首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The embryo culture technique has been improving, but the detailed demands for energy substrates such as glucose, fructose, pyruvate and lactate of preimplantation embryos are still unclear. In the present study, the demands of pig preimplantation embryos at each different developmental stage were investigated by use of parthenogenetic diploids as a model of pig preimplantation embryos. Pig parthenogenetic diploids showed different use of glucose and fructose before and after the 4-cell stage. Although glucose supported the development of pig embryos throughout the preimplantation stages and even maintained the expansion and hatching of blastocysts, it suppressed development to the blastocyst stage when glucose coexisted with pyruvate and lactate from 4 h after activation, but not after 48 h (early 4-cell stage). Since ketohexokinase that metabolizes fructose was not expressed in 2-cell and 4-cell diploids, a medium that included only fructose as a major energy substrate did not support early cleavage of pig diploids beyond the 4-cell stage, and almost no diploids developed to the morula stage just as in a medium without carbohydrates. These results may explain the different suppressive effects on pig preimplantation development between glucose and fructose when pyruvate and lactate were present in a medium. In addition, 4-cell diploids that had been cultured in a medium with pyruvate and lactate developed to the expanded blastocyst stage without any carbohydrates as a major energy substrate. These results show that the demands for carbohydrates are different depending on the developmental stage in pig preimplantation embryos.  相似文献   

2.
旨在探究O-β-N-乙酰葡糖胺(O-linked beta-N-acetylglucosamine, O-GlcNAc)修饰水平变化对牛卵母细胞体外成熟的影响。本研究以牛卵母细胞为研究对象,检测O-GlcNAc转移酶(O-GlcNAc transferase, OGT)、O-GlcNAc糖苷酶(O-GlcNAcase, OGA)及O-GlcNAc蛋白在牛体外成熟卵母细胞中的分布;将卵丘-卵母细胞复合体分别在添加4 mmol·L-1 OGT抑制剂BADGP和100μmol·L-1 OGA抑制剂PUGNAc的体外成熟液中进行体外成熟,将未添加组作为对照组,分别统计各组卵母细胞第一极体排出率和体外受精胚胎发育率,并采用荧光定量PCR和Western blot检测O-GlcNAc蛋白、OGT、OGA、GFAT和TXNIP的mRNA和蛋白表达。结果表明,OGT和O-GlcNAc蛋白共定位于牛体外成熟卵母细胞的细胞质和细胞核中,而OGA和O-GlcNAc蛋白共定位于体外成熟卵母细胞的细胞质中,且相对集中在卵母细胞的皮质区。与对照组相比,BADGP处理组和...  相似文献   

3.
Histone H2B monoubiquitination (H2Bub1) plays an important role in developmental regulation in various vertebrate species. However, the role of H2Bub1 in mammalian preimplantation development remains unclear. In the present study, we examined the role of H2Bub1 in the regulation of mouse preimplantation development. Based on immunocytochemical analysis using an anti-H2Bub1 antibody, no H2Bub1 signal was detected in the metaphase chromosomes of unfertilized oocytes or the pronuclei of early 1-cell stage embryos, but a weak signal was observed in late 1-cell stage embryos. The signal increased after cleavage into the 2-cell stage, and thereafter a strong signal was observed until the blastocyst stage. To assess the significance of H2Bub1 in the regulation of preimplantation development, RNF20 (an H2B-specific ubiquitin E3 ligase) was knocked down using small interfering RNA (siRNAs). In embryos treated with siRNA, the levels of Rnf20 mRNA and H2Bub1 decreased at the 4-cell and morula stages. Although these embryos developed normally until the morula stage, only one-third developed into the blastocyst stage. These results suggested that H2Bub1 is involved in the regulation of preimplantation development.  相似文献   

4.
5.
Cathepsin B, a lysosomal cysteine protease of the papain family, has recently been implicated in the quality and developmental competence of bovine preimplantation embryos. In this study, to determine whether inhibition of cathepsin B activity can improve porcine oocyte maturation and early embryo developmental competence, we supplemented in vitro maturation or embryo culture media with E-64, a cathepsin B inhibitor. Cathepsin B activity was high in poor quality germinal vesicle stage oocytes, but no differences in mRNA expression or protein localization were observed between good and poor quality oocytes, which were categorized based on morphology. Following treatment with 1 μM E-64, cathepsin B activity sharply decreased in 4-cell and blastocyst stage embryos. E-64 had no effect on cell number but significantly (P < 0.05) increased blastocyst formation and decreased the number of apoptotic cells in blastocysts. It also significantly (P < 0.05) enhanced mitochondrial membrane potential in blastocysts, reducing the release of cytochrome c and resulting in decreased expression of Caspase-3 and Caspase-9. In conclusion, inhibition of cathepsin B activity in porcine parthenotes using 1 μM E-64 resulted in attenuation of apoptosis via a reduction in the release of cytochrome c from mitochondria.  相似文献   

6.
The present study was designed to investigate the cryotolerance of in vitro fertilised (IVF) mouse embryos at various preimplantation developmental stages. IVF mouse embryos were vitrified by the open-pulled straw (OPS) method. After warming, embryos were morphologically evaluated and assessed by their development to blastocysts, hatched blastocysts or term. The results showed that a high proportion (93.3-100.0%) of vitrified embryos at all developmental stages were morphologically normal after recovery. The developmental rate of vitrified 1-cell embryos to blastocyst (40.0%) or hatched blastocyst (32.7%) or term (9.3%) was significantly lower than that from other stages (P < 0.05). Vitrified embryos from 2-cell to early blastocyst stage showed similar blastocyst (71.8-89.5%) and hatched blastocyst rates (61.1-69.6%) and could develop to term without a significant loss of survival compared with those of fresh embryos (P > 0.05). Vitrified 2-cell embryos showed the highest survival rate in vivo (50.6%, 88/174), compared with that from other stages (9.3-30.5%, P < 0.05). The data demonstrate that the OPS method is suitable for the cryopreservation of IVF mouse embryos from 2-cell stage to early blastocyst stage without a significant loss of survival. Embryos at the 2-cell stage had the best tolerance for cryopreservation in the present study.  相似文献   

7.
8.
Chromium in its trivalent form (chromium (III)) is an essential component of a balanced diet, and its deficiency disturbs glucose and lipid metabolism in humans and animals. The prevailing view is that chromium (III) is notably less toxic than chromium (VI), which is genotoxic and carcinogenic. Thus, the biotransformation of environmental chromium (VI) to chromium (III) is a promising and environmentally friendly detoxification method. However, increasing evidence suggests that chromium (III) induces considerable cytotoxicity. However, the toxicity of chromium (III) to early embryos remains largely unknown. In the present study, we used in vitro fertilization (IVF) to produce mouse embryos and identified the direct embryotoxicity of chromium (III). On exposure to high concentrations of CrCl3, blastocyst formation almost completely failed and a large proportion of embryos were arrested at the 2- to 4-cell stage. At low concentrations of CrCl3, IVF embryos showed a significant decrease in blastocyst formation, reduced total cell numbers, aberrant lineage differentiation, increased oxidative stress, and apoptosis. We also found that chromium (III) exposure during the preimplantation stage, even at low concentrations, led to impaired post-implantation development. Thus, our study substantiates the direct embryotoxicity of chromium (III) during preimplantation development and prolonged impairment of development potential. The results further highlight the potential adverse effects of chromium (III) on public reproductive health with respect to increased environmental enrichment of and dietary supplementation with chromium (III) complexes.  相似文献   

9.
Nuclear autoantigenic sperm protein (NASP) is associated with DNA replication, cell proliferation, and cell cycle progression through its specific binding to histones. The aim of this study was to examine the roles of NASP in bovine preimplantation embryonic development. Using NASP gene knockdown (KD), we confirmed the reduction of NASP messenger RNA (mRNA) expression during preimplantation development. NASP KD did not affect cleavage but significantly decreased development of embryos into the blastocyst stage. Furthermore, blastocyst hatching was significantly decreased in NASP KD embryos. Cell numbers in the inner cell mass of NASP KD blastocysts were also decreased compared to those of controls. These results suggest that NASP mRNA expression is required for preimplantation development into the blastocyst stage in cattle.  相似文献   

10.
11.
Lysosomes are acidic and highly dynamic organelles that are essential for macromolecule degradation and many other cellular functions. However, little is known about lysosomal function during early embryogenesis. Here, we found that the number of lysosomes increased after fertilization. Lysosomes were abundant during mouse preimplantation development until the morula stage, but their numbers decreased slightly in blastocysts. Consistently, the protein expression level of mature cathepsins B and D was high from the one-cell to morula stages but low in the blastocyst stage. One-cell embryos injected with siRNAs targeted to both lysosome-associated membrane protein 1 and 2 (LAMP1 and LAMP2) were developmentally arrested at the two-cell stage. Pharmacological inhibition of lysosomes also caused developmental retardation, resulting in accumulation of lipofuscin. Our findings highlight the functional changes in lysosomes in mouse preimplantation embryos.  相似文献   

12.
In mammalian preimplantation development, the first cell lineage segregation occurs during the blastocyst stage, when the inner cell mass and trophectoderm (TE) differentiate. Species‐specific analyses are essential to elucidate the molecular mechanisms that underlie this process, since they differ between various species. We previously showed that the reciprocal regulation of CCN2 and TEAD4 is required for proper TE differentiation in bovine blastocysts; however, the function of CCN2 during early embryogenesis has remained otherwise elusive. The present study assessed the spatiotemporal expression dynamics of CCN2 in bovine embryos, and evaluated how changes to CCN2 expression (using a CCN2 knockdown (KD) blastocyst model) regulate the expression of pluripotency‐related genes such as OCT4 and NANOG. The conducted quantitative PCR analysis revealed that CCN2 mRNA was expressed in bovine oocytes (at the metaphase stage of their second meiosis) and embryos. Similarly, immunostaining detected both cytoplasmic and nuclear CCN2 at all analyzed oocyte and embryonic stages. Finally, both OCT4 and NANOG expression levels were shown to be significantly reduced in CCN2 KD blastocysts. Together, these results demonstrate that bovine CCN2 exhibits unique expression patterns during preimplantation development, and is required for the proper expression of key regulatory genes in bovine blastocysts.  相似文献   

13.
This study was conducted to evaluate whether refining mineral oil and the addition of hemoglobin and/or glucose to a serum-free medium could improve in vitro-development of embryos cultured in a chemically semi-defined microdroplet culture system. Block strain, outbred (ICR) mouse 1- or 2-cell embryos were cultured in 5 microl droplets of Chatot, Ziomek and Bavister medium overlaid with mineral oil of different types, and preimplantation development to the blastocyst stage was subsequently monitored. In the experiment 1, either Sigma (M-8410) or BDH (GPR) mineral oil with or without washing was used for embryo culture and, distilled water (DW) or culture medium was used as a washing agent. As results, better (P<0.0001) development of 1-cell embryos was found in the Sigma than in the BDH; more blastocysts developed in Sigma oil washed with culture medium than in the others (37% vs. 0%). Subsequently, 1- (experiment 2) or 2-cell (experiment 3) embryos were cultured in the droplets overlaid with medium-washed Sigma oil, to which 0.001 mg/ml hemoglobin and/or 5.6 mM glucose were supplemented at the 1-cell and the 4-cell stages, respectively. Regardless of embryo stages, blastocyst formation was significantly improved by the addition of hemoglobin (54 to 48% vs. 42 to 31% in 1-cell and 83 to 78% vs. 65 to 68% in 2-cell embryos) and this effect was independent of glucose addition. In conclusion, the selection and washing of mineral oil, and the addition of hemoglobin is beneficial for improving the efficacy of a drop embryo culture system using a serum-free medium.  相似文献   

14.
Recent studies have implicated the peripheral actions of ghrelin in reproductive tissues. Here, we provide evidence that both ghrelin and its receptor GHSR-1a (the type 1a growth hormone secretagogue receptor) are expressed at both mRNA and protein levels in sheep oocytes and pre-implantation embryos produced in vitro . Real-time RT-PCR experiments confirmed that ghrelin mRNA levels varied depending on developmental stage, with the highest expression in metaphase II (MII) oocytes, higher expression at the 2-cell stage, and minimal expression in germinal vesicle (GV) oocytes, 4- and 8-cell stages, and in the blastocyst. The levels of GHSR-1a mRNA decreased from GV to MII, increased immediately at the 2-cell stage and then remained stable until the blastocyst stage. Ghrelin protein was detected mainly in the cytoplasm close to the plasma membrane in both inner cell mass and trophectoderm cells, while GHSR-1a protein was most abundant in the plasma membrane. In conclusion, the presence of the ghrelin signalling system within the sheep oocytes and pre-implantation embryos opens up the possibility of a potential regulatory role of this novel molecule in reproductive function.  相似文献   

15.
The objective of the present study was to clarify the possible role of the zona pellucida (ZP) in early development of rat embryos and to determine the effect of glycosaminoglycans on the development of ZP-free 8-cell embryos before or after embryo transfer at the blastocyst stage. Eight-cell embryos were divided into three groups comprised of, 1) intact controls, 2) embryos with the ZP was removed with acidic solution and 3) pairs of ZP-free 8-cell embryos aggregated in a small hollow. These embryos were cultured in a chemically defined mR1ECM for 24 h. Developmental ability to the blastocyst stage and mean cell number in the blastocyst was lower in ZP-free embryos than in intact controls. When these blastocysts were transferred, the farrowing rate and efficiency of embryos developed to term were also lower in ZP-free embryos, but not in the aggregated ones. Supplementation with hyaluronan (HA; 63-250 μg/ml) or heparan sulfate proteoglycan (HS; 15 μg/ml) significantly improved blastocyst formation of ZP-free embryos and the cell number in the blastocyst by reducing the incidence of apoptosis. However, there were no beneficial effects of HA or HS on farrowing and newborn rates after transfer of the blastocysts. In conclusion, the ZP plays roles in maintaining successful development of early rat embryos at least from the 8-cell stage not only to the blastocyst stage but also to posttransfer stages. Glycosaminoglycans, such as HA or HS, appear to contribute to successful cleavage during early development to the blastocyst stage but may be insufficient to maintain the posttransfer survival of ZP-free embryos.  相似文献   

16.
This study examined effects on the developmental competence of pig oocytes after somatic cell nuclear transfer (SCNT) or parthenogenetic activation (PA) of : 1) co-culturing of oocytes with follicular shell pieces (FSP) during in vitro maturation (IVM); 2) different durations of maturation; and 3) defined maturation medium supplemented with polyvinyl alcohol (PVA; control), pig follicular fluid (pFF), cysteamine (CYS), or β-mercaptoethanol (β-ME). The proportion of metaphase II oocytes was increased (p < 0.05) by co-culturing with FSP compared to control oocytes (98% vs. 94%). However, blastocyst formation after SCNT was not improved by FSP coculture (9% vs. 12%). Nuclear maturation of oocytes matured for 39 or 42 h was higher (p < 0.05) than that of oocytes matured for 36 h (95-96% vs. 79%). Cleavage (83%) and blastocyst formation (26%) were significantly higher (p < 0.05) in oocytes matured for 42 h than in other groups. Supplementation of a defined maturation medium with 100 µM CYS or 100 µM β-ME showed no stimulatory effect on oocyte maturation, embryo cleavage, or blastocyst formation after PA. β-ME treatment during IVM decreased embryo cleavage after SCNT compared to pFF or PVA treatments, but no significant difference was found in blastocyst formation (7-16%) among the four treatment groups. The results indicated that maturation of oocytes for 42 h was beneficial for the development of SCNT embryos. Furthermore, the defined maturation system used in this study could support in vitro development of PA or SCNT embryos.  相似文献   

17.
Aggregation of somatic cell nuclear transfer (SCNT) embryos in mice is reported to improve full-term development. In the present study, we attempted to improve the development of SCNT embryos by aggregation in cattle. In Experiment 1, to examine the effect of the timing of aggregation on in vitro development of cumulus-cell NT embryos, we aggregated two or three SCNT embryos (2X or 3X embryos) at the 1-cell, 8-cell and 16- to 32-cell stages. Irrespective of the timing of aggregation, 3X embryos developed to the blastocyst stage at a high rate. However, aggregation did not improve the total blastocyst formation rate of the embryos used. The cell numbers of 3X embryos aggregated at the 1-cell stage and 2X embryos tended to be higher than that of single NT embryos (1X embryos). Furthermore, a significant increase in cell number was observed in 3X embryos aggregated at the 8-cell stage and 16- to 32-cell stage. In Experiment 2, we used fibroblast cells as nuclear donors and examined in vitro development of 3X embryos aggregated at the 8-cell stage and 16- to 32-cell stage. As a result, 3X embryos had high blastocyst formation rates and higher cell numbers than 1X embryos, which was consistent with the results of Experiment 1. In Experiment 3, we examined the full-term developmental ability of 3X embryos aggregated at the 8-cell stage and 16- to 32-cell stage. After transfer of fibroblast-derived NT embryos into recipient animals, a significantly higher pregnancy rate was obtained on Day 60 in 3X embryos than in 1X embryos. Two embryos aggregated at 8-cell stage and one embryo aggregated at the 16- to 32-cell stage developed to term, while no pregnancies derived from 1X embryos that lasted to Day 60. However, two of the cloned calves were stillborn. These results suggest that aggregation of the 8-cell stage or 16- to 32-cell stage SCNT embryos may improve the pregnancy rate, but that it cannot reduce the high incidence of fetal loss and stillbirth, which is often observed in bovine SCNT.  相似文献   

18.
Nlrp9a, Nlrp9b and Nlrp9c are preferentially expressed in oocytes and early embryos in the mouse. Simultaneous genetic ablation of Nlrp9a and Nlrp9c does not affect early embryonic development, but the function of Nlrp9b in the process of oocyte maturation and embryonic development has not been elucidated. Here we show that both Nlrp9b mRNA and its protein are expressed in ovaries and the small intestine. Moreover, the NLRP9B protein was restricted to oocytes in the ovary and declined with oocyte aging. After ovulation and fertilization, NLRP9B protein was found in preimplantation embryos. Confocal microscopy demonstrated that it was mainly localized in the cytoplasm in the oocytes and blastomeres. Thus, this protein might play a role in oocyte maturation and early embryonic development. However, knockdown of Nlrp9b expression in GV-stage oocytes using RNA interference did not affect oocyte maturation or subsequent parthenogenetic development after Nlrp9b-deficient oocytes were activated. Furthermore, Nlrp9b knockdown zygotes could reach the blastocyst stage after being cultured for 3.5 days in vitro. These results provide the first evidence that the NLRP9B protein is dispensable for oocyte maturation and early embryonic development in the mouse.  相似文献   

19.
During mammalian preimplantation development, stimulation of zygotic genome activation (ZGA) and transposable elements (TEs) shapes totipotency profiling. A rare mouse embryonic stem cells (mESCs) subpopulation is capable of transiently entering a state resembling 2-cell stage embryos, with subtypes of TEs expressed and ZGA genes transiently activated. In this study, we found that deletion of H2A.X in mESCs led to a significant upregulation of ZGA genes and misregulated TEs. ChIP-seq analysis indicated a direct association of H2A.X at the Dux locus for silencing the Dux gene and its downstream ZGA genes in mESCs. We also demonstrated that histone variant H2A.X is highly enriched in human cleavage embryos when ZGA genes and TEs are active. Therefore, we propose that H2A.X plays an important role in regulating ZGA genes and TEs to establish totipotency.  相似文献   

20.
The present study was conducted to determine the relationship between embryonic development speed at different stages (the cleaved stage at 52 h and the blastocyst stage at 6 days post insemination) and incidences of chromosome abnormalities in in vitro produced porcine embryos. Porcine oocytes were collected from 3-6-mm ovarian follicles obtained at a slaughterhouse and matured in modified NCSU-37 medium for 44-46 h. Following in vitro fertilization with a final concentration of 1 x 10(5) sperm/ml for 3 h, all oocytes were cultured in vitro for 52 h. Day-2 (52 h after insemination) embryos were classified according to their cleaved stages into 2-cell, 3- to 4-cell, 5- to 8-cell, and >8-cell stages; these were cultured separately for additional 4 days (Day 6). The resultant Day-6 blastocysts were classified according to the morphological diameter into 3 grades: Grade A, expanded blastocysts; Grade B, expanding blastocysts; and Grade C, early blastocysts. They were then analyzed chromosomally. The 3- to 4-cell and 5- to 8-cell embryos had significantly high blastocyst development rates (46.1 and 36.9%, respectively), and these blastocysts contained significantly more cells (40.2 and 42.4 cells, respectively) than those derived from 2-cell embryos and >8-cell embryos (28.6 and 26.5 cells, respectively). The incidence of chromosomal abnormalities was significantly higher in the blastocysts derived from 2-cell and >8-cell stage embryos than in the blastocysts derived from the other stage embryos. Furthermore, the grade A blastocysts had the lowest incidence of chromosomal abnormalities (35.3%) and contained the most cells (48.7 cells). Porcine in vitro production (IVP) yielded a high blastocyst rate and an excellent embryo quality when 3- to 4-cell and 5- to 8-cell stage embryos were selected on Day 2 after insemination. The same criteria yielded a higher quality of expanded blastocysts based on the stage of embryo development and morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号