首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In communal areas of NE Zimbabwe, feed resources are collectively managed, with herds grazing on grasslands during the rainy season and mainly on crop residues during the dry season, which creates interactions between farmers and competition for organic resources. Addition of crop residues or animal manure is needed to sustain agricultural production on inherently poor soils. Objectives of this study were to assess the effect of village-level interactions on carbon and nutrient flows, and to explore their impact on the long-term productivity of different farm types under climate variability. Crop and cattle management data collected in Murewa Communal area, NE Zimbabwe was used together with a dynamic farm-scale simulation model (NUANCES-FARMSIM) to simulate village-level interactions. Simulations showed that grasslands support most cattle feed intake (c. 75%), and that crop residues produced by non-cattle farmers sustain about 30% of the dry season feed intake. Removal of crop residues (0.3-0.4 t C ha−1 yr−1) from fields of non-cattle farmers resulted in a long-term decrease in crop yields. No-access to crop residues of non-cattle farmers increased soil C modestly and improved yields in the long-term, but not enough to meet household energy requirements. Harvest of grain and removal of most crop residues by grazing cattle caused a long-term decline in soil C stocks for all farm types. The smallest decrease (−0.5 t C ha−1) was observed for most fertile fields of cattle farmers, who manure their fields. Cattle farmers needed to access 4-10 ha of grassland to apply 3 t of manure ha−1 yr−1. Rainfall variability intensifies crop-livestock interactions increasing competition for biomass to feed livestock (short-term effect) or to rehabilitate soils (long-term effect). Prolonged dry seasons and low availability of crop residues may lead to cattle losses, with negative impact in turn on availability of draught power, affecting area under cultivation in consecutive seasons until farmers re-stock. Increasing mineral fertiliser use concurrently with keeping crop residues in fertile fields and allocating manure to poor fields appears to be a promising strategy to boost crop and cattle productivity at village level. The likelihood of this scenario being implemented depends on availability of fertilisers and decision of farmers to invest in rehabilitating soils to obtain benefits in the long-term. Adaptation options cannot be blind to what occurs beyond field and farm level, because otherwise recommendations from research and development do not fit the local conditions and farmers tend to ignore them.  相似文献   

2.
Intensive dairy farming results in significant phosphorus (P) emission to the environment. Field data indicates that farm-gate P surplus is highly positive in Finland and strategies to mitigate the surplus are needed. The objectives of this study were to build a P cycle model for dairy farms (1) and to validate the model with independent field data (2). The dairy farm nutrient management model (“Lypsikki”) described in this paper includes three sub-models: (1) soil and crop, (2) dairy herd and (3) manure management. The model is based on empirical regression equations allowing estimations of crop and milk yields in response to increased fertilisation and nutrient supply, respectively. In addition, the model includes a dynamic simulation model of the dairy herd structure and calculation of the farm-gate nutrient surplus. The model was validated with independent annual (average for 1-4 years) farm-gate P surplus data from 21 dairy farms. Model simulations were conducted using two levels of soil productivity, mean (M) and low (L). The model validation indicated a strong relationships between model-predicted and observed farm-gate P surplus: (M: R2 = 0.77 and L: R2 = 0.80). The line bias between the model-predicted and observed data was negligible and insignificant (P > 0.6) suggesting a robustness of the model. The mean biases were relatively high and significant (M: 4.7 and L: 1.8 kg/ha, P < 0.001), but evidently related to overestimation of crop yields that has to be taken into account when using the model on a single farm. The prediction error of the model (observed minus predicted P surplus) was significantly correlated to the difference between simulated and observed P import in feeds (M: R2 = 0.55 and L: R2 = 0.51). This suggests either that all the dairy farms did not fully exploit the possibilities in the crop production or that all the model assumptions are not correct. The effects of purchased feed and fertiliser P and exported milk P (per cow or cropping area) on farm-gate P surplus were of the same magnitude in both observed and simulated data. This implies that the model developed can be used as a management decision tool to find strategies to mitigate P surplus on dairy farms.  相似文献   

3.
《Agricultural Systems》1998,57(4):585-597
Livestock production in the 21st century is moving in the direction of higher animal densities. Accompanying livestock expansion is the challenge of manure handling and utilization. A model for zero-excess phosphorus (ZEP) management has been developed for a dairy-crop operation that is based on multicriteria optimization. ZEP management practices are identified by simultaneously minimizing excess manure phosphorus, feed cost, and cropland requirement. System components include commercial fertilizer application, feed crop production, P storage in the soil profile, surface runoff, procurement of feed supplements, ration formulation, dairy herd structure and dynamics, manure handling, manure storage, and manure spreading. Manure is recycled as a fertilizer nutrient source in crop production. ZEP management practices include a cropping system, nutrient applications, and animal rations which are characterized by low feed cost and maximum use of land resources.  相似文献   

4.
Greenhouse gas emissions from the Canadian beef industry   总被引:1,自引:0,他引:1  
Commodity-specific estimates of the greenhouse gas (GHG) emissions from Canadian agriculture are required in order to identify the most efficient GHG mitigation measures. In this paper, the methodology from the Intergovernmental Panel on Climate Change (IPCC) for estimating bovine GHG emissions, for census years from 1981 to 2001, was applied to the Canadian beef industry. This analysis, which is based on several adaptations of IPCC methodology already done for the Canadian dairy industry, includes the concept of a beef crop complex, the land base that feeds the beef population, and the use of recommendations for livestock feed rations and fertilizer application rates to down-scale the national area totals of each crop, regardless of the use of that crop, to the feed requirements of the Canada’s beef population. It shows how high energy feeds are reducing enteric methane emissions by displacing high roughage diets. It also calculates an emissions intensity indicator based on the total weight of live beef cattle destined for market. While total GHG from Canadian beef production have increased from 25 to 32 Tg of CO2 equiv. between 1981 and 2001, this increase was mainly driven by expansion of the Canadian cattle industry. The emission intensity indicator showed that between 1981 and 2001, the Canadian beef industry GHG emissions per kg of live animal weight produced for market decreased from 16.4 to 10.4 kg of CO2 equiv.  相似文献   

5.
In Ethiopia vertisols cover about 10% of the total land area and is the fourth most important soil used for crop production, accounting for nearly 23% of the total arable land used for crop production. More than half of the vertisols are found in the Central Highlands of Ethiopia, with an altitude of more than 1500 m above mean sea level. The unique physical and chemical properties of these soils and the high rainfall during the main cropping season create severe surface waterlogging problems which hinder crop production activities. Severe surface waterlogging affects the growth of plants by impeding nutrient uptake and creating oxygen deficiency around the root zone. To address this crop production problem, three surface water drainage methods, namely broad bed and furrow (BBF), ditch, and flat (traditional) methods were evaluated using the water balance of the plant root zone and wheat as a test crop. The experiment was conducted at the Ginchi Research Station in the central highlands of Ethiopia over two consecutive seasons (2000 and 2001). The results showed that both the BBF and the ditch drainage methods gave about 33% and 22% more grain yield than the flat treatment, respectively. However, there were no significant differences between BBF and ditch for both grain and biomass yield during both experimental seasons. During both seasons the total water balance (ΔWr) at the root zone especially, in the months of June, July and August on all the treatments was higher than the crop water requirement (ETc) and showed no significant difference between the treatments. Thus, the results of this study indicated that the soil water in the root zone was not significantly altered by surface drainage systems and therefore implies the need of further improvement of the different surface drainage methods regarding improving the waterlogging condition and hence the productivity of the vertisols in the Central Highlands of Ethiopia.  相似文献   

6.
The activities associated with raw milk production on dairy farms require an effective evaluation of their environmental impact. The present study evaluates the global environmental impacts associated with milk production on dairy farms in Portugal and identifies the processes that have the greatest environmental impact by using life cycle assessment (LCA) methodology. The main factors involved in milk production were included, namely: the dairy farm, maize silage, ryegrass silage, straw, concentrates, diesel and electricity. The results suggest that the major source of air and water emissions in the life cycle of milk is the production of concentrates. The activities carried out on dairy farms were the major source of nitrous oxides (from fuel combustion), ammonia, and methane (from manure management and enteric fermentation). Nevertheless, dairy farm activities, which include manure management, enteric fermentation and diesel consumption, make the greatest contributions to the categories of impact considered, with the exception of the abiotic depletion category, contributing to over 70% of the total global warming potential (1021.3 kg CO2 eq. per tonne of milk), 84% of the total photochemical oxidation potential (0.2 kg C2H4 eq. per tonne of milk), 70% of the total acidification potential (20.4 kg SO2 eq. per tonne of milk), and 41% of the total eutrophication potential (7.1 kg eq. per tonne of milk). The production of concentrates and maize silage are the major contributors to the abiotic depletion category, accounting for 35% and 28%, respectively, of the overall abiotic depletion potential (1.4 Sb eq. per tonne of milk). Based on this LCA case study, we recommend further work to evaluate some possible opportunities to improve the environmental performance of Portuguese milk production, namely: (i) implementing integrated solutions for manure recovery/treatment (e.g. anaerobic digestion) before its application to the soil as organic fertiliser during maize and ryegrass production; (ii) improving manure nutrient use efficiency in order to decrease the importation of nutrients; (iii) diversifying feeding crops, as the dependence on two annual forage crops is expected to lead to excessive soil mobilisation (and related impacts) and to insignificant carbon dioxide sequestration from the atmosphere; and (iv) changing the concentrate mixtures.  相似文献   

7.
陕西规模化猪场猪粪与饲料重金属含量研究   总被引:11,自引:0,他引:11  
测定了陕西省11个地区64家规模化养猪场中64个育肥猪饲料和相应的猪粪样品中Cu、Zn、Cr、Ni、As、Pb和Cd等元素的含量,并评估了其潜在的环境风险。结果表明:饲料和猪粪中均含有大量Cu、Zn、Cr、Ni、As、Pb和Cd等,并以Cu和Zn含量最高;饲料中Cu和Zn平均含量在38.33~805.61mg/kg和90.69~1208.19mg/kg之间,猪粪中Cu和Zn平均含量在78.99~1543.28mg/kg和68.72~3011.72mg/kg之间;陕西育肥猪饲料中重金属已经超出国家标准中的浓度限值,其中Cr、Cu、Zn、As、Pb和Cd的最高超标倍数分别为5.44、134.27、10.98、60.08、7.67和110.86,饲料是猪粪重金属的主要来源;限制陕西省规模化养殖场猪粪农用的主要因素是Cu、Zn和Cd含量。估算表明,安康、商洛和杨凌地区猪粪农田施用不足100年土壤Cu或Zn即超标,陕西农田土壤Cd在18.3~99.3年后即达到容许量。  相似文献   

8.
A computer program based on empirical relationships is described. It predicts daily energy and nitrogen utilisation repetitively for sheep of any age, before, during and after weaning; provision is also made for pregnancy, lactation and cold stress. Input information includes: intake, protein content and digestibility of the diet; age, empty body weight, fat content and feeding activity of the sheep; ambient temperature and wind speed; times of shearing and mating.Metabolisable energy from milk and/or dry feed is estimated and energy requirements for maintenance, including the cost of feeding activities and homeostasis in the cold, are deducted to obtain energy balance. The amount of amino acid nitrogen absorbed from the small intestine is estimated, and nitrogen balance in body tissues and wool is calculated from this, allowing for body weight and net energy intake. Potential wool growth is calculated from nitrogen and energy intakes, and potential conceptus growth or milk production is estimated primarily from stage of pregnancy or lactation. The use of nitrogen and energy for these products is assessed and balances of energy and nitrogen in body tissues are then obtained by difference. If achievement of the potential rates of production in pregnant or lactating animals would cause excessive loss of energy or nitrogen from body tissues, production of wool and conceptus or milk is reduced sufficiently to avoid this problem. Gain or loss of body fat and protein, and hence change of empty live weight, are finally derived and the animal parameters are incremented before proceeding to calculation for the next day.Evidence is presented that the model is stable in predicting lifetime performance, and that predictions of growth curves, body composition and various nutritional parameters are reasonably accurate in a variety of circumstances.  相似文献   

9.
This study evaluates energy and carbon use by two types of facilities—conventional confinement and hoop barn-based—within farrow-to-finish pig production systems scaled to produce 5200 and 15,600 market pigs annually in Iowa. The United States is the world’s second largest producer of pork with pig production centered in the state of Iowa. Conventional confinement facilities are typical of pork industry practice in the United States and are characterized by individual gestation stalls and 1200 head grow-finish buildings with slatted concrete floors and liquid manure systems. The hoop barn-based alternative uses group pens in bedded hoop barns for gestation and finishing. Both systems use climate controlled farrowing facilities with individual farrowing crates as well as climate controlled nursery facilities. Feed is the single largest operating resource in pig production systems and feed fed to grow-finish pigs accounts for 63-65% of total energy use in raising pigs. The other stages of production are more reliant on non-renewable fuels and ignoring these stages of production misses 54-80% of the non-renewable fuel use associated with pig production. Taking into account demonstrated performance differences, hoop barn-based pig production requires 2.4% more feed and similar total energy as conventional pig production. Hoop barn-based pig production requires 63-64% less non-renewable fuel and results in 35% less emissions. There is little (<0.3%) energetic advantage to increase the scale of pig production from 5200 to 15,600 market pigs annually. Excluding the gross energy of feedstuffs fed to pigs, producing pigs in Iowa requires 7.2-8.2 MJ/kg live weight and results in emission of 1.0-1.6 kg CO2 equivalents/kg live weight. This compares favorably with published energy assessments of pig production for European systems. Using hoop barns for grow-finish pigs and gestating sows is an effective strategy to reduce direct use of fossil fuels for pig production and may minimize global climate altering emissions.  相似文献   

10.
A computerised model to describe and predict cattle production for any herd size and time period and for a wide range of environments, was developed from a model published by Sanders & Cartwright (1979a, b).The dynamics of the model are based on the flow of energy from vegetative sources to animal products in a single-animal or cow-calf unit, so that the model is appropriate even for smallholder herds. A separate flow of numbers records the dynamically changing herd size and structure.Reproduction and mortality are linked to the nutritional and physiological status of each individual. Their occurrence is triggered stochastically to preserve the integer quality of the herd. In all other respects the model is deterministic.The simulated herd can be of any number, breed, sex and age composition. Breeds are distinguished by mature size, growth rate and milk production: they can be single, dual and/or triple purpose (dairy and/or beef and/or draught). Feeding management can be grazing, stall-feeding or a combination of the two. Routines are included which can simulate different types of management decisions and their repercussions. Functions for the quantification of the model were selected according to preset guidelines, generally following an investigation of conflicting hypotheses.There are eight different output options (tabular and graphical), representing various levels of model resolution.  相似文献   

11.
Analysis of field water balance components provides information necessary to minimize the risk of offsite movement of contaminants from crop production practices or animal manure applications. The objective of this study was to determine the timing and amount of surface runoff and drainage from the root zone for a hillslope in the Ozark Highlands of US. A 0.4 ha watershed with slopes of 8–20% having tall fescue (Festuca arundinacea Schreb.) cover was established in northwestern Arkansas (35°56′W, 93°51′N). Continuous measurements of water balance parameters were made from June 1997 to August 1998. Soil water drainage was estimated as the residual of weekly water balance calculations. Runoff occurred in response to three precipitation events in the winter of 1998 and totaled 30.6 mm of water or 2.6% of the 1185 mm of precipitation that fell at the site during the study period. Storms of comparable or greater intensity during other seasons failed to produce runoff, a result that was likely due to dry soil conditions and taller grass canopy. Drainage through the root zone totaled 117 mm and occurred primarily during an 83-day interval in the winter of 1998. The water balance was dominated by evaporation, which accounted for 91% (1080 mm) of the precipitation. Tall fescue was capable of sustaining relatively high evaporation rates between infrequent summer rains thereby dewatering the soil profile, which was not replenished until winter. Delaying spring animal manure applications in the Ozarks until evaporation has increased and the soil profile has begun to dry would decrease the risk of offsite transport of potential contaminants contained in the manure.  相似文献   

12.
我国规模化养猪场粪便重金属污染特征与农用风险评价   总被引:4,自引:0,他引:4  
系统收集了我国21省市规模化养猪场粪便和11省市猪饲料重金属浓度数据,分析了其污染特征,同时对各省市猪粪总量及其重金属总含量、猪粪安全农用年限进行了估算。结果表明:在21省市中,猪粪中Cu、Zn、As、Cd、Cr平均含量超标省市分别占到95.2%、85.7%、33.3%、20%和5.26%。在其中有猪饲料数据的11省市中,猪饲料Cu含量超标的样品数量占到100%(四川除外,为75%),超标倍数在13.2~49.0之间;猪饲料Zn含量超标的样品数量占到60.0%~100%,超标倍数在1.3~9.5之间。猪粪和饲料间Cu、Zn达到极显著相关水平(p0.01)。猪粪安全农用估算结果表明,限制我国规模化养殖场猪粪农用的主要因素是Cu、Zn和Cd。吉林省、辽宁省和山东省分别连续施用猪粪16、23、91 a,土壤中Cd含量超过国家土壤质量二级标准(GB 15618—2008)。北京连续施用猪粪65、51 a而天津连续施用猪粪53、91 a,土壤Cu和Zn含量分别超过国家土壤环境质量二级标准。建议在生猪养殖及其粪便农用过程中,不仅要从源头严格控制饲料中Cu、Zn等微量元素添加量,还应按照标准严格控制猪粪农田施用量。  相似文献   

13.
Florida ranks first in citrus production, with nearly 68% of all U.S. citrus growing in the season 2005-2006. Most of the citrus groves are located from central to south Florida, and agricultural irrigation permitting is regulated by three of Florida's five water management districts. Most of the permitting for citrus production in Highlands, Polk and Hillsborough counties is conducted by the Southwest Florida Water Management District (SWFWMD), and quantities are based on the District's AGMOD computer program. In 2003, the SWFWMD implemented new permit criteria so that permitted amounts were more representative of actual water use. This paper compares grower reported citrus irrigation water use in Highlands, Polk and Hillsborough counties from 1994 through 2005 with permitted and theoretical irrigation requirements calculated by a daily water balance. Two different sets of crop coefficients (Kc's) developed for citrus in Florida were compared in the daily soil water balance calculation of theoretical irrigation requirements. The percentage of irrigated area considered in this study ranged from 40 to 60% to simulate a range of grower practices. Meteorological data from two weather stations and additional rainfall information from 50 locations within the three counties was used in the water balance. Missing and error values in the meteorological historical record data were filled with weather generators. The multiannual average water consumption (including cold protection water use) from growers ranged from 243 (Hillsborough) to 406 mm (Highlands) and the multiannual average permitted irrigation requirement (without cold protection) ranged from 295 to 557 mm. The simulated gross irrigation requirements under different scenarios of location-Kc-wetted area were variable but mostly lower than the limits established by the district, except for some scenarios in Polk County, whose maximum simulated irrigation value reached 578 mm year−1. In general, permitted limits recommended by the SWFWMD seem to be reasonable for the actual water use by growers in these counties.  相似文献   

14.
We used ISO-compliant life cycle assessment to evaluate the comparative environmental performance of high- and low-profitability commodity and deep-bedded niche swine production systems in the Upper Midwestern United States. Specifically, we evaluated the contributions of feed production, in-barn energy use, manure management, and piglet production to farm-gate life cycle energy use, ecological footprint, and greenhouse gas (GHG) and eutrophying emissions per animal produced and per live-weight kg. We found that commodity systems generally outperform deep-bedded niche systems for these criteria, but that significant overlap occurs in the range of impacts characteristic of high- and low-profitability production between systems. Given the non-optimized status of current deep-bedded niche relative to commodity production, we suggest that optimizing niche systems through improvements in feed and sow herd efficiency holds significant environmental performance improvement potential. Drivers of impacts differed between commodity and deep-bedded niche systems. Feed production was the key consideration in both, but proportionally more important in niche production due to lower feed use efficiencies. Liquid manure management in commodity production strongly influenced GHG emissions, whereas solid manure management increased eutrophication potential due to outdoor storage in deep-bedded niche production. We further observe an interesting but highly imperfect relationship between economic and environmental performance measures, where profitability tracks well with resource (in particular, feed) throughput, but only indirectly with emissions intensity.  相似文献   

15.
In four communities in the Peruvian Andes, 56 farmers were interviewed every three months over a period of one year. Information linked to milk and cattle production such as activities, inputs (labour, means of production, capital) and outputs (milk, cheese, animals) were recorded using a closed-ended questionnaire. The communities were divided into two groups with low (LC) and high (HC) level of dependence on income from milk and animal sales. The survey results showed that cattle production on the LC farms was based on less land and a smaller herd (3.32 ha/farm, 1.06 lactating cows) than on HC farms (10.28 ha/farm, 4.19 lactating cows). The data from the survey and the results of the nutritional analyses of 74 feed samples were introduced into a model that applied linear programming techniques in order to estimate the farm household income under the current production systems and evaluate the economic impact of improved forage varieties for hay production. Furthermore, the economic viability of other changes in fodder and herd management was tested. Both groups were characterised by a dual-purpose system generating a gross income from the sale of both, milk and live animals in the amount of -21 (LC) and +1057 US$/farm and year (HC). Due to higher production costs for forages and better access to markets, LC communities were characterised by an integrated crop–livestock system whereas in the HC group income was mainly based on livestock. Introduction of improved and fertilized barley for hay production, was estimated to increase the annual farm income to 127 and 1257 US$ for LC and HC, respectively. This increase was accompanied by an increment of the animal number. Maintaining the animal number but increasing the milk production/cow by feeding additional forage was a less profitable option generating 50 and 1221 US$ of income per farm and year for LC and HC, respectively. The production of hay was limited by high costs (external labour) in LC communities and the restricted availability of family labour in the HC group. A scenario based on the use of improved cow genotypes led to the highest estimated annual farm income for HC communities (1280 US$) but was less favourable for LC. The modelling results showed that the best development strategy depends on various factors such as production costs, access to the markets and to irrigation and availability of different feed resources.  相似文献   

16.
Annual carbon and nitrogen loadings for a furrow-irrigated field   总被引:1,自引:0,他引:1  
Evaluations of agricultural management practices for soil C sequestration have largely focused on practices, such as reduced tillage or compost/manure applications, that minimize soil respiration and/or maximize C input, thereby enhancing soil C stabilization. Other management practices that impact carbon cycling in agricultural systems, such as irrigation, are much less understood. As part of a larger C sequestration project that focused on potential of C sequestration for standard and minimum tillage systems of irrigated crops, the effects of furrow irrigation on the field C and N loading were evaluated. Experiments were conducted on a laser-leveled 30 ha grower's field in the Sacramento valley near Winters, CA. For the 2005 calendar year, water inflow and runoff was measured for all rainfall and irrigation events. Samples were analyzed for C and N associated with both sediment and dissolved fractions. Total C and N loads in the sediment were always higher in the incoming irrigation water than field runoff. Winter storms moved little sediment, but removed substantial amounts of dissolved organic carbon (DOC), or about one-third of the total C balance. Despite high DOC loads in runoff, the large volumes of applied irrigation water with sediment and DOC resulted in a net increase in total C for most irrigation events. The combined net C input and N loss to the field, as computed from the field water balance, was 30.8 kg C ha−1 yr−1 and 5.4 kg N ha−1 yr−1 for the 2005 calendar year. It is concluded that transport of C and N by irrigation and runoff water should be considered when estimating the annual C field balance and sequestration potential of irrigated agro-ecosystems.  相似文献   

17.
To reduce (P) surpluses on dairy farms and thereby the risk of P losses to natural waters we studied different management alternatives by a nutrient balance model described in the companion paper. The strategies evaluated mitigating the P surpluses were: mineral P fertilisation, dietary mineral P supplementation, replacement rate, animal density, production level, feeding intensity, dietary P concentration and nutrient efficiency in crop production. Responses to several interventions (e.g. mineral P fertilisation, purchased feed P, replacement rate) were similar to those observed in Finnish field studies. Reducing or completely giving up the use of purchased mineral P fertilisers was the most efficient measure to reduce P surplus. The slope between the amount of mineral fertilisers and P surplus was 0.98-0.99 (in the field data 1.0). Increased animal density resulted in a greater P surplus, but the slope between P input from purchased feed and surplus was considerably smaller (0.65) than that of P fertilisation. Increasing milk yield with improved genetic potential of the cows would have minimal effects on P surplus per unit of product, but it would increase P surplus per hectare. When the intensity of energy and protein feeding was increased, P surplus rose markedly both per unit of product and hectare. This is (1) due to increased dietary P concentration and (2) due to smaller marginal production responses than those calculated from feeding standards. Reducing dietary P concentration by constraining P excess per kg milk in least-cost ration formulation improved P efficiency in milk production and dairy farming system. However, feed cost increased as low P energy (sugar-beet pulp) and protein (soybean meal) supplements are more expensive than cereal grains or rapeseed feeds. Improving the nutrient use efficiency in crop production had a strong influence in the whole-farm efficiency and P surplus. The modelling results showed that Finnish dairy farms have a great potential to improve P efficiency and reduce P losses to the environment, even by increasing production intensity (milk/ha). It is concluded that the most cost-effective scenario to mitigate P surpluses at a dairy farm would be to reduce or give up the use of mineral P as fertilisers and supplements, and to improve the use of present soil P reserves.  相似文献   

18.
A life cycle assessment (LCA) model was developed to analyze the environmental impacts per head of swine for typical feed rations of Northern Great Plains (NGP) US grow-finish swine production. The all-inclusive ‘field to gate’ approach incorporated steps ranging from corn and soybean production to shipping the market weight pig to a slaughtering facility. Feed production scenarios included: (1) a standard feed diet of 72% corn and 28% soymeal using 100% synthetic fertilizer; (2) standard feed diet using 40% manure as fertilizer; (3) modified feed diet using dry distillers gains with solubles (DDGS), with 100% DDGS allocation towards ethanol production; and (4) modified feed diet with 50% DDGS allocation towards ethanol production. For the standard NGP feed diet, enteric emissions and feed production were the two largest contributors towards climate change impacts, while feed production further resulted in significant contributions towards human health damage (44.6%), ecosystem diversity (67.4%), and resource availability (75.0%). DDGS incorporation assuming 100% allocation reduced corn and soymeal inputs considerably, resulting in overall decrease in impacts associated with climate change (−2.7%), terrestrial acidification (−7.1%), and both marine (−14.6%) and freshwater eutrophication (−22.7%); however terrestrial ecotoxicity increased (+22.9%) due to natural gas drying. 50% DDGS allocation increased all impact categories, with the greatest change found for terrestrial ecotoxicity (48.4%). The study results highlight the significant LCA impact contributions associated with feed during grow-finish swine production, and the benefits associated with DDGS incorporation; however, LCA benefits were realized only if 100% DDGS allocation was applied towards ethanol production.  相似文献   

19.
Greenhouse gas emissions from the Canadian dairy industry in 2001   总被引:1,自引:0,他引:1  
In order to demonstrate the impact of an increase in production efficiency on greenhouse gas (GHG) emissions, it is important to estimate the combined methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2) emissions per unit of production. In this study, we calculated the GHG emissions from the Canadian dairy industry in 2001 as a fraction of the milk production and per dairy animal. Five regions were defined according to the importance of the dairy industry. N2O and CO2 emissions are directly linked with areas allocated to the dairy crop complex which includes only the crop areas used to feed dairy cattle. The dairy crop complex was scaled down from sector-wide crop areas using the ratios of dairy diet to national crop production of each crop type. Both fertilizer application and on-farm energy consumption were similarly scaled down from sector-wide estimates to the dairy crop complex in each region. The Intergovernmental Panel on Climate Change (IPCC) methodology, adapted for Canadian conditions, was used to calculate CH4 and N2O emissions. Most of the CO2 emission estimates were derived from a Fossil Fuel for Farm Fieldwork Energy and Emissions model except for the energy used to manufacture fertilizers. Methane was estimated to be the main source of GHG, totalling 5.75 Tg CO2 eq with around 80% coming from enteric fermentation and 20% coming from manure management. Nitrous oxide emissions were equal to 3.17 Tg CO2 eq and carbon dioxide emissions were equal to 1.45 Tg. The GHG emissions per animal were 4.55 Mg CO2 eq. On an intensity basis, average GHG emissions were 1.0 kg CO2 eq/kg milk. Methane emissions per kg of milk were estimated at 19.3 l CH4/kg milk which is in agreement with Canadian field measurements.  相似文献   

20.
A life cycle assessment (LCA) was conducted to estimate whole-farm greenhouse gas (GHG) emissions from beef production in western Canada. The aim was to determine the relative contributions of the cow-calf and feedlot components to these emissions, and to examine the proportion of whole-farm emissions attributable to enteric methane (CH4). The simulated farm consisted of a beef production operation comprised of 120 cows, four bulls, and their progeny, with the progeny fattened in a feedlot. The farm also included cropland and native prairie pasture for grazing to supply the feed for the animals. The LCA was conducted over 8 years to fully account for the lifetime GHG emissions from the cows, bulls and progeny, as well as the beef marketed from cull cows, cull bulls, and progeny raised for market. The emissions were estimated using Holos, a whole-farm model developed by Agriculture and Agri-Food Canada. Holos is an empirical model, with a yearly time-step, based on the Intergovernmental Panel on Climate Change methodology, modified for Canadian conditions and farm scale. The model considers all significant CH4, N2O, and CO2 emissions and removals on the farm, as well as emissions from manufacture of inputs (fertilizer, herbicides) and off-farm emissions of N2O derived from nitrogen applied on the farm. The LCA estimated the GHG intensity of beef production in this system at 22 kg CO2 equivalent (kg carcass)−1. Enteric CH4 was the largest contributing source of GHG accounting for 63% of total emissions. Nitrous oxide from soil and manure accounted for a further 27% of the total emissions, while CH4 emissions from manure and CO2 energy emissions were minor contributors. Within the beef production cycle, the cow-calf system accounted for about 80% of total GHG emissions and the feedlot system for only 20%. About 84% of enteric CH4 was from the cow-calf herd, mostly from mature cows. It follows that mitigation practices to reduce GHG emissions from beef production should focus on reducing enteric CH4 production from mature beef cows. However, mitigation approaches must also recognize that the cow-calf production system also has many ancillary environmental benefits, allowing use of grazing and forage lands that can preserve soil carbon reserves and provide other ecosystems services.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号