首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We performed quantitative trait locus (QTL) mapping analysis for litter size (total number of pups born and/or number of pups born alive) in 255 backcross mice derived from C57BL/6J and RR/Sgn inbred mice. We identified one significant QTL on chromosome 7 and 4 suggestive QTLs on chromosomes 3, 5, 10 and 13. In addition, two suggestive QTLs were identified on chromosomes 1 and 4 for the number of stillbirth. These results suggested that both litter size and number of stillbirth were heritable traits, although they were controlled by distinct genes. The RR allele was associated with reduced litter size and increased stillbirth at all QTLs. Therefore, RR mothers were observed to have reduced prolificacy in this particular genetic cross.  相似文献   

2.
Females of the inbred mouse RR strain have a limited ability to nurture their offspring, and frequently the young die during rearing. We previously identified a significant quantitative trait locus (QTL) responsible for the inferior nurturing ability on chromosome 5 (Naq1), on the basis of litter weight of six pups at days 7, 12, and 21 after parturition. Here, we carried out further mapping of Naq1 to define the confidence interval precisely. At the same time, we analyzed new quantitative trait variables, litter weight gain between days 7 and 12 (WG1), and that between days 12 and 21 (WG2), to characterize further the physiology of inferior nurturing ability. Consequently, a peak LOD score for the Naq1 was identified on D5Mit218 (72 cM), which was located approximately 2 cM distal to our previous expectation, as a significant QTL for WG1 (LOD 5.5), but not for WG2 (LOD 0.9). Because the growth of pups depends purely on milk obtained from the dam up to day 12 after birth, it seems possible to assume that the inferior nurturing ability in RR mice is related to defects in maternal nutritional support (that is, lactation) rather than to defects in pup growth. Naq1 is a novel QTL as far as the QTL results of relevant female reproductive traits in cattle and pigs are concerned.  相似文献   

3.
Colleagues and I previously performed quantitative trait locus (QTL) analysis on plasma total-cholesterol (T-CHO) levels in C57BL/6J (B6) x RR F2 mice. We identified only one significant QTL (Cq6) on chromosome 1 in a region containing the Apoa2 gene locus, a convincing candidate gene for Cq6. Because Cq6 was a highly significant QTL, we considered that the detection of other potential QTLs might be hindered. In the present study, QTL analysis was performed in B6.KK-Apoa2b N(8) x RR F2 mice [B6.KK-Apoa2b N(8) is a partial congenic strain carrying the Apoa2b allele from the KK strain, and RR also has the Apoa2b allele] by controlling of the effects of the Apoa2 allele, for identifying additional QTLs. Although no significant QTLs were identified, 2 suggestive QTLs were found on chromosomes 2 and 3 in place of the effects of the Apoa2 allele. A significant body weight QTL was identified on chromosome 3 (Bwq7, peak LOD score 5.2); its effect on body weight was not significant in previously analyzed B6 x RR F2 mice. Suggestive body weight QTL that had been identified in B6 x RR F2 mice on chromosome 4 (LOD score 3.8) was not identified in B6.KK-Apoa2b N(8) x RR F2 mice. Thus, contrary to expectation, the genetic control of body weight was also altered significantly by controlling of the effects of the Apoa2 allele. The QTL mapping strategy by controlling of the effects of a major QTL facilitated the identification of additional QTLs.  相似文献   

4.
I have developed a congenic mouse strain for the A(y) allele at the agouti locus in an inbred DDD/Sgn strain, DDD.Cg-A(y). DDD.Cg-A(y) females are extremely obese and significantly heavier than B6.Cg-A(y) females. The objectives of this study were to determine the genetic basis of obesity in DDD.Cg-A(y) mice, and to determine whether or not their high body weight was due to the presence of DDD background-specific modifiers. I performed quantitative trait locus (QTL) analyses for body weight and body mass index in two types of F(2) mice [F2 A(y) (F(2) mice carrying the A(y) allele) and F(2) non-A(y) (F2 mice without the A(y) allele)] produced by crossing C57BL/6J females and DDD.Cg-A(y) males. The results of the QTL analysis of F(2) A(y) mice were very similar to those obtained for F(2) non-A(y) mice. It was unlikely that the high body weight of DDD.Cg-A(y) mice was due to the presence of specific modifiers. When both F(2) datasets were merged and analyzed, four significant body weight QTLs were identified on chromosomes 6, 9, and 17 (2 loci) and four significant obesity QTLs were identified on chromosomes 1, 6, 9, and 17. Although the presence of DDD background-specific modifiers was not confirmed, a multifactorial basis of obesity in DDD.Cg-A(y) females was thus revealed.  相似文献   

5.
The objectives of this study were to characterize plasma lipid phenotypes and dissect the genetic basis of plasma lipid levels in an obese DDD.Cg-A(y) mouse strain. Plasma triglyceride (TG) levels were significantly higher in the DDD.Cg-A(y) strain than in the B6.Cg-A(y) strain. In contrast, plasma total-cholesterol (CHO) levels did not substantially differ between the two strains. As a rule, the A(y) allele significantly increased TG levels, but did not increase CHO levels. Quantitative trait locus (QTL) analyses for plasma TG and CHO levels were performed in two types of F(2) female mice [F(2)A(y) (F(2) mice carrying the A(y) allele) and F(2) non- A(y) mice (F(2) mice without the A(y) allele)] produced by crossing C57BL/6J females and DDD.Cg-A(y) males. Single QTL scan identified one significant QTL for TG levels on chromosome 1, and two significant QTLs for CHO levels on chromosomes 1 and 8. When the marker nearest to the QTL on chromosome 1 was used as covariates, four additional significant QTLs for CHO levels were identified on chromosomes 5, 6, and 17 (two loci). In contrast, consideration of the agouti locus genotype as covariates did not detect additional QTLs. DDD.Cg-A(y) showed a low CHO level, although it had Apoa2(b), which was a CHO-increasing allele at the Apoa2 locus. This may have been partly due to the presence of multiple QTLs, which were associated with decreased CHO levels, on chromosome 8.  相似文献   

6.
A multigeneration crossbred Meishan-White composite resource population was used to identify quantitative trait loci (QTL) for age at first estrus (AP) and the components of litter size: ovulation rate (OR; number of ova released in an estrous period) and uterine capacity (UC). The population was established by reciprocally mating Meishan (ME) and White composite (WC) pigs. Resultant F1 females were mated to either ME or WC boars to produce backcross progeny (BC) of either 3/4 WC 1/4 ME or 1/4 WC 3/4 ME. To produce the next generation (F3), 3/4 WC 1/4 ME animals were mated to 1/4 WC 3/4 ME animals yielding half-blood (1/2 WC 1/2 ME) progeny. A final generation (F4) was produced by inter se mating F3 animals. Measurements for AP and OR were recorded on 101 BC, 389 F3, and 110 F4 gilts, and UC data were from 101 BC and 110 F4 first parity litters. A genomic scan was conducted with markers (n = 157) spaced approximately 20 cM apart. All parental, F1, BC, and F4 animals but only 84 F3 animals were genotyped and included in this study. The QTL analysis fitted a QTL at 1-cM intervals throughout the genome, and QTL effects were tested using approximate genome-wide significance levels. For OR, a significant (E[false positive] < .05) QTL was detected on chromosome 8, suggestive (E[false positive] < 1.0) QTL were detected on chromosomes 3 and 10, and two additional regions were detected that may possess a QTL (E[false positive] < 2.0) on chromosomes 9 and 15. Two regions possessed suggestive evidence for QTL affecting AP on chromosomes 1 and 10, and one suggestive region on chromosome 8 was identified for UC. Further analyses of other populations of swine are necessary to determine the extent of allelic variation at the identified QTL.  相似文献   

7.
This study was conducted to detect quantitative trait loci (QTL) affecting growth and beef carcass fatness traits in an experimental population of Angus and Brahman crossbreds. The three-generation mapping population was generated with 602 progeny from 29 reciprocal backcross and three F2 full-sib families, and 417 genetic markers were used to produce a sex-averaged map of the 29 autosomes spanning 2,642.5 Kosambi cM. Alternative interval-mapping approaches were applied under line-cross (LC) and random infinite alleles (RA) models to detect QTL segregating between and within breeds. A total of 35 QTL (five with genomewide significant and 30 with suggestive evidence for linkage) were found on 19 chromosomes. One QTL affecting yearling weight was found with genomewide significant evidence for linkage in the interstitial region of bovine autosome (BTA) 1, and an additional 19 QTL were detected with suggestive evidence for linkage under the LC model. Many of these QTL had a dominant (complete or overdominant) mode of gene action, and only a few of the QTL were primarily additive, which reflects the fact that heterosis for growth is known to be appreciable in crosses among Brahman and British breeds. Four QTL affecting growth were detected with genomewide significant evidence for linkage under the RA model on BTA 2 and BTA 6 for birth weight, BTA 5 for yearling weight, and BTA 23 for hot carcass weight. An additional 11 QTL were detected with suggestive evidence for linkage under the RA model. None of the QTL (except for yearling weight on BTA 5) detected under the RA model were found by the LC analyses, suggesting the segregation of alternate alleles within one or both of the parental breeds. Our results reveal the utility of implementing both the LC and RA models to detect dominant QTL and also QTL with similar allele frequency distributions within parental breeds.  相似文献   

8.
Three informative pig F2 families based on European Wild Boar (W), Meishan (M) and Pietrain (P) crosses have been used for genome‐wide linkage and quantitative trait loci (QTL) analysis. Altogether 129 microsatellites, 56 type I loci and 46 trait definitions (specific to growth, fattening, fat deposition, muscling, meat quality, stress resistance and body conformation) were included in the study. In the linkage maps of M × P, W × P and W × M families, average spacing of markers were 18.4, 19.7 and 18.8 cM, the numbers of informative meioses were 582, 534 and 625, and the total lengths of autosomes measured were 27.3, 26.0 and 26.2 Morgan units, respectively. Maternal maps were on average 1.3 times longer than paternal maps. QTLs contributing more than 3% of F2 phenotypic variance could be identified at p < 0.05 chromosome‐wide level. Differences in the numbers and positions of QTLs were observed between families. Genome‐wide significant QTL effects were mapped for growth and fattening traits on eight chromosomes (1, 2, 4, 13, 14, 17, 18 and X), for fat deposition traits on seven chromosomes (1, 2, 3, 4, 6, 7 and X), for muscling traits on 11 chromosomes (1, 2, 3, 4, 6, 7, 8, 12, 14, 15 and X), for meat quality and stress resistance traits on seven chromosomes (2, 3, 6, 13, 16, 18 and X), and QTLs for body‐conformation traits were detected on 14 chromosomes. Closely correlated traits showed similar QTL profiles within families. Major QTL effects for meat quality and stress resistance traits were found on SSC6 in the interval RYR1‐A1BG in the W × P and M × P families, and could be attributed to segregation of the RYR1 allele T derived from Pietrain, whereas no effect in the corresponding SSC6 interval was found in family W × M, where Wild Boar and Meishan both contributed the RYR1 allele C. QTL positions were mostly similar in two of the three families for body conformation traits and for growth, fattening, fat deposition and muscling traits, especially on SSC4 (interval SW1073‐NGFB). QTLs with large effects were also mapped on SSC7 in the major histocompatibility complex (MHC) (interval CYP21A2‐S0102) and affected body length, weight of head and many other traits. The identification of DNA variants in genes causative for the QTLs requires further fine mapping of QTL intervals and a positional cloning. However, for these subsequent steps, the genome‐wide QTL mapping in F2 families represents an essential starting point and is therefore significant for animal breeding.  相似文献   

9.
1. A genome-wide scan of 467 F2 progeny of a broiler x layer cross was conducted to identify quantitative trait loci (QTL) affecting the rate of growth of the tail, wing and back feathers, and the width of the breast feather tract, at three weeks of age.

2. Correlations between the traits ranged from 0·36 to 0·61. Males had longer tail and wing feathers and shorter back feathers than females. Breast feather tract width was greater in females than males.

3. QTL effects were generally additive and accounted for 11 to 45% of sex average feather lengths of the breeds, and 100% of the breast feather tract width. Positive and negative alleles were inherited from both lines, whereas the layer allele was larger than the broiler allele after adjusting for body weight.

4. A total of 4 genome-significant and 4 suggestive QTL were detected. At three or 6 weeks of age, 5 of the QTL were located in similar regions as QTL for body weight.

5. Analysis of a model with body weight at three weeks as a covariate identified 5 genome significant and 6 suggestive QTL, of which only two were coincident with body weight QTL. One QTL for feather length at 148?cM on GGA1 was identified at a similar location in the unadjusted analysis.

6. The results suggest that the rate of feather growth is largely controlled by body weight QTL, and that QTL specific for feather growth also exist.  相似文献   

10.
Cq3 was identified in C57BL/6J (B6) x KK-Ay F2 mice as a quantitative trait locus (QTL) that controls plasma cholesterol and phospholipid levels, and normolipidemic B6 allele was associated with increased lipids. Cq3 was statistically significant in F2-a/a, but not in F2-Ay/a; probably because the Cq3 effect was obscured by introduction of the Ay allele, which in itself has a strong hyperlipidemic effect. Because the peak LOD score for Cq3 was identified near D3Mit102 (49.7 cM) on chromosome 3, linkage analyses with microsatellite markers located at 49.7 cM were performed in KK x RR F2, B6 x RR F2, and KK x CF1 F2. However, even a suggestive QTL was not identified in any of the three F2. By testing all pairs of marker loci, I found a significant interaction between Cq3 and the Apoa2 locus, and F2 mice with the Apoa2(KK)/Apoa2(KK); D3Mit102(B6)/D3Mit102(B6) genotype had significantly higher cholesterol levels than did F2 mice with other genotypes. The results showed that the ;round-robin' strategy was not always applicable to the search for QTL genes; probably because specific gene-to-gene interaction limited the validity of the strategy to the utmost extent.  相似文献   

11.
The reduction of extra subcutaneous, intermuscular and abdominal fat is important to increase the carcass lean percentage of pigs. Image analyses of fat area ratios were effective for estimation of separated fat in pig carcasses. Serum concentrations of leptin are useful as physiological predictors of fat accumulation in pigs. The objectives of the present study were to perform a quantitative trait locus (QTL) analysis for fat area ratios and serum leptin concentrations in a Duroc purebred population. Pigs (n = 226 to 538) were measured for fat area ratios of carcass cross‐sections at the fifth to sixth thoracic vertebrae, half body length and last thoracic vertebra using an image analysis system, and serum leptin concentration. In total, animals were genotyped for 129 markers and used for QTL analysis. For fat area ratios, four significant and 12 suggestive QTLs were detected on chromosomes 1, 6, 7, 8, 9, 12 and 13. Significant QTLs were detected on the same region of chromosome 6, which was located near a leptin receptor gene. For serum leptin concentrations, two significant and two suggestive QTLs were detected on chromosomes 6, 9, and 16, and the QTLs on chromosome 6 were also in the same region for fat area ratios.  相似文献   

12.
1. An F2 cross of a broiler male line and a White Leghorn layer line was used to identify quantitative trait loci (QTL) for bone density at the onset of lay and at the end of the laying period. A total of 686 measures of humeral bone density were available for analysis.

2. There was no evidence for epistasis.

3. Genome-wide significant QTL for bone density at the onset of lay were identified on chromosomes 1 (311?cM) and 8 (2?cM) and on chromosomes 1 (311?cM), 3 (57?cM) and 8 (2?cM) with a covariate for the number of yellow follicles (a proxy for the concentration of circulating oestrogen).

4. Evidence for only 4 chromosome-wide suggestive QTL were detected at the end of lay (72 weeks).

5. Analysis of the combined data confirmed two genome-wide suggestive QTL on chromosome 1 (137 and 266?cM) and on chromosomes 8 (2?cM) and 9 (10?cM) in analyses with or without the covariate.

6. Positive QTL alleles came from the broiler line with the exception of 2 suggestive QTL at the onset of lay on chromosomes 3 and 5 in an analysis with the covariate.

7. In general, QTL acted additively, except that dominant effects were identified for three suggestive QTL at the onset of lay on chromosomes 3 (57 and 187?cM) and 5 (9?cM).

8. The significant QTL in this study were at similar locations to QTL identified in a range of crosses in other publications, suggesting that they are prime candidates for the search for genes and mutations that could be used as selection criteria to improve bone strength and decrease fractures in commercial laying hens.  相似文献   

13.
Quantitative trait loci analyses were applied to data from Suffolk and Texel commercial sheep flocks in the United Kingdom. The populations comprised 489 Suffolk animals in three half-sib families and 903 Texel animals in nine half-sib families. Phenotypic data comprised measurements of live weight at 8 and 20 wk of age and ultrasonically measured fat and muscle depth at 20 wk. Lambs and their sires were genotyped across candidate regions on chromosomes 1, 2, 3, 4, 5, 6, 11, 18, and 20. Data were analyzed at the breed level, at the family level, and across extended families when families were genetically related. The breed-level analyses revealed a suggestive QTL on chromosome 1 in the Suffolk breed, between markers BM8246 and McM130, affecting muscle depth, although the effect was only significant in one of the three Suffolk families. A two-QTL analysis suggested that this effect may be due to two adjacent QTL acting in coupling. In total, 24 suggestive QTL were identified from individual family analyses. The most significant QTL affected fat depth and was segregating in a Texel family on chromosome 2, with an effect of 0.62 mm. The QTL was located around marker ILSTS030, 26 cM distal to myostatin. Two of the Suffolk and two of the Texel sires were related, and a three-generation analysis was applied across these two extended families. Seven suggestive QTL were identified in this analysis, including one that had not been detected in the individual family analysis. The most significant QTL, which affected muscle depth, was located on chromosome 18 near the callipyge and Carwell loci. Based on the phenotypic effect and location of the QTL, the data suggest that a locus similar to the Carwell locus may be segregating in the United Kingdom Texel population.  相似文献   

14.
Genetic mapping of the QTL affecting body weight in chickens using a F2 family   总被引:13,自引:0,他引:13  
1. To identify the quantitative trait loci (QTL) affecting growth in chickens, we carried out QTL analysis on chicken growth traits using a population of 227 F2 crosses between a Satsumadori (slow-growing, light-weight Japanese native breed used as a meat chicken) male and a White Plymouth Rock (early-maturing, heavy weight broiler). 2. We chose 78 microsatellite loci from 331 publicly available on 14 linkage groups, with respect to their utility and location. 3. Two QTLs affecting body weight at 13 and 16 weeks were mapped at 220 cM on chromosome 1 (LOD scores, 2.8 and 4.5, respectively, at 13 and 16 weeks), and at 60 cM on chromosome 2 (LOD scores, 6.2 and 8.1, respectively, at 13 and 16 weeks). 4. The closest loci to the QTLs were LEI71 on chromosome 1 and LMU13 and MCW184 on chromosome 2. 5. The sites of the QTLs agreed closely with those already reported. Therefore, it seems likely that QTLs affecting growth of chickens are located at these sites.  相似文献   

15.
性别效应对家蚕茧质性状QTL定位的影响   总被引:1,自引:0,他引:1  
家蚕茧质性状的性别效应十分明显。分别以性别效应调整前和调整后的家蚕全茧量、茧层量、茧层率和蛹体质量等数量性状值为基础,对性别效应调整前后的茧质性状作数量性状基因座(QTL)定位比较分析,以探讨性别效应对家蚕QTL定位的影响。结果显示,检测出的控制各性状的上位性位点数、QTL总数以及效应显著的QTL数等,都表现为调整前比调整后要多,有效QTL在连锁群上的分布也表现一定的差异。此结果说明由于性别效应的影响可能会导致检测出控制家蚕茧质性状的上位性位点数和QTL总数的增加及其分布的不同,从而引起QTL分析结果的偏差。  相似文献   

16.
A QTL analysis of female reproductive data from a 3-generation experimental cross between Meishan and Large White pig breeds is presented. Six F(1) boars and 23 F(1) sows, progeny of 6 Large White boars and 6 Meishan sows, produced 502 F(2) gilts whose reproductive tract was collected after slaughter at 30 d of gestation. Five traits [i.e., the total weight of the reproductive tract, of the empty uterine horns, of the ovaries (WOV), and of the embryos], as well as the length of uterine horns (LUH), were measured and analyzed with and without adjustment for litter size. Animals were genotyped for a total of 137 markers covering the entire porcine genome. Analyses were carried out based on interval mapping methods, using a line-cross regression and a half-full sib maximum likelihood test. A total of 18 genome-wide significant (P < 0.05) QTL were detected on 9 different chromosomes (i.e., SSC 1, 5, 6, 7, 9, 12, 13, 18, and X). Five genome-wide significant QTL were detected for LUH, 4 for weight of the empty uterine horns and WOV, 2 for total weight of the reproductive tract, and 1 for weight of the embryos. Twenty-two additional suggestive QTL were also detected. The largest effects were obtained for LUH and WOV on SSC13 (9.2 and 7.0% of trait phenotypic variance, respectively). Meishan alleles had both positive (e.g., on SSC7) and negative effects (e.g., on SSC13) on the traits investigated. Moreover, the QTL were generally not fixed in founder breeds, and opposite effects were in some cases obtained in different families. Although reproductive tract characteristics had only a moderate correlation with reproductive performances, most of the major QTL detected in this study were previously reported as affecting female reproduction, generally with reduced significance levels. This study thus shows that focusing on traits with high heritability might help to detect loci involved in low heritability major traits for breeding.  相似文献   

17.
The genetic architecture of organ weights is not well understood. In this study, we fine‐mapped quantitative trait loci (QTLs) affecting organ weights by characterizing six intersubspecific subcongenic mouse strains with overlapping and non‐overlapping genomic regions on chromosome 2 derived from wild Mus musculus castaneus. QTLs for heart, lung, spleen and kidney weights were revealed on a 6.38‐Mb genomic region between two microsatellite markers, D2Mit323 and D2Mit472. Effects of the castaneus alleles at the organ weight QTLs were all opposite in direction to a body weight QTL previously mapped to the same genomic region. In addition, new QTLs for lung and kidney weights were revealed on a different 3.57‐Mb region between D2Mit205 and D2Mit182. Their effects were dependent on that of another body weight QTL previously mapped to that genomic region. The organ weight QTLs revealed were all duplicated in independent analyses with F2 intercross populations between subcongenic strains carrying these QTLs and their background strain. The findings suggested that organ weights are not exclusively regulated by genetic loci that commonly influence overall body weight and rather that there are loci contributing to the growth of specific organs only.  相似文献   

18.
利用24个微卫星进行猪数量性状座位定位及其遗传效应分析   总被引:10,自引:2,他引:10  
以 3头英系大白公猪与 7头梅山母猪杂交产生的三代资源家系用来检测猪重要经济性状的数量性状座位(QTL) ,2 0 0 0年下半年随机选留 140头F2代个体 ,进行屠宰测定 ,记录了包括生长、胴体组成等 43个性状 ;从已定位于家猪 3、4和 7号染色体上的遗传标记中选用 2 4个微卫星标记对所有个体进行基因型检测。采用最小二乘回归区间定位法进行QTL检测 ,通过置换实验来确定显著性阈值。在所研究的 32个生长和胴体性状中 ,3条染色体总共 16个QTL达到染色体显著水平 (P <0 0 5 ) ,其中 4个达到染色体极显著性水平 (P <0 0 1) ;同时在 4号和 7号染色体上还检测到了影响器官重性状的 3个QTL ,达到了染色体显著水平 (P <0 0 5 )。在某些QTL座位 ,其有利等位基因来源于具有较低性状平均值的品种。 2QTL模型分析下 ,在 4号染色体上检测到影响板油重的 2个QTL ,并且它们的效应方向相反。  相似文献   

19.
Body weight and fatness are quantitative traits of agricultural and medical importance. In previous genome‐wide quantitative trait locus (QTL) analyses, two QTLs for body weight and weight gain at an early postnatal growth period were discovered on mouse chromosome 10 from a gene pool of wild subspecies mice, Mus musculus castaneus. In this study, we developed a congenic strain with an approximately 63‐Mb wild‐derived genomic region on which the two growth QTLs could be located, by recurrent backcrossing to the common inbred strain C57BL/6J. We compared body weights at 1–10 weeks of age, body weight gains at 1–3, 3–6 and 6–10 weeks, internal organ weights and body lengths between the congenic strain developed and C57BL/6J. Unfortunately, no effects of the two growth QTLs on body weights and weight gains were confirmed. However, at least two new QTLs affecting fatness traits were discovered within the introgressed congenic region. The wild‐derived allele at one QTL increased body mass index, whereas at another one it decreased white fat pad weight and adiposity index. Thus, the congenic mouse strain developed here is a useful model animal for understanding the genetic and molecular basis of fat deposition in livestock as well as humans.  相似文献   

20.
为初步鉴定与紫花苜蓿(Medicago sativa)粗灰分、钾、钙、镁、磷含量调控相关的数量性状基因座(Quantitative trait loci, QTL)和分子标记,本研究用低产早熟苜蓿和高产晚熟苜蓿杂交,构建了由392个个体组成的F1群体,对这些性状进行3年表型数据测定,且基于前期已构建的高密度遗传连锁图谱开展QTL定位。结果表明:共检测到63个与粗灰分和4种矿质元素含量相关的QTL,分布于22个染色体上,单个QTL的贡献率为2.50%~29.85%;其中重复定位的QTL共8个(qCa-3C-1和qCa-3C-2,qCa-6B-1和qCa-6B-2,qCa-6D-1和qCa-6D-2,qAsh-8B-1和qAsh-8B-2),共定位的QTL有6个(qP-2C和qK-2C,qP-3A和qMg-3A,qP-6D-3和qMg-6D-2);经进一步验证,与这些QTL紧密连锁的标记可用于分子标记辅助选择育种。本研究为选育矿质营养更丰富的苜蓿新品种奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号