首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pharmacokinetics of danofloxacin was studied following intravenous (i.v.), intramuscular (i.m.) and subcutaneous (s.c.) administration of 6 mg/kg to healthy rabbits. Danofloxacin concentration were determined by high-performance liquid chromatography assay with fluorescence detection. Minimal inhibitory concentrations (MICs) assay of danofloxacin against 30 strains of Staphylococcus aureus from several European countries was performed in order to compute pharmacodynamic surrogate markers. The danofloxacin plasma concentration versus time data after i.v. administration could best be described by a two-compartment open model. The disposition of i.m. and subcutaneously administered danofloxacin was best described by a one-compartment model. The terminal half-life for i.v., i.m. and s.c. routes was 4.88, 6.70 and 8.20 h, respectively. Clearance value after i.v. dosing was 0.76 L/kg.h. After i.m. administration, the absolute bioavailability was mean (+/-SD) 102.34 +/- 5.17% and the Cmax was 1.87 mg/L. After s.c. administration, the absolute bioavailability was mean (+/-SD) 96.44 +/- 5.95% and the Cmax was 1.79 mg/L. Danofloxacin shows a favourable pharmacokinetics profile in rabbits reflected by parameters such as a long half-life and a high bioavailability. However, in consideration of the low AUC/MIC indices obtained, its use by i.m. and s.c. route against the S. aureus strains assayed in this study cannot be recommended given the risk for selection of first mutant subpopulations.  相似文献   

2.
The single-dose disposition kinetics of orbifloxacin were determined in clinically normal rabbits ( n  = 6) after intravenous (i.v.), subcutaneous (s.c.) and intramuscular (i.m.) administration of 5 mg/kg bodyweight. Orbifloxacin concentrations were determined by high performance liquid chromatography with fluorescence detection. Minimal inhibitory concentrations ( MIC s) assay of orbifloxacin against 30 strains of Staphylococcus aureus from several European countries was performed in order to compute pharmacodynamic surrogate markers. The concentration–time data were analysed by compartmental and noncompartmental kinetic methods. Steady-state volume of distribution ( V ss) and total body clearance ( Cl ) of orbifloxacin after i.v. administration were estimated to be 1.71 ± 0.38 L/kg and 0.91 ± 0.20 L/h·kg, respectively. Following s.c. and i.m. administration orbifloxacin achieved maximum plasma concentrations of 2.95 ± 0.82 and 3.24 ± 1.33 mg/L at 0.67 ± 0.20 and 0.65 ± 0.12 h, respectively. The absolute bio-availabilities after s.c. and i.m. routes were 110.67 ± 11.02% and 109.87 ± 8.36%, respectively. Orbifloxacin showed a favourable pharmacokinetic profile in rabbits. However, on account of the low AUC / MIC and C max/ MIC indices obtained, its use by i.m. and s.c. routes against the S. aureus strains assayed in this study cannot be recommended given the risk of selection of resistant populations.  相似文献   

3.
The pharmacokinetics of moxifloxacin was studied following intravenous (i.v.), intramuscular (i.m.) and oral dose of 5 mg/kg to healthy white New Zealand rabbits (n = 6). Moxifloxacin concentrations were determined by HPLC assay with fluorescence detection. The moxifloxacin plasma concentration vs. time data after i.v. administration could best be described by a two-compartment open model. The disposition of i.m. and orally administered moxifloxacin was best described by a one-compartment model. The plasma moxifloxacin clearance (Cl) for the i.v route was (mean +/- SD) 0.80 +/- 0.02 L/h.kg. The steady-state volume of distribution (Vss) was 1.95 +/- 0.18 L/kg. The terminal half-life (t(1/2lambdaz)) was (mean +/- SD) 1.84 +/- 0.12, 2.09 +/- 0.05 and 2.15 +/- 0.07 h after i.v., i.m. and oral, respectively. Minimal inhibitory concentration (MIC) assays of moxifloxacin against different strains of S. aureus were performed in order to compute pharmacodynamic surrogate markers. From these data, it is concluded that a 5 mg/kg dose moxifloxacin would be effective by i.m. and oral routes in rabbits against bacterial isolates with MIC < or = 0.06 microg/mL and possibly for MIC < or = 0.12 microg/mL, but in the latter case a higher dose would be required.  相似文献   

4.
The disposition kinetics of norfloxacin, after intravenous, intramuscular and subcutaneous administration was determined in rabbits at a single dose of 10 mg/kg. Six New Zealand white rabbits of both sexes were treated with aqueous solution of norfloxacin (2%). A cross‐over design was used in three phases (2 × 2 × 2), with two washout periods of 15 days. Plasma samples were collected up to 72 hr after treatment, snap‐frozen at ?45°C and analysed for norfloxacin concentrations using high‐performance liquid chromatography. The terminal half‐life for i.v., i.m. and s.c. routes was 3.18, 4.90 and 4.16 hr, respectively. Clearance value after i.v. dosing was 0.80 L/h·kg. After i.m. administration, the absolute bioavailability was (mean ± SD ) 108.25 ± 12.98% and the Cmax was 3.68 mg/L. After s.c. administration, the absolute bioavailability was (mean ± SD ) 84.08 ± 10.36% and the Cmax was 4.28 mg/L. As general adverse reactions were not observed in any rabbit and favourable pharmacokinetics were found, norfloxacin at 10 mg/kg after i.m. and s.c. dose could be effective in rabbits against micro‐organisms with MIC ≤0.14 or 0.11 μg/mL , respectively.  相似文献   

5.
Hawkins, M. G., Taylor, I. T., Byrne, B. A., Armstrong, R. D., Tell, L. A. Pharmacokinetic–pharmacodynamic integration of orbifloxacin in Japanese quail (Coturnix japonica) following oral and intravenous administration. J. vet. Pharmacol. Therap. 34 , 350–358. The pharmacokinetics of single‐dose administration of orbifloxacin were determined in Japanese quail (Coturnix japonica) at dosages of 5 mg/kg intravenous (i.v. n = 12) and 7.5 mg/kg oral (p.o.; n = 5), 10 mg/kg p.o. (n = 5), 15 mg/kg p.o. (n = 12) and 20 mg/kg p.o. (n = 5) via HPLC. Orbifloxacin minimal inhibitory concentrations (MICs) against 22 microbial isolates from various bird species were performed to calculate pharmacodynamic surrogate markers. The concentration–time data were analyzed using a naïve pooled data (NPD) approach and compartmental and noncompartmental methods. Steady‐state volume of distribution (Vdss) and total body clearance (Cl) after i.v. administration were estimated to be 1.27 L/kg and 0.60 L/h·kg, respectively. Following 15 and 20 mg/kg p.o. dose, bioavailability was 102% and 117%, respectively. The harmonic mean of the corresponding terminal half‐lives (T1/2λz) across all the dose groups was 1.71 h. The Cmax/MIC90 and AUC0∞24/MIC90 for the 15 and 20 mg/kg p.o. doses were ≥5.22 and ≥8.98, and ≥25.80 and ≥39.37 h, respectively. The results of this study suggest that 20 mg/kg orbifloxacin p.o. would be a rational daily dose to treat susceptible infections in Japanese quail not intended for food consumption. For more sensitive bacterial organisms, 15 mg/kg p.o. may also be effective.  相似文献   

6.
The pharmacokinetics of chloramphenicol were studied in sheep after 3 single intravenous (IV), intramuscular (IM) and subcutaneous (SC) administrations (30 mg/kg). The two extravascular routes were studied during a crossover trial for a bioequivalence test. After IV and SC administrations, the plasma-concentration time graphs were characteristic of a two-compartment model, and after IM administration it was characteristic of a monocompartment model. The two routes of absorption were not bioequivalent. Using the kinetic values, multidose regimens to maintain the therapeutic chloramphenicol blood level (5 micrograms/ml) were proposed: 60 mg/kg every 12 hours for 72 hours for the IM administration and 45 mg/kg administered subcutaneously according to the same regimen. A study of the chloramphenicol residues in tissues was carried out. Chloramphenicol residues remained at the injection site, and 400 hours would be necessary to obtain the level of 10 micrograms/kg. Determination of the creatinine phosphokinase serum values showed that the subcutaneous route induced less damage to muscle than the intramuscular route.  相似文献   

7.
The disposition kinetics of difloxacin, a fluoroquinolone antibiotic, after intravenous (IV), intramuscular (IM) and subcutaneous (SC) administration were determined in sheep at a single dose of 5mg/kg. The concentration-time data were analysed by compartmental (after IV dose) and non-compartmental pharmacokinetics method (after IV, IM and SC administration). Plasma concentrations of difloxacin were determined by high performance liquid chromatography with fluorescence detection. Steady-state volume of distribution (V(ss)) and clearance (Cl) of difloxacin after IV administration were 1.68+/-0.21L/kg and 0.21+/-0.03L/hkg, respectively. Following IM and SC administration difloxacin achieved maximum plasma concentration of 1.89+/-0.55 and 1.39+/-0.14mg/L at 2.42+/-1.28 and 5.33+/-1.03h, respectively. The absolute bioavailabilities after IM and SC routes were 99.92+/-26.50 and 82.35+/-25.65%, respectively. Based on these kinetic parameters, difloxacin is likely to be effective in sheep.  相似文献   

8.
The disposition kinetics of moxifloxacin, a fluoroquinolone antibiotic, after intravenous (IV), intramuscular (IM) and subcutaneous (SC) administration was determined in sheep at a single dose of 5 mg/kg. The concentration-time data were analysed by compartmental (after IV dose) and non-compartmental (after IV, IM and SC administration) pharmacokinetic methods. Plasma concentrations of moxifloxacin were determined by high performance liquid chromatography with fluorescence detection. Steady-state volume of distribution (Vss) and clearance (Cl) of moxifloxacin after IV administration were 2.03 ± 0.36 L/kg and 0.39 ± 0.04 L/h kg, respectively. Following IM and SC administration, moxifloxacin achieved maximum plasma concentration of 1.66 ± 0.62 mg/L and 0.90 ± 0.19 mg/L at 2.25 ± 0.88 h and 3.25 ± 1.17 h, respectively. The absolute bioavailabilities after IM and SC routes were 96.12 ± 32.70% and 102.20 ± 23.76%, respectively. From these data (kinetic parameters and absence of adverse reactions) moxifloxacin may be a potentially useful antibiotic in sheep.  相似文献   

9.
The pharmacokinetics of orbifloxacin was studied after a single dose (7.5 mg/kg) of intravenous or intramuscular administration to crucian carp (Carassius auratus ) reared in freshwater at 25°C. Plasma samples were collected from six fish per sampling point. Orbifloxacin concentrations were determined by high‐performance liquid chromatography with a 0.02 μg/ml limit of detection, then were subjected to noncompartmental analysis. After intravenous injection, initial concentration of 5.83 μg/ml, apparent elimination rate constant (λz) of 0.039 hr?1, apparent elimination half‐life (T1/2λz) of 17.90 hr, systemic total body clearance (Cl) of 75.47 ml hr?1 kg?1, volume of distribution (Vz) of 1,948.76 ml/kg, and volume of distribution at steady‐state (Vss) of 1,863.97 ml/kg were determined, respectively. While after intramuscular administration, the λz, T 1/2λz, mean absorption time (MAT ), absorption half‐life (T 1/2ka), and bioavailability were determined as 0.027 hr?1, 25.69, 10.26, 7.11 hr, and 96.46%, respectively, while the peak concentration was observed as 3.11 ± 0.06 μg/ml at 2.0 hr. It was shown that orbifloxacin was completely but relatively slowly absorbed, extensively distributed, and slowly eliminated in crucian carp, and an orbifloxacin dosage of 10 mg/kg administered intravenously or intramuscularly would be expected to successfully treat crucian carp infected by strains with MIC values ≤0.5 μg/ml.  相似文献   

10.
11.
Spiramycin is a macrolide antibiotic that is active against most of the microorganisms isolated from the milk of mastitic cows. This work investigated the disposition of spiramycin in plasma and milk after intravenous, intramuscular and subcutaneous administration. Twelve healthy cows were given a single injection of spiramycin at a dose of 30,000 IU/kg by each route. Plasma and milk were collected post injection. Spiramycin concentration in the plasma was determined by a high performance liquid chromatography method, and in the milk by a microbiological method. The mean residence time after intravenous administration was significantly longer (P less than 0.01) in the milk (20.7 +/- 2.7 h) than in plasma (4.0 +/- 1.6 h). An average milk-to-plasma ratio of 36.5 +/- 15 was calculated from the area concentration-time curves. Several pharmacokinetic parameters were examined to determine the bioequivalence of the two extravascular routes. The dose fraction adsorbed after intramuscular or subcutaneous administration was almost 100% and was bioequivalent for the extravascular routes, but the rates of absorption, the maximal concentrations and the time to obtain them differed significantly between the two routes. Spiramycin quantities excreted in milk did not differ between the two extravascular routes but the latter were not bioequivalent for maximal concentration in the milk. However, the two routes were bio-equivalent for the duration of time the milk concentration exceeded the minimal inhibitory concentration (MIC) of various pathogens causing infections in the mammary gland.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Cefuroxime pharmacokinetic profile was investigated in 6 Beagle dogs after single intravenous, intramuscular, and subcutaneous administration at a dosage of 20 mg/kg. Blood samples were withdrawn at predetermined times over a 12‐h period. Cefuroxime plasma concentrations were determined by HPLC. Data were analyzed by compartmental analysis. Peak plasma concentration (Cmax), time‐to‐peak plasma concentration (Tmax), and bioavailability for the intramuscular and subcutaneous administration were (mean ± SD) 22.99 ± 7.87 μg/mL, 0.43 ± 0.20 h, and 79.70 ± 14.43% and 15.37 ± 3.07 μg/mL, 0.99 ± 0.10 h, and 77.22 ± 21.41%, respectively. Elimination half‐lives and mean residence time for the intravenous, intramuscular, and subcutaneous administration were 1.12 ± 0.19 h and 1.49 ± 0.21 h; 1.13 ± 0.13 and 1.79 ± 0.24 h; and 1.04 ± 0.23 h and 2.21 ± 0.23 h, respectively. Significant differences were found between routes for Ka, MAT, Cmax, Tmax, t½(a), and MRT. T > MIC = 50%, considering a MIC of 1 μg/mL, was 11 h for intravenous and intramuscular administration and 12 h for the subcutaneous route. When a MIC of 4 μg/mL is considered, T > MIC = 50% for intramuscular and subcutaneous administration was estimated in 8 h.  相似文献   

13.
The single-dose disposition kinetics of cefonicid were determined in clinically normal lactating goats (n = 6) after intravenous (IV), intramuscular (IM) and subcutaneous (SC) administration of a conventional formulation, and after subcutaneous administration of a long-acting formulation (SC-LA). Cefonicid concentrations were determined by high performance liquid chromatography with ultraviolet detection. The concentration–time data were analysed by noncompartmental pharmacokinetic methods. Steady-state volume of distribution (Vss) and clearance (Cl) of cefonicid after IV administration were 0.14 ± 0.03 L/kg and 0.51 ± 0.07 L/h·kg, respectively. Following IM, SC and SC-LA administration, cefonicid achieved maximum plasma concentrations of 14.46 ± 0.82, 11.98 ± 1.92 and 17.17 ± 2.45 mg/L at 0.26 ± 0.13, 0.42 ± 0.13 and 0.83 ± 0.20 hr, respectively. The absolute bioavailabilities after IM, SC and SC-LA routes were 75.34 ± 11.28%, 71.03 ± 19.14% and 102.84 ± 15.155%, respectively. After cefonicid analysis from milk samples, no concentrations were found above LOQ at any sampling time. From these data, cefonicid administered at 20 mg/kg each 12 hr after SC-LA could be effective to treat bacterial infections in lactating animals not affected by mastitis problems.  相似文献   

14.
The pharmacokinetic properties of ceftriaxone, a third-generation cephalosporin, were investigated in five cats after single intravenous, intramuscular and subcutaneous administration at a dosage of 25 mg/kg. Ceftriaxone MICs for some gram-negative and positive strains isolated from clinical cases were determined. Efficacy predictor (t > MIC) was calculated. Serum ceftriaxone disposition was best fitted by a bicompartmental and a monocompartmental open models with first-order elimination after intravenous and intramuscular and subcutaneous dosing, respectively. After intravenous administration, distribution was fast (t1/2d 0.14 +/- 0.02 h) and moderate as reflected by the volume of distribution (V(d(ss))) of 0.57 +/- 0.22 L/kg. Furthermore, elimination was rapid with a plasma clearance of 0.37 +/- 0.13 L/h.kg and a t1/2 of 1.73 +/- 0.23 h. Peak serum concentration (Cmax), tmax and bioavailability for the intramuscular administration were 54.40 +/- 12.92 microg/mL, 0.33 +/- 0.07 h and 85.72 +/- 14.74%, respectively; and for the subcutaneous route the same parameters were 42.35 +/- 17.62 microg/mL, 1.27 +/- 0.95 h and 118.28 +/- 39.17%. Ceftriaxone MIC for gram-negative bacteria ranged from 0.0039 to >8 microg/mL and for gram-positive bacteria from 0.5 to 4 microg/mL. t > MIC was in the range 83.31-91.66% (10-12 h) of the recommended dosing interval (12 h) for Escherichia coli (MIC90 = 0.2 microg/mL).  相似文献   

15.
Tissue disposition of azithromycin after intravenous (IV) or intramuscular (IM) injection at a single dose rate of 10mg/kg bodyweight were investigated in rabbits using a modified agar diffusion bioassay for determining tissue concentrations. The pharmacokinetic behaviour of azithromycin was characterized by low and sustained plasma concentrations but high and persistent tissue concentrations. Kinetic parameters indicated a high retention of the drug in peripheral compartments. The plasma half-lives after IV and IM administrations were similar being 21.8h and 23.1h, respectively, while the half-lives obtained in tissues after IV and IM administration were at least 1.4 and 1.9 times longer than in plasma, respectively. The highest tissue concentrations were found in bile, liver and spleen whereas the lowest ones were found in skeletal muscle (although they were higher than those in plasma). From the results of the single administration in this study an IM dosage regimen can be proposed that achieves minimum concentrations over 2mg/L in rabbits: three doses of 4-5mg/kg/day would provide suitable therapeutic concentrations in pulmonary tissues over seven days.  相似文献   

16.
17.
The pharmacokinetic disposition and bioavailability of florfenicol (FF) were determined after single intravenous (i.v.) and intramuscular (i.m.) administrations of 25 mg/kg b.w. to ten healthy New Zealand White rabbits. Plasma FF concentrations were determined by high-performance liquid chromatography (HPLC). The plasma pharmacokinetic values for FF were best described by a one-compartment open model. The elimination half-life (t1/2β) was different (p < 0.05) however, the area under curve (AUC) was similar (p > 0.05) after i.v. and i.m. administrations. FF was rapidly eliminated (t1/2β 1.49 ± 0.23 h), slowly absorbed and high (F, 88.75 ± 0.22%) after i.m. injection. In addition, FF was widely distributed to the body tissues (Vss 0.98 ± 0.05 L/kg) after i.v. injection. In this study the time that plasma concentration exceeded the concentration of 2 μg/mL was approximately 6 h. For bacteria with MIC of 2 μg/mL, frequent administration at this dose would be needed to maintain the concentration above the MIC. However, it is possible that rabbit pathogens may have MIC values less than 2 μg/mL which would allow for less frequent administration. Further studies are necessary to identify the range of MIC values for rabbit pathogens and to identify the most appropriate PK-PD parameter needed to predict an effective dose.  相似文献   

18.
The single-dose disposition kinetics of difloxacin were determined in clinically normal lactating goats (n = 6) after intravenous (i.v.), subcutaneous (s.c.) and intramuscular (i.m.) administration of 5 mg/kg. Difloxacin concentrations were determined by high performance liquid chromatography with fluorescence detection. The concentration-time data were analysed by compartmental and noncompartmental kinetic methods. Steady-state volume of distribution (V(ss)) and total body clearance (Cl) of difloxacin after i.v. administration were estimated to be 1.16 +/- 0.26 L/kg and 0.32 +/- 0.05 L/h x kg respectively. Following s.c. and i.m. administration difloxacin achieved maximum plasma concentrations of 1.33 +/- 0.25 and 1.97 +/- 0.40 mg/L at 3.37 +/- 0.36 and 1.79 +/- 1.14 h respectively. The absolute bioavailabilities after s.c. and i.m. routes were 90.16 +/- 11.99% and 106.79 +/- 13.95% respectively. Difloxacin penetration from the blood into the milk was extensive and rapid, and the drug was detected for 36 h after i.v. and s.c. dosing, and for 72 h after i.m. administration.  相似文献   

19.
The pharmacokinetic behaviour and bioavailability of enrofloxacin (ENR) were determined after single intravenous (iv) and intramuscular (im) administrations of 5mg/kg bw to six healthy adult Angora rabbits. Plasma ENR concentrations were measured by high performance liquid chromatography. The pharmacokinetic data were best described by a two-compartment open model. ENR pharmacokinetic parameters were similar (p>0.05) for iv and im administrations in terms of AUC0-infinity, t1/2beta and MRT. ENR was rapidly (t1/2a, 0.05 h) and almost completely (F, 87%) absorbed after im injection. In conclusion, the pharmacokinetic properties of ENR following iv and im administration in Angora rabbits are similar to other rabbit breeds, and once or twice daily iv and im administrations of ENR at the dose of 5mg/kg bw, depending upon the causative pathogen and/or severity of disorders, may be useful in treatment of infectious diseases caused by sensitive pathogens in Angora rabbits.  相似文献   

20.
The pharmacokinetics (PK) of moxifloxacin in healthy white New Zealand rabbits was studied following intravenous (IV) and subcutaneous (SC) administration routes as well as a SC long-acting poloxamer 407 gel formulation (SC-P407). Moxifloxacin concentrations were determined by high-performance liquid chromatography assay with fluorescence detection. Mean half-life for IV, SC and SC-P407 routes was 2.15, 5.41 and 11.09 h. Clearance value after IV dosing was 0.78 l/kg/h. After SC administration, the mean absolute bioavailability was 117% and the C(max) was 1.61 +/- 0.49 mg/l. After SC-P407 administration, the bioavailability was 44% and the C(max) 1.83 was +/-0.62 mg/l. No adverse effects were observed in any of the rabbits following IV, SC and SC-P407 administration of moxifloxacin. Minimal inhibitory concentrations of moxifloxacin against different strains of Staphylococcus aureus from different european countries were used to compute the main pharmacodynamic (PD) surrogate markers of efficacy. The high tolerability of this SC-P407 formulation and the favourable PK behaviour such as the long half-life, acceptable bioavailability and excellent PK-PD ratios achieved indicate that it is likely to be effective in rabbits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号