemorrhagic disease virus (EHDV) from deer, 4 BTV prototype serotypes (10, 11, 13, and 17), and 2 EHDV prototype serotypes (1 and 2) were coelectrophoresed, using polyacrylamide gels. Field isolates were obtained from various regions of the United States. Analysis of polyacrylamide gels and scattered plots generated for comparison of migration patterns for different isolates within each serotype of BTV revealed wide variation among the individual segments. The BTV serotypes 10 and 11 had more variation, compared with BTV serotypes 13 and 17, especially for migration of genome segment 5. A definitive correlation was not seen between the double-stranded RNA migration profiles on polyacrylamide gel electrophoresis, geographic origin, herd of origin, or year of collection. One BTV field isolate contained more than 1 electropherotype, with 2 bands at the segment-7 position, and it was further characterized as BTV serotype 11. Segments 2 and 5 of EHDV isolates were more variable in their migration than were the other gene segments. Generally, migration profiles for EHDV double-stranded RNA were more variable, compared with those of BTV isolates. Although a correlation was found between migration profiles and serotype of 2 isolates of EHDV, a study of additional EHDV isolates is required before the diversity of electrophoretic patterns of EHDV can be determined.  相似文献   

17.
Blood samples were collected from 194 white-tailed deer from 27 locations in Oklahoma from 1977 through 1984. Sixty-eight (35%) of the deer had antibody against bluetongue virus (BTV) and 78 (40%) had antibody against epizootic hemorrhagic disease virus. Seropositive deer were detected in each of the 4 geographic quadrants of the state. Virus isolation was attempted in 40 deer from the northeast quadrant of Oklahoma (1983 through 1984); BTV was isolated from 11 deer, but epizootic hemorrhagic disease virus was not isolated. The isolation of BTV serotype 11 from these deer from 1983 through 1984 coincided with reported isolations of this serotype in other ruminants in Oklahoma during this time.  相似文献   

18.
A virus was isolated from the spleen of a white-tailed deer (Odocoileus virginianus) that had died during an epizootic in Washington state in 1967. Inoculation of a 10% spleen suspension from the deer caused hemorrhagic disease in normal white-tailed deer. Studies were conducted on the biological, physicochemical, and serologic properties of the Washington isolate. An in vitro assay system, utilizing a cultured primary of white-tailed deer fetal cells from an entire fetus, was employed for isolation and propagation of the virus. Cytopathic effect was characterized by focal development of rounded and clumped cells. Propagation was unsuccessful in suckling mice, BHK-21, and Vero cell cultures. The virus was resistant to treatment with ether, sodium deoxycholate, trypsin, oxytetracycline hydrochloride, and was sensitive to chloroform. Virus yield was not affected when infected cultures were treated with 5-iodo-2'-deoxyuridine, but dactinomycin (actinomycin D) treatment of infected cultures reduced virus yield. The virus was inactivated when heated at 70 C for 5 minutes or when exposed to pH 5 for 18 hours at 4 C. The virus was completely excluded from the filtrate by a 0.10- micronm (APD) membrane filter. Staining of infected cells with acridine orange indicated the presence of double-standard nucleic acid in the cytoplasm. Serum-neutralization tests with antiserums against the homologous virus and the New Jersey and Alberta strains of epizootic hemorrhagic disease virus resulted in neutralization of the Washington isolate. The Washington virus was not neutralized by bluetongue virus antiserum. Cells infected with the Washington isolate exhibited intracytoplasmic fluorescence by the indirect fluorescent antibody method with New Jersey and Alberta epizootic hemorrhagic disease antiserums but not with bluetongue antiserum.  相似文献   

19.
An ELISA for the detection of serum antibody in sheep, cattle and goats to the viruses of bluetongue (BTV) and epizootic haemorrhagic disease of deer (EHDV) has been developed. Two methods of antigen preparation were analysed for efficacy in the ELISA and inter-group seroreactivity. A freeze-thaw (F/T) antigen appeared to have a narrower specificity than a cytoskeletal preparation from infected cells (P200) which contained all viral proteins. A higher background reactivity was seen when using the P200 antigen, suggesting that a F/T antigen, perhaps as a composite of serotypes, would be of greater value in an ELISA to replace current methods for antibody screening. The effect of multiple infections with unrelated orbiviruses was found to have no effect on the detection of antibody to BTV and EHDV by ELISA. The ELISA was able to demonstrate development and persistence of antibody to BTV in cattle over the course of 120 days.  相似文献   

20.
OBJECTIVE: To determine whether experimental inoculation with a field strain of epizootic hemorrhagic disease virus serotype-2 (EHDV-2) suspected of causing clinical disease in naturally infected cattle would cause clinical disease in calves. ANIMALS: 8 calves. PROCEDURE: A strain of EHDV-2 isolated from a white-tailed deer that died of hemorrhagic disease was passaged twice in deer and used to inoculate 6 calves SC and ID; the other 2 calves were used as controls. Physical examinations, CBC, lymphocyte blastogenesis assays, and coagulation assays were performed; rectal temperature, interferon production, and serum neutralizing antibody responses were measured; and virus isolation was attempted every other day for 21 days after inoculation and then every fourth day for another 30 days. Calves were euthanatized on postinoculation day 51, and necropsy was performed. RESULTS: Calves inoculated with EHDV-2 became infected, as evidenced by development of viremia and seroconversion. However, the virus did not cause detectable clinical disease, clinicopathologic abnormalities, or gross lesions. Viremia was prolonged despite development of a serum neutralizing antibody response. A white-tailed deer inoculated with the same EHDV-2 strain developed clinical signs of epizootic hemorrhagic disease, demonstrating that the inoculum was virulent. CONCLUSION: Calves experimentally infected with EHDV-2 developed viremia and seroconverted but did not develop detectable clinical disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号