首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The signal recognition particle (SRP) is a universally conserved ribonucleoprotein complex that mediates the cotranslational targeting of secretory and membrane proteins to cellular membranes. A crucial early step in SRP assembly in archaea and eukarya is the binding of protein SRP19 to specific sites on SRP RNA. Here we report the 1.8 angstrom resolution crystal structure of human SRP19 in complex with its primary binding site on helix 6 of SRP RNA, which consists of a stem-loop structure closed by an unusual GGAG tetraloop. Protein-RNA interactions are mediated by the specific recognition of a widened major groove and the tetraloop without any direct protein-base contacts and include a complex network of highly ordered water molecules. A model of the assembly of the SRP core comprising SRP19, SRP54, and SRP RNA based on crystallographic and biochemical data is proposed.  相似文献   

2.
Cotranslational targeting of membrane and secretory proteins is mediated by the universally conserved signal recognition particle (SRP). Together with its receptor (SR), SRP mediates the guanine triphosphate (GTP)-dependent delivery of translating ribosomes bearing signal sequences to translocons on the target membrane. Here, we present the crystal structure of the SRP:SR complex at 3.9 angstrom resolution and biochemical data revealing that the activated SRP:SR guanine triphosphatase (GTPase) complex binds the distal end of the SRP hairpin RNA where GTP hydrolysis is stimulated. Combined with previous findings, these results suggest that the SRP:SR GTPase complex initially assembles at the tetraloop end of the SRP RNA and then relocalizes to the opposite end of the RNA. This rearrangement provides a mechanism for coupling GTP hydrolysis to the handover of cargo to the translocon.  相似文献   

3.
The mechanism by which a signal recognition particle (SRP) and its receptor mediate protein targeting to the endoplasmic reticulum or to the bacterial plasma membrane is evolutionarily conserved. In Escherichia coli, this reaction is mediated by the Ffh/4.5S RNA ribonucleoprotein complex (Ffh/4.5S RNP; the SRP) and the FtsY protein (the SRP receptor). We have quantified the effects of 4.5S RNA on Ffh-FtsY complex formation by monitoring changes in tryptophan fluorescence. Surprisingly, 4.5S RNA facilitates both assembly and disassembly of the Ffh-FtsY complex to a similar extent. These results provide an example of an RNA molecule facilitating protein-protein interactions in a catalytic fashion.  相似文献   

4.
Secretory and membrane proteins carry amino-terminal signal sequences that, in cotranslational targeting, are recognized by the signal recognition particle protein SRP54 without sequence specificity. The most abundant membrane proteins on Earth are the light-harvesting chlorophyll a/b binding proteins (LHCPs). They are synthesized in the cytoplasm, imported into the chloroplast, and posttranslationally targeted to the thylakoid membrane by cpSRP, a heterodimer formed by cpSRP54 and cpSRP43. We present the 1.5 angstrom crystal structure of cpSRP43 characterized by a unique arrangement of chromodomains and ankyrin repeats. The overall shape and charge distribution of cpSRP43 resembles the SRP RNA, which is absent in chloroplasts. The complex with the internal signal sequence of LHCPs reveals that cpSRP43 specifically recognizes a DPLG peptide motif. We describe how cpSPR43 adapts the universally conserved SRP system to posttranslational targeting and insertion of the LHCP family of membrane proteins.  相似文献   

5.
The signal recognition particle (SRP) directs signal sequence specific targeting of ribosomes to the rough endoplasmic reticulum. Displacement of the SRP from the signal sequence of a nascent polypeptide is a guanosine triphosphate (GTP)-dependent reaction mediated by the membrane-bound SRP receptor. A nonhydrolyzable GTP analog can replace GTP in the signal sequence displacement reaction, but the SRP then fails to dissociate from the membrane. Complexes of the SRP with its receptor containing the nonhydrolyzable analog are incompetent for subsequent rounds of protein translocation. Thus, vectorial targeting of ribosomes to the endoplasmic reticulum is controlled by a GTP hydrolysis cycle that regulates the affinity between the SRP, signal sequences, and the SRP receptor.  相似文献   

6.
Signal recognition particle (SRP), together with its receptor (SR), mediates the targeting of ribosome-nascent chain complexes to the endoplasmic reticulum. Using protein cross-linking, we detected distinct modes in the binding of SRP to the ribosome. During signal peptide recognition, SRP54 is positioned at the exit site close to ribosomal proteins L23a and L35. When SRP54 contacts SR, SRP54 is rearranged such that it is no longer close to L23a. This repositioning may allow the translocon to dock with the ribosome, leading to insertion of the signal peptide into the translocation channel.  相似文献   

7.
The nuclear-encoded light-harvesting chlorophyll a/b-binding proteins(LHCPs) are specifically translocated from the stroma into the thylakoid membrane through the chloroplast signal recognition particle(cp SRP) pathway. The cp SRP is composed of a cp SRP43 protein and a cp SRP54 protein, and it forms a soluble transit complex with LHCP in the chloroplast stroma. Here, we identified the YGL9 gene that is predicted to encode the probable rice cp SRP43 protein from a rice yellow-green leaf mutant. A phylogenetic tree showed that an important conserved protein family, cp SRP43, is present in almost all green photosynthetic organisms such as higher plants and green algae. Sequence analysis showed that YGL9 comprises a chloroplast transit peptide, three chromodomains and four ankyrin repeats, and the chromodomains and ankyrin repeats are probably involved in protein-protein interactions. Subcellular localization showed that YGL9 is localized in the chloroplast. Expression pattern analysis indicated that YGL9 is mainly expressed in green leaf sheaths and leaves. Quantitative real-time PCR analysis showed that the expression levels of genes associated with pigment metabolism, chloroplast development and photosynthesis were distinctly affected in the ygl9 mutant. These results indicated that YGL9 is possibly involved in pigment metabolism, chloroplast development and photosynthesis in rice.  相似文献   

8.
Signal sequences of secretory and membrane proteins are recognized by the signal recognition particle (SRP) as they emerge from the ribosome. This results in their targeting to the membrane by docking with the SRP receptor, which facilitates transfer of the ribosome to the translocon. Here, we present the 8 angstrom cryo-electron microscopy structure of a "docking complex" consisting of a SRP-bound 80S ribosome and the SRP receptor. Interaction of the SRP receptor with both SRP and the ribosome rearranged the S domain of SRP such that a ribosomal binding site for the translocon, the L23e/L35 site, became exposed, whereas Alu domain-mediated elongation arrest persisted.  相似文献   

9.
In bacteria, promoter recognition depends on the RNA polymerase sigma subunit, which combines with the catalytically proficient RNA polymerase core to form the holoenzyme. The major class of bacterial promoters is defined by two conserved elements (the -10 and -35 elements, which are 10 and 35 nucleotides upstream of the initiation point, respectively) that are contacted by sigma in the holoenzyme. We show that recognition of promoters of this class depends on the "flexible flap" domain of the RNA polymerase beta subunit. The flap interacts with conserved region 4 of sigma and triggers a conformational change that moves region 4 into the correct position for interaction with the -35 element. Because the flexible flap is evolutionarily conserved, this domain may facilitate promoter recognition by specificity factors in eukaryotes as well.  相似文献   

10.
The termination of protein synthesis occurs through the specific recognition of a stop codon in the A site of the ribosome by a release factor (RF), which then catalyzes the hydrolysis of the nascent protein chain from the P-site transfer RNA. Here we present, at a resolution of 3.5 angstroms, the crystal structure of RF2 in complex with its cognate UGA stop codon in the 70S ribosome. The structure provides insight into how RF2 specifically recognizes the stop codon; it also suggests a model for the role of a universally conserved GGQ motif in the catalysis of peptide release.  相似文献   

11.
Two structurally homologous guanosine triphosphatase (GTPase) domains interact directly during signal recognition particle (SRP)-mediated cotranslational targeting of proteins to the membrane. The 2.05 angstrom structure of a complex of the NG GTPase domains of Ffh and FtsY reveals a remarkably symmetric heterodimer sequestering a composite active site that contains two bound nucleotides. The structure explains the coordinate activation of the two GTPases. Conformational changes coupled to formation of their extensive interface may function allosterically to signal formation of the targeting complex to the signal-sequence binding site and the translocon. We propose that the complex represents a molecular "latch" and that its disengagement is regulated by completion of assembly of the GTPase active site.  相似文献   

12.
We report the crystal structure of the catalytic domain of human ADAR2, an RNA editing enzyme, at 1.7 angstrom resolution. The structure reveals a zinc ion in the active site and suggests how the substrate adenosine is recognized. Unexpectedly, inositol hexakisphosphate (IP6) is buried within the enzyme core, contributing to the protein fold. Although there are no reports that adenosine deaminases that act on RNA (ADARs) require a cofactor, we show that IP6 is required for activity. Amino acids that coordinate IP6 in the crystal structure are conserved in some adenosine deaminases that act on transfer RNA (tRNA) (ADATs), related enzymes that edit tRNA. Indeed, IP6 is also essential for in vivo and in vitro deamination of adenosine 37 of tRNAala by ADAT1.  相似文献   

13.
Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2   总被引:1,自引:0,他引:1  
The sequence and the structure of DNA methyltransferase-2 (Dnmt2) bear close affinities to authentic DNA cytosine methyltransferases. A combined genetic and biochemical approach revealed that human DNMT2 did not methylate DNA but instead methylated a small RNA; mass spectrometry showed that this RNA is aspartic acid transfer RNA (tRNA(Asp)) and that DNMT2 specifically methylated cytosine 38 in the anticodon loop. The function of DNMT2 is highly conserved, and human DNMT2 protein restored methylation in vitro to tRNA(Asp) from Dnmt2-deficient strains of mouse, Arabidopsis thaliana, and Drosophila melanogaster in a manner that was dependent on preexisting patterns of modified nucleosides. Indirect sequence recognition is also a feature of eukaryotic DNA methyltransferases, which may have arisen from a Dnmt2-like RNA methyltransferase.  相似文献   

14.
Eukaryotic ribosomes are substantially larger and more complex than their bacterial counterparts. Although their core function is conserved, bacterial and eukaryotic protein synthesis differ considerably at the level of initiation. The eukaryotic small ribosomal subunit (40S) plays a central role in this process; it binds initiation factors that facilitate scanning of messenger RNAs and initiation of protein synthesis. We have determined the crystal structure of the Tetrahymena thermophila 40S ribosomal subunit in complex with eukaryotic initiation factor 1 (eIF1) at a resolution of 3.9 angstroms. The structure reveals the fold of the entire 18S ribosomal RNA and of all ribosomal proteins of the 40S subunit, and defines the interactions with eIF1. It provides insights into the eukaryotic-specific aspects of protein synthesis, including the function of eIF1 as well as signaling and regulation mediated by the ribosomal proteins RACK1 and rpS6e.  相似文献   

15.
Ribosomes translate genetic information encoded by messenger RNA into proteins. Many aspects of translation and its regulation are specific to eukaryotes, whose ribosomes are much larger and intricate than their bacterial counterparts. We report the crystal structure of the 80S ribosome from the yeast Saccharomyces cerevisiae--including nearly all ribosomal RNA bases and protein side chains as well as an additional protein, Stm1--at a resolution of 3.0 angstroms. This atomic model reveals the architecture of eukaryote-specific elements and their interaction with the universally conserved core, and describes all eukaryote-specific bridges between the two ribosomal subunits. It forms the structural framework for the design and analysis of experiments that explore the eukaryotic translation apparatus and the evolutionary forces that shaped it.  相似文献   

16.
All cellular organisms use specialized RNA polymerases called "primases" to synthesize RNA primers for the initiation of DNA replication. The high-resolution crystal structure of a primase, comprising the catalytic core of the Escherichia coli DnaG protein, was determined. The core structure contains an active-site architecture that is unrelated to other DNA or RNA polymerase palm folds, but is instead related to the "toprim" fold. On the basis of the structure, it is likely that DnaG binds nucleic acid in a groove clustered with invariant residues and that DnaG is positioned within the replisome to accept single-stranded DNA directly from the replicative helicase.  相似文献   

17.
18.
Fragments of the HIV-1 Tat protein specifically bind TAR RNA   总被引:75,自引:0,他引:75  
Proteolytically produced carboxyl-terminal fragments of the human immunodeficiency virus type-1 (HIV-1) Tat protein that include a conserved region rich in arginine and lysine bind specifically to transactivation response RNA sequences (TAR). A chemically synthesized 14-residue peptide spanning the basic subdomain also recognizes TAR, identifying this subdomain as central for RNA interaction. TAR RNA forms a stable hairpin that includes a six-residue loop, a trinucleotide pyrimidine bulge, and extensive duplex structure. Competition and interference experiments show that the Tat-derived fragments bind to double-stranded RNA and interact specifically at the pyrimidine bulge and adjacent duplex of TAR.  相似文献   

19.
Immunity-related genes and gene families in Anopheles gambiae   总被引:2,自引:0,他引:2  
We have identified 242 Anopheles gambiae genes from 18 gene families implicated in innate immunity and have detected marked diversification relative to Drosophila melanogaster. Immune-related gene families involved in recognition, signal modulation, and effector systems show a marked deficit of orthologs and excessive gene expansions, possibly reflecting selection pressures from different pathogens encountered in these insects' very different life-styles. In contrast, the multifunctional Toll signal transduction pathway is substantially conserved, presumably because of counterselection for developmental stability. Representative expression profiles confirm that sequence diversification is accompanied by specific responses to different immune challenges. Alternative RNA splicing may also contribute to expansion of the immune repertoire.  相似文献   

20.
Crystal structure of the eukaryotic ribosome   总被引:1,自引:0,他引:1  
Crystal structures of prokaryotic ribosomes have described in detail the universally conserved core of the translation mechanism. However, many facets of the translation process in eukaryotes are not shared with prokaryotes. The crystal structure of the yeast 80S ribosome determined at 4.15 angstrom resolution reveals the higher complexity of eukaryotic ribosomes, which are 40% larger than their bacterial counterparts. Our model shows how eukaryote-specific elements considerably expand the network of interactions within the ribosome and provides insights into eukaryote-specific features of protein synthesis. Our crystals capture the ribosome in the ratcheted state, which is essential for translocation of mRNA and transfer RNA (tRNA), and in which the small ribosomal subunit has rotated with respect to the large subunit. We describe the conformational changes in both ribosomal subunits that are involved in ratcheting and their implications in coordination between the two associated subunits and in mRNA and tRNA translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号