首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The immunostimulatory role of carotenoid extract from shrimp processing discards was evaluated by feeding common carp fingerlings with a diet containing carotenoid extract for 21 weeks at 100 and 200 mg kg?1 astaxanthin levels. Haemoglobin content was significantly (P < 0.05) higher in the blood of fish fed with carotenoid diet (>8.1 g dL?1) compared with that from fish fed with carotenoid deficient diet (6.86 g dL?1) and also leukocyte counts were higher (P < 0.05). No differences (P > 0.05) were observed in total serum protein, globulin level and albumin‐globulin ratio, but albumin content was higher (P < 0.05). Respiratory burst activity was significantly (P < 0.05) higher, the serum lysozyme activity almost doubled and the serum bactericidal activity was significantly increased when the fish were fed with diet containing 200 mg kg?1 of astaxanthin but no significant differences were observed in serum trypsin inhibitory activity. There was a significant (P < 0.05) increase in leukocyte myeloperoxidase activity due to dietary carotenoids. Challenging fish with Aeromonas hydrophila after the feeding period resulted in 50% mortality in the control group while in the group fed with diet containing 100 mg kg?1 astaxanthin, the mortality rate was 15%. No mortality and even symptoms of infection was not observed in the group fed with diet containing 200 mg kg?1 of astaxanthin. The study indicated that carotenoid extract from shrimp processing discards can effectively be used as immunostimulants in aquaculture of carps and dietary carotenoids were found to enhance various immune defence mechanisms and also provide protection against the infection of pathogen A. hydrophila.  相似文献   

2.
This study evaluated the effect of dietary thiamin on growth performance, feed utilization and non‐specific immune response for juvenile Pacific white shrimp, Litopenaeus vannamei. Six isonitrogenous and isolipidic practical diets were formulated with graded thiamin levels of 6.9, 32.7, 54.2, 78.1, 145.1 and 301.5 mg kg?1 of dry diet, respectively. Each diet was randomly assigned to triplicate groups of 30 juvenile shrimp and provided four times each day to apparent satiation. Weight gain (WG) and specific growth rate (SGR) of the shrimp were significantly influenced by the dietary thiamin levels, the maximal WG and SGR occurred at 54.2 mg kg?1 dietary thiamin level. However, with further increase in dietary thiamin level from 54.2 to 301.5 mg kg?1, the WG and SGR significantly decreased. Shrimp fed the 54.2 mg kg?1 thiamin diet exhibited higher feed efficiency, protein efficiency ratio and protein productive value than those fed the other diets. Dry matter and protein content in whole body were significantly affected by the dietary thiamin levels. Thiamin concentration in hepatopancreas significantly increased when the dietary thiamin level increased from 6.9 to 145.1 mg kg?1. The total protein, glucose, triacylglycerol and cholesterol contents in hemolymph were not significantly affected by the dietary thiamin levels. Dietary thiamin had significantly influenced superoxide dismutase, catalase and lysozyme activities in hemolymph. Results of this study indicated that the optimal dietary thiamin requirements estimated using a two‐slope broken‐line model based on WG and thiamin concentration in hepatopancreas were 44.66 and 152.83 mg kg?1, respectively.  相似文献   

3.
Effects of dietary cholesterol levels on moulting performance, lipid accumulation, ecdysteroid concentration and immune enzymes activities of juvenile Eriocheir sinensis were investigated. Crabs were fed with feeds contained various cholesterols of 1100, 2100 and 3200 mg kg?1 in both paddy fields and laboratory experiments. In paddy fields trial, the crabs fed with diets contained 3200 mg kg?1 cholesterol achieved higher growth rate than those fed with diets contained no supplemental cholesterol (1100 mg kg?1). In laboratory trial, moulting frequencies of crabs fed with diets contained 3200 mg kg?1 cholesterol were higher than those of crabs fed with diets contained no supplemental cholesterol from the 6th to 10th moult. Further laboratory experiment indicated that intermoults of crabs fed with diets contained 3200 mg kg?1 cholesterol significantly shortened compared with crabs fed with the basal feeds (1100 mg kg?1 cholesterol). In the intermoult, total lipid content, ecdysterone concentration and three immune enzymes in crabs were increased with the increment of dietary cholesterol levels between the 7th and the 8th moult in laboratory experiments. Taken together, dietary cholesterol not only enhanced moulting performances of growth, survival and moult frequency, but also enhanced total lipid storage, ecdysterone concentration and three immune enzymes activities in the intermoult period.  相似文献   

4.
A 17‐week feeding trial was carried out to evaluate the effects of dietary L‐carnitine level in beluga, Huso huso. A total of fish averaging 1247 ± 15.6 g (mean ± SD) were randomly distributed into 18 fibreglass tanks, and each tank holding 10 fish was then randomly assigned to one of three replicates of six diets with 50, 150, 350, 650, 950 and 1250 mg L‐carnitine kg?1 diet. At the end of 17 weeks of feeding trial, average weight gain (WG), feed efficiency (FE), protein efficiency ratio (PER) and condition factor (CF) of fish fed 350 mg kg?1 diet were significantly (P < 0.05) higher than those of fish fed 50, 150, 950 and 1250 mg kg?1 diets. WG, FE, PER and CF of beluga fed 650 mg kg?1 diet were also significantly higher than those of fish fed 50, 950 and 1250 mg kg?1 diets. Whole body and muscle protein were significantly improved by the elevation of dietary L‐carnitine level up to 350 mg kg?1. Liver superoxide dismutase and glutathione peroxidase activities of fish fed 350 and 650 mg kg?1 diets were significantly higher than those of fish fed 50, 950 and 1250 mg kg?1 diets. The dietary L‐carnitine level of 350–650 mg kg?1 diet could improve growth performance, feed utilization, protein‐sparing effects of lipid, antioxidant defence system and reproductive success. Polynomial regression of WG suggested that the optimum dietary L‐carnitine level was 480 mg kg?1 diet. Therefore, these results may indicate that the optimum dietary L‐carnitine could be higher than 350 but <650 mg kg?1 diet in beluga reared in intensive culture conditions.  相似文献   

5.
A 9‐week feeding trial was conducted to determine the optimal dietary vitamin C requirement and its effects on serum enzymes activities and bacterial resistance in the juvenile yellow drum Nibea albiflora (initial weight 33.2 ± 0.10 g). Six practical diets were formulated containing vitamin C 2.1, 45.3, 89.6, 132.4, 178.6 and 547.1 mg kg?1 diet supplied as l ‐ascorbyl‐2‐monophosphate. The fish fed 547.1 mg kg?1 diet showed a significantly higher survival than that fed 2.1 mg kg?1 diet. The weight gains and specific growth rate of the fish fed 2.1 mg kg?1 diet were significantly lower than those of the fish fed 89.6–547.1 mg kg?1 diets. The liver vitamin C concentration firstly increased with increasing dietary vitamin C supply from 2.1 to 178.6 mg kg?1 diet and then stabilized. The serum superoxide dismutase activities of the fish fed 547.1 mg kg?1 diet were significantly lower than those of the fish fed 2.1–89.6 mg kg?1 diet. The fish fed 2.1 mg kg?1 diet had a significantly higher alkaline phosphatase activity than those in the other groups except the 45.3 mg kg?1 group. Fish that received diets containing vitamin C at 547.1 mg kg?1 had significantly higher nitro blue tetrazolium and lysozyme activity, and fish that received diets containing vitamin C at 45.3–547.1 mg kg?1 exhibited resistance against Vibrio alginolyticus infection. The dietary vitamin C requirement of the juvenile yellow drum was established based on broken‐line model of weight gain to be 142.2 mg l ‐ascorbyl‐2‐monophosphate kg?1 diet.  相似文献   

6.
A feeding trial was conducted to evaluate the effects of dietary magnesium on the growth, carapace strength, tissue and serum Mg concentration of soft‐shelled turtles, Pelodiscus sinensis (Wiegmann). Juvenile soft‐shelled turtles of approximate 5.4 g body weight were fed diets with seven levels of Mg (48, 206, 369, 670, 955, 1195 and 1500 mg Mg kg?1) for eight weeks. No significant difference (P ≥ 0.05) was found in weight gain (WG), feed conversion ratio or protein efficiency ratio among treatments. However, the WG of turtles continued to increase with increasing dietary Mg levels up to 670 mg kg?1, beyond which the WG levelled off. The plasma alkaline phosphatase activity and the muscle, bone Mg concentrations of the turtles increased with the increasing dietary Mg levels between 48 and 955 mg kg?1, beyond which the tissue Mg concentrations remained relatively constant. Furthermore, the carapace strengths of turtles fed with the control diet of 48 mg Mg kg?1 were significantly weaker (P < 0.05) than that of turtles fed with diets containing higher Mg levels. Based on a broken‐line modelling analysis, the required dietary Mg level for the optimal WG of juvenile soft‐shelled turtles was estimated to be approximately 650 mg kg?1. By contrast, the required dietary Mg levels for turtles to reach the optimal muscle and bone Mg concentrations were 1050 and 1000 mg kg?1 respectively. The required dietary Mg level for maximal alkaline phosphatase activity was approximately 980 mg kg?1.  相似文献   

7.
A study was conducted to investigate effects and interactions of magnesium (Mg) and vitamin E (VE) on growth performance, body composition, hepatic antioxidant capacity and serum biochemistry parameters of juvenile Japanese seabass Lateolabrax japonicus under oxidative stress condition. Fish (initial average body weight of 6.10 ± 0.20 g) were fed 9 oxidized oil diets supplemented with 3 grade levels of Mg (0, 520 and 1570 mg kg?1 diet) and VE (0, 60 and 200 mg kg?1 diet) for 8 weeks in freshwater. The results showed that diets supplemented 520 mg kg?1 Mg and/or 60 mg kg?1 VE had highest growth and muscle lipid content. There were highest total superoxide dismutase, catalase, glutathione peroxidase activities and lowest malondialdehyde content in liver of fish fed diets supplemented 520 mg kg?1 Mg and/or 60 mg kg?1 VE. Contrary to Mg concentrations, Ca concentrations and Ca/Mg ratio in whole body were inversely related to dietary Mg levels. However, combined deficiency or excess of dietary Mg and VE led to the decrease of hepatic antioxidant capacity, body lipid deposition and growth of Japanese seabass under oxidative stress condition.  相似文献   

8.
Vitamin E supplement is important in protecting lipid oxidation and enhancing immunity of aquatic animals. A 10‐week feeding trial was conducted to evaluate the effect of dietary lipid and vitamin E on juvenile Chinese mitten crab Eriocheir sinensis. The experimental diets included three levels of vitamin E (0, 100 and 300 mg kg?1) and two levels of lipid (6% and 9%). The 9% lipid diet significantly enhanced the body lipid of crabs compared with the 6% lipid diet. The vitamin E concentration of hepatopancreas increased with the increase in vitamin E in the diets regardless of dietary lipid levels. The hepatopancreas fatty acids, especially polyunsaturated fatty acid and highly unsaturated fatty acid, were significantly enhanced by vitamin E supplement or 9% dietary lipid. Vitamin E supplement significantly increased the total antioxidant capacity, superoxide dismutase, lysozyme and phenoloxidase activities of crabs compared with those fed the diets without vitamin E supplement. The hepatopancreas malondialdehyde of crabs fed 100 mg vitamin E kg?1 was significantly lower than those fed 0 or 300 mg vitamin E kg?1. The phenoloxidase activity of crabs fed the 9% lipid diet was significantly higher than those fed 6% lipid, irrespective of vitamin E levels. Vitamin E supplementation increased the bacterial resistance of juvenile crab. This study indicates that dietary lipid and vitamin E supplement do not affect crab growth and survival, but vitatmin E supplement at 100 mg kg?1 can enhance immunity and antioxidant capacity of crab fed 6% or 9% dietary lipids.  相似文献   

9.
An 8‐week feeding trial was conducted to evaluate the effects of ascorbic acid (AsA), in the form of l ‐ascorbyl‐2‐polyphosphate (LAPP) on growth performance, body composition, antioxidative capacity and salinity stress tolerance of juvenile Pacific white shrimp, Litopenaeus vannamei. Five practical diets (46% crude protein and 7.6% lipid) supplemented with graded levels of AsA (14.64, 48.55, 84.98, 308.36 and 639.27 mg kg?1 diet) were fed to five replicate groups of L. vannamei (mean initial wet weight 0.57 g). No significant differences were found on growth performance among all treatments. However, whole body lipid content significantly decreased with dietary AsA levels increasing. Activities of total antioxidant capacity, glutathione reductase and glutathione peroxidase were significantly affected by dietary AsA levels. Shrimp fed LAPP‐free diet had higher malondialdehyde content than those fed the diets supplemented with LAPP. Dietary AsA levels higher than 308.36 mg kg?1 diet increased the survival of shrimps after 1, 2 and 3 h of acute salinity change. Broken‐line regression analysis on survival after 3 h of salinity stress and second‐degree polynomial regression analysis on glutathione reductase data indicated that the optimal dietary AsA requirement of L. vannamei was estimated to be 306.39, 319.75 mg kg?1 diet respectively.  相似文献   

10.
A feeding trial was conducted to evaluate the dietary vitamin A requirement of the soft‐shelled turtle Pelodiscus sinensis. Turtles with an approximate body weight of 6.8 g were fed diets containing 0–4.58 mg kg?1 (15 251 IU) vitamin A (retinyl acetate) for 8 weeks. Turtles fed diets without vitamin A showed the lowest growth performance. The animals gradually gained weight when dietary vitamin A increased from 0 to 3.6 mg kg?1. Liver vitamin A gradually increased with supplementation of dietary vitamin A of up to 2.7 mg kg?1. Beyond this concentration, the vitamin A in the liver significantly increased. Data analysis using a polynomial regression or exponential model showed that the estimated dietary vitamin A requirement for juvenile soft‐shelled turtles based on weight gain, red blood cell count and liver vitamin A measurements was 3.48, 2.84 and 2.58 mg kg?1, respectively.  相似文献   

11.
The valine requirement of juvenile tiger shrimp, Penaeus monodon Fabricius, was determined. Shrimp postlarvae, PL20, with a mean weight of 14 mg, were randomly distributed in 36 oval 40-L capacity fibreglass tanks at 10 shrimp per tank in a flow-through seawater system and reared for 8 weeks. Postlarvae were fed amino acid test diets containing 400 g kg?1 protein with casein and gelatine as intact sources of protein. Crystalline L-amino acids were supplemented to simulate the amino acid profile of the shrimp muscle except valine. Valine was added in graded levels to obtain 7, 10, 13, 16, 19 and 22 g kg?1 of the diet or 18, 25, 33, 40, 48 and 55 g kg?1 of dietary protein. At termination of the feeding experiment, growth and survival were determined and nutritional deficiency signs noted. The relationship between weight gain and dietary valine level was analysed by the broken-line regression method to derive the valine requirement. The dietary valine requirement of Penaeus monodon postlarvae was found to be 13.5 g kg?1 of the diet or 34 g kg?1 of dietary protein. This value was lower than the level found in the shrimp tissue.  相似文献   

12.
A feeding trial was conducted to determine the adequate dietary ascorbic acid (AsA) levels and the effects on growth, meat quality and antioxidant status of sea cucumber (10.04 ± 0.06 g), Apostichopus japonicus. l ‐ascorbyl‐2‐polyphosphate (35% AsA equivalent) was supplemented separately to the basal diet to obtain five AsA levels, 0, 598, 1473, 4676 and 14340 mg kg?1 diet respectively. After 60‐day feeding trial, the sea cucumbers fed diets containing 598 and 1473 mg AsA kg?1 showed significantly higher (< 0.05) body weight gain and specific growth rate values than the sea cucumbers fed control diets. The sea cucumbers fed diets containing 1473 and 4676 mg AsA kg?1 showed significantly higher (< 0.05) hydroxyproline contents than those of the sea cucumbers fed diets containing 0 and 598 mg AsA kg?1. Antioxidant enzymes such as total antioxidant capacity, superoxide dismutase and glutathione peroxidase showed increasing trends with the increasing dietary AsA levels, but no significant differences (> 0.05) were observed when the sea cucumbers fed diets with high dietary AsA levels. The content of malondialdehyde had the opposite trend of antioxidant enzymes. In conclusion, the adequate dietary AsA level focusing on growth performance of sea cucumber is between 598 and 1473 mg kg?1 diet. Furthermore, high level of dietary AsA (between 598 and 4676 mg kg?1 diet) improved meat quality and antioxidant status.  相似文献   

13.
A growth trial was conducted to estimate the optimum requirement of dietary zinc (Zn) for grass carp (Ctenopharyngodon idella). Triplicate groups of grass carp (3.97 ± 0.05 g) were fed diets containing graded levels (13, 25, 34, 53, 89 and 135 mg kg?1) of Zn for 8 weeks. Grass carp fed with dietary Zn levels higher than 34 mg kg?1 significantly increased final body weight, weight gain and specific growth rate (P < 0.05). For body composition, fish fed with dietary Zn levels higher than 53 mg kg?1 significantly decreased the moisture contents but increased the lipid contents of whole body and liver. Whole body, scales, vertebrae and liver mineralization were all affected significantly (P < 0.05) by dietary Zn levels. Zn contents in whole body, scales, vertebrae and plasma were linearly increased up to the 53 mg kg?1 dietary Zn and then remained stable beyond this level. Grass carp fed with dietary Zn levels higher than 53 mg kg?1 significantly increased triacyglyceride and total cholesterol contents and plasma alkaline phosphatase activity in plasma (P < 0.05). Broken‐line analysis indicated that 55.1 mg kg?1 dietary Zn was required for maximal tissue storage and mineralization as well as optimal growth of grass carp.  相似文献   

14.
Ethoxyquin (EQ) is the most common synthetic antioxidant used for preventing rancidity in fish foodstuffs. However, literature related to the effects of dietary EQ on performance of fish was limited. The present study was conducted to investigate the effects of EQ on performance and EQ residue in muscle of juvenile Japanese seabass Lateolabrax japonicus and to estimate the optimal EQ concentration in the diet. Graded levels [0 (control), 50, 150, 450 and 1350 mg EQ kg?1 diet] of EQ were added to the basal diet, resulting in five dietary treatments in the experiment. Each diet was fed to triplicate groups of seabass (initial body weight 8.01 ± 0.76 g) for 12 weeks in floating sea cages (1.5 × 1.5 × 2.0 m, 30 fish per cage). Survival ranged from 78.9 to 86.7%, and was irrespective of dietary EQ levels. The specific growth rate (SGR) of fish fed diets supplemented with ≤50 mg kg?1 EQ had significantly (< 0.05) higher SGR than fish fed diets supplemented with ≥150 mg kg?1 EQ, the highest SGR was observed in fish fed diet with 50 mg kg?1 EQ supplementation. Feed intake (FI) and feed efficiency (FE) were not significantly (> 0.05) different among dietary treatments. Fish fed diets with 50 and 1350 mg kg?1 EQ had a significant (< 0.05) lower body lipid content than fish in the control group. Muscle EQ level significantly increased when dietary EQ increased. Optimal EQ concentration estimated by polynomial regression based on maximum growth of juvenile Japanese seabass was 13.78 mg kg?1 diet.  相似文献   

15.
Despite carotenoids and essential fatty acids seem to play important roles in fish reproduction, no studies have yet been conducted to determine the effect of dietary carotenoids on gilthead seabream broodstock performance and their relation as antioxidants with dietary n‐3 highly unsaturated fatty acid (HUFA) levels. In addition, the high cost of synthetic sources of carotenoids is leading to the search for new natural carotenoid sources such as paprika oleoresin. Four experimental diets containing two combined levels of carotenoids from paprika oleoresin (40 and 60 mg kg?1) and n‐3 HUFA (25 and 40 g kg?1) were respectively fed to triplicate groups of gilthead seabream (Sparus aurata) broodfish. Elevation of n‐3 HUFA dietary levels from 25 to 40 g kg?1 significantly improved gilthead seabream broodstock performance in terms of egg viability, hatching rates and fecundity. Besides, it markedly increased egg contents in HUFAs which play important energetic and structural roles and improve embryo development. Both arachidonic acid and eicosapentaenoic acid (20:5n‐3) egg contents were more readily affected by dietary n‐3 HUFA than docosahexaenoic acid. HUFA levels did not caused any negative effect suggesting an optimized content of antioxidants in broodstock diets. Increase in dietary carotenoids from 40 to 60 mg kg?1 increased carotenoid contents in eggs and significantly improved egg fertilization rates suggesting an important sperm cell’s protective role by reducing the risk of lipid peroxidation which is detrimental for sperm motility. The increased inclusion of dietary paprika oleoresin enhanced egg carotenoid deposition and improved fish reproductive performance, denoting the high nutritional value of this product as a source of carotenoids for broodstock of this species.  相似文献   

16.
An 8‐week study was conducted to determine folic acid requirement and its effect on antioxidant capacity and immunity in juvenile Chinese mitten crab Eriocheir sinensis (Milne‐Edwards, 1853), followed by a challenge assay with the pathogen Aeromonas hydrophila for 2 weeks. Folic acid was added to a basal diet at seven levels (0, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0 mg folic acid kg?1 diet), and a diet free of folic acid and vitamin B12 was also included as a control. Crabs were fed twice daily in 32 tanks with 7.76–8.17 mg oxygen L?1, 25.0–31.0 °C and 7.5–8.3 pH. Growth and feed efficiency were significantly greater in crabs fed ≥2.0 mg folic acid kg?1, but not significantly different between crabs fed diets >2.0 mg folic acid. The superoxide dismutase activity and glutathione S‐transferase activity were highest in crabs fed ≥2.0 mg folic acid kg?1, followed by those fed 0.5 and 1.0 mg folic acid kg?1, and the control diet. The malondialdehyde content was highest in crabs fed the control diet, followed by those fed 0 mg folic acid kg?1, and the lowest value occurred in those fed ≥0.5 mg folic acid kg?1. Phenoloxidase activity and total haemocytes were significantly higher in crabs fed ≥2.0 mg folic acid kg?1 than other diets. Crabs fed 2.0 mg folic acid kg?1 had the highest lysozyme, acid phosphatase and alkaline phosphatase activities but the lowest cumulative mortality. The optimum dietary folic acid requirement by E. sinensis was estimated at 2.29–2.90 mg kg?1 diet.  相似文献   

17.
The aim of this work was to evaluate the effects of Haematococcus pluvialis (H. pluvialis) (carotenoid source) and H. pluvialis plus soy lecithin on development, carotenoid content, and pigmentation of shrimp (Litopenaeus vannamei). One hundred and eighty shrimps (7.8 g) were divided in six tanks (n = 30) and fed with control food, H. pluvialis, and H. pluvialis plus soy lecithin for 2 weeks. Carotenoids were extracted with acetone and quantified by UV–vis spectrophotometry, and astaxanthin was determined by high‐performance liquid chromatography. Colour was analysed by colorimetry. Lecithin/H. pluvialis group presented higher survival rate (100%) when compared to control group (93.3%). Haematococcus pluvialis and lecithin/H. pluvialis groups presented higher red‐like colour (a* 16.4 and 19.9) than control (a* 20.6). Lecithin/H. pluvialis group presented higher carotenoids content (8.2 mg kg?1 muscle, 26.8 mg kg?1 exoskeleton) and astaxanthin (8.5 mg kg?1 muscle, 23.3 mg kg?1 exoskeleton) than control (carotenoids: 4.2 mg kg?1 muscle, 12.3 mg kg?1 exoskeleton; astaxanthin: 3.2 mg kg?1 muscle, 8.1 mg kg?1 exoskeleton). Feeding with 60 ppm carotenoids (from H. pluvialis) during 2 weeks was sufficient for favouring red‐like pigmentation in shrimp, and lecithin increased astaxanthin content only in exoskeleton.  相似文献   

18.
A 12‐week feeding trial was conducted to evaluate the effects of dietary vitamin C on growth performance, antioxidant status and innate immune responses in juvenile yellow catfish, Pelteobagrus fulvidraco. Six isonitrogenous and isolipidic diets (44% crude protein and 7% lipid) were formulated to contain six graded dietary vitamin C (ascorbate‐2‐poly‐ phosphate, ROVIMIX® STAY‐C® 35) levels ranging from 1.9 to 316.0 mg kg?1 diet. The results of present study indicated that fish fed the lowest vitamin C diet had lower weight gain (WG) and specific growth rate (SGR) than those fed the diets supplemented vitamin C. WG and SGR did significantly increase with dietary vitamin C levels increasing from 1.9 to 156.5 mg kg?1. However, no significant increase was observed with further dietary vitamin C levels increasing from 156.5 to 316 mg kg?1. Survival, protein efficiency ratio and feed efficiency were not significantly affected by the dietary vitamin C levels. The activities of serum superoxide dismutase, catalase and glutathione peroxidase significantly increased when dietary vitamin C levels increased from 1.9 to 156.5 mg kg?1, fish fed the lowest vitamin C diet had higher serum malondialdehyde content than those fed the diets supplemented with vitamin C. Fish fed the diet containing 156.5 mg kg?1 vitamin C had the highest lysozyme, total complement activity, phagocytosis index and respiratory burst of head kidney among all treatments. The challenge test with Aeromonas hydrophila indicated that lower cumulative survival was observed in fish fed the lowest vitamin C diet. Analysis by broken‐line regression of SGR and lysozyme activity indicated that the dietary vitamin C requirement of juvenile yellow catfish was estimated to be 114.5 and 102.5 mg kg?1 diet, respectively.  相似文献   

19.
A total of 210 European seabass fry with an average body weight of 0.51 ± 0.03 g were divided into seven experimental treatments (three replicates per treatment). The seven experimental diets (45.64% CP) were formulated to contain synthetic astaxanthin (SA; 0.1 g kg?1), marigold flower meal (MFM; 0.2 g kg?1) or crab waste meal (CM; 10 g kg?1), with or without sodium taurocholate (ST; 0.4 g kg?1); the control diet contained no supplementation. The experiment was conducted for 8 weeks. The results show that seabass fry fed the diets containing different sources of carotenoids, especially with ST, demonstrated higher growth efficiency, survival (%), feed efficiency, protein and ether extract contents of fish body. The best results were found with DietMFM+ST. Whole‐body carotenoid levels increased significantly with all supplementation treatments; the highest level was observed with SA, followed by fish fed DietMFM and DietCM, especially with ST co‐supplementation. Moreover, thiobarbituric acid‐reactive substances were significantly reduced in fish fed the diets containing different sources of carotenoids compared to the control diet. The total antioxidant status significantly increased in fish fed DietSA and DietCM alone or with ST compared to the control group. In conclusion, these results reveal that DietMFM+ST is the most suitable treatment for improving growth, feed efficiency, and the protein and ether extract contents of seabass fry compared to other sources of carotenoids. The best oxidant/antioxidant balance and carotenoid content were achieved using SA, CM and MFM with ST supplementation.  相似文献   

20.
Rainbow trout (23.1 ± 0.4 g) were fed either a fishmeal‐ or plant‐based diet supplemented with various levels of zinc (0, 15, 30, 60 or 120 mg kg?1) for 12 weeks. Trout fed the fishmeal diet had significantly higher weight gain than with the plant‐based diet. Zinc supplementation in the fishmeal diet had no effect on growth performance, suggesting that additional dietary supplementation of zinc is not required. However, in trout fed the plant‐based diet, growth increased significantly up to 30 mg kg?1 zinc after which growth was not affected. Trout fed the plant‐based diet containing no zinc exhibited severe growth retardation, and in fish fed the 0 and 15 mg kg?1 zinc diets, cataracts were present. Use of broken‐line quadratic modelling suggests that dietary supplementation of zinc needed to prevent deficiency and promote adequate growth in rainbow trout fed the plant‐based diet in this study was 30.1 mg kg?1 (80 mg kg?1 total dietary zinc). This is higher than the NRC (2011, Nutrient Requirements of Fish and Shrimp) dietary recommended level of 15 mg kg?1 for rainbow trout. Following the NRC recommendation could lead to zinc deficiency in rainbow trout fed a plant‐based diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号