首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 619 毫秒
1.
Summary There is a lack of information on the combined effects of preceding crop, reduced tillage (especially no-tillage) and the time of herbicide application on the development of weed populations and the efficiency of weed control in winter wheat in humid temperate climates. An experiment was conducted with a crop rotation (winter wheat – oilseed rape – winter wheat – maize) on a sandy loam and a loamy silt soil in the Swiss midlands to investigate the impact of different preceding crops and pre- and post-emergence control of weeds in conventional tillage (CT; mouldboard plough), minimum tillage (MT; chisel plough) and no-tillage (NT; no soil disturbance systems). When winter wheat was grown after maize and winter wheat was grown after oilseed rape, the ranking order of weed density in treatments without herbicide application was NT < MT < CT and CT < MT < NT respectively. Analysis of variance and canonical discriminant analysis showed that Epilobium spp., Sonchus arvensis , Myosotis arvensis and volunteer crops were more abundant in NT than in MT and CT. The efficiency of post-emergence weed control was generally better than that of pre-emergence weed control, regardless of tillage intensity.  相似文献   

2.
Predicting the risk of weed infestation in winter oilseed rape crops   总被引:1,自引:0,他引:1  
Chemical weed control before crop and weed emergence is a systematic practice in winter oilseed rape crops in France. It would be profitable both for farmers and the environment to predict the level of weed infestation early on in the growing season and to control weeds only when necessary using post‐emergence weed control. The objective of this paper was to develop and evaluate simple models to predict weed biomass in oilseed rape crops. The model input variables were related to weed population characteristics and farmers’ practices. The models can be used to classify oilseed rape plots into two categories: plots with a level of weed infestation above a threshold or those with level of weed infestation below a threshold. A data set including 3 years of experiments, conducted across several regions in France, was used to estimate the parameters and to evaluate the models. High values of sensitivity and specificity were obtained when weed biomass was predicted as a function of sowing date, type of soil tillage, soil mineral nitrogen, crop density, weed density at emergence, and main characteristics of the most abundant weed species. Model performance strongly decreased when input variables related to the weed population were not taken into account. The best models correctly classified 90% of the plots with high weed infestation and 64% of the plots with low weed infestation.  相似文献   

3.
Two winter oilseed rape (Brassica napus) cultivars, tolerant to glyphosate and glufosinate, were compared with a conventional cultivar at three sites over 4 years, in 3‐year crop rotations in the UK. The winter oilseed rape was grown in Years 1 and 4, with winter cereals, which received uniform herbicide treatments, in the intervening years. The second winter oilseed rape treatments were applied to randomised sub‐plots of the original plots. Weed densities were recorded in autumn and spring and weed biomass was measured in summer. At most sites, there was only one application of glufosinate or glyphosate, whereas two products were often used on the conventional variety. The timing of glyphosate and glufosinate application was, on average, 34 days later than that of the conventional broad‐leaved weed control treatments. Overall weed control, across all sites and years, was not statistically different between the conventional, glyphosate and glufosinate treatments. However, glyphosate achieved higher control of individual weed species more frequently than the other treatments. Glufosinate and the conventional treatments were similar in performance. The treatments in Year 1 sometimes affected weed populations in the subsequent cereal crops and, in rare instances, those in the rape in Year 4. Carry‐over effects were small after most treatments. In general, weed survival was greater in the oilseed rape crops, irrespective of the treatment, than it was in the intervening cereal crops.  相似文献   

4.
Echinochloa colona is the most common grass weed of summer fallows in the grain‐cropping systems of the subtropical region of Australia. Glyphosate is the most commonly used herbicide for summer grass control in fallows in this region. The world's first population of glyphosate‐resistant E. colona was confirmed in Australia in 2007 and, since then, >70 populations have been confirmed to be resistant in the subtropical region. The efficacy of alternative herbicides on glyphosate‐susceptible populations was evaluated in three field experiments and on both glyphosate‐susceptible and glyphosate‐resistant populations in two pot experiments. The treatments were knockdown and pre‐emergence herbicides that were applied as a single application (alone or in a mixture) or as part of a sequential application to weeds at different growth stages. Glyphosate at 720 g ai ha?1 provided good control of small glyphosate‐susceptible plants (pre‐ to early tillering), but was not always effective on larger susceptible plants. Paraquat was effective and the most reliable when applied at 500 g ai ha?1 on small plants, irrespective of the glyphosate resistance status. The sequential application of glyphosate followed by paraquat provided 96–100% control across all experiments, irrespective of the growth stage, and the addition of metolachlor and metolachlor + atrazine to glyphosate or paraquat significantly reduced subsequent emergence. Herbicide treatments have been identified that provide excellent control of small E. colona plants, irrespective of their glyphosate resistance status. These tactics of knockdown herbicides, sequential applications and pre‐emergence herbicides should be incorporated into an integrated weed management strategy in order to greatly improve E. colona control, reduce seed production by the sprayed survivors and to minimize the risk of the further development of glyphosate resistance.  相似文献   

5.
Cover crops grown in the period between two main crops have potential as an important component of a system‐oriented ecological weed management strategy. In late summer and autumn, the cover crop can suppress growth and seed production of weeds, whereas the incorporation of cover crop residues in spring may reduce or retard weed emergence. Based on these two criteria, six cover crop species were evaluated for their weed suppressive potential in 2 years of experimentation in the Netherlands. Fodder radish, winter oilseed rape and winter rye had the strongest competitive ability in autumn; the competitive strength of Italian ryegrass was intermediate and white lupin and lucerne were poor competitors. Competitiveness was strongly correlated to early light interception. Surprisingly, doubling the recommended sowing density did not increase weed suppressive ability. Although a poor competitor in the fall, after incorporation in spring, lucerne had the strongest inhibitory effect on seedling establishment, followed by winter oilseed rape and white lupin. Winter rye and fodder radish did not affect seedling establishment, whereas Italian ryegrass was not evaluated because of re‐growth after incorporation. Competition in autumn and subsequent residue‐mediated suppression of weed establishment in spring varied among the cover crop species, with winter oilseed rape offering relatively strong effects during both periods.  相似文献   

6.
Despite frequent use for the past 25 years, resistance to glyphosate has evolved in few weed biotypes. The propensity for evolution of resistance is not the same for all herbicides, and glyphosate has a relatively low resistance risk. The reasons for these differences are not entirely understood. A previously published two‐herbicide resistance model has been modified to explore biological and management factors that account for observed rates of evolution of glyphosate resistance. Resistance to a post‐emergence herbicide was predicted to evolve more rapidly than it did to glyphosate, even when both were applied every year and had the same control efficacy. Glyphosate is applied earlier in the growing season when fewer weeds have emerged and hence exerts less selection pressure on populations. The evolution of glyphosate resistance was predicted to arise more rapidly when glyphosate applications were later in the growing season. In simulations that assumed resistance to the post‐emergence herbicide did not evolve, the evolution of glyphosate resistance was less rapid, because post‐emergence herbicides were effectively controlling rare glyphosate‐resistant individuals. On their own, these management‐related factors could not entirely account for rates of evolution of resistance to glyphosate observed in the field. In subsequent analyses, population genetic parameter values (initial allele frequency, dominance and fitness) were selected on the basis of empirical data from a glyphosate‐resistant Lolium rigidum population. Predicted rates of evolution of resistance were similar to those observed in the field. Together, the timing of glyphosate applications, the rarity of glyphosate‐resistant mutants, the incomplete dominance of glyphosate‐resistant alleles and pleiotropic fitness costs associated with glyphosate resistance, all contribute to its relatively slow evolution in the field.  相似文献   

7.
Annual ryegrass (Lolium rigidum) is a widespread and important weed of Australia and populations of this weed have developed resistance to most major herbicides, including glyphosate. The possible mechanisms of resistance have been examined in one glyphosate-resistant Lolium population. No major differences were observed between resistant and susceptible biotypes in respect of (i) the target enzyme (EPSP synthase), (ii) DAHP synthase, the first enzyme of the target (shikimate) pathway, (iii) absorption of glyphosate, or (iv) translocation. Following treatment with glyphosate, there was greater accumulation of shikimate (derived from shikimate-3-Pi) in susceptible than in resistant plants. In addition, the resistant population exhibited cross-resistance to 2-hydroxy-3-(1,2,4-triazol-1-yl)propyl phosphonate, a herbicide which, although structurally similar to glyphosate, acts at an unrelated target site. On the basis of these observations we speculate that movement of glyphosate to its site of action in the plastid is involved in the resistance mechanism. © 1999 Society of Chemical Industry  相似文献   

8.
BACKGROUND: A simulation model is used to explore the influence of biological, ecological, genetic and operational (management) factors on the probability and rate of glyphosate resistance in model weed species. RESULTS: Glyphosate use for weed control prior to crop emergence is associated with low risks of resistance. These low risks can be further reduced by applying glyphosate in sequence with other broad-spectrum herbicides prior to crop seeding. Post-emergence glyphosate use, associated with glyphosate-resistant crops, very significantly increases risks of resistance evolution. Annual rotation with conventional crops reduces these risks, but the proportion of resistant populations can only be reduced to close to zero by mixing two of three post-emergence glyphosate applications with alternative herbicide modes of action. Weed species that are prolific seed producers with high seed bank turnover rates are most at risk of glyphosate resistance evolution. The model is especially sensitive to the initial frequency of R alleles, and other genetic and reproductive parameters, including weed breeding system, dominance of the resistance trait and relative fitness, influence rates of resistance. CONCLUSION: Changing patterns of glyphosate use associated with glyphosate-resistant crops are increasing risks of evolved glyphosate resistance. Strategies to mitigate these risks can be explored with simulation models. Models can also be used to identify weed species that are most at risk of evolving glyphosate resistance.  相似文献   

9.
Weed populations with resistance to glyphosate have evolved over the last 7 years, since the discovery of the first glyphosate‐resistant populations of Lolium rigidum in Australia. Four populations of L. rigidum from cropping, horticultural and viticultural areas in New South Wales and South Australia were tested for resistance to glyphosate by dose–response experiments. All populations required considerably more glyphosate to achieve 50% control compared with a known susceptible population, indicating they were resistant to glyphosate. Translocation of glyphosate within these resistant populations was examined by following the movement of radiolabelled glyphosate applied to a mature leaf. All resistant plants translocated significantly more herbicide to the tip of the treated leaf than did susceptible plants. Susceptible plants translocated twice as much herbicide to the stem meristematic portion of the plant compared with resistant plants. These different translocation patterns suggest an association between glyphosate resistance in L. rigidum and the ability of glyphosate to accumulate in the shoot meristem.  相似文献   

10.
Lolium rigidum (annual or rigid ryegrass) is a widespread annual weed in cropping systems of southern Australia, and herbicide resistance in L. rigidum is a common problem in this region. In 2010, a random survey was conducted across the grain belt of Western Australia to determine the frequency of herbicide‐resistant L. rigidum populations and to compare this with the results of previous surveys in 1998 and 2003. During the survey, 466 cropping fields were visited, with a total of 362 L. rigidum populations collected. Screening of these populations with the herbicides commonly used for control of L. rigidum revealed that resistance to the ACCase‐ and ALS‐inhibiting herbicides was common, with 96% of populations having plants resistant to the ACCase herbicide diclofop‐methyl and 98% having plants resistant to the ALS herbicide sulfometuron. Resistance to another ACCase herbicide, clethodim, is increasing, with 65% of populations now containing resistant plants. Resistance to other herbicide modes of action was significantly lower, with 27% of populations containing plants with resistance to the pre‐emergent herbicide trifluralin, and glyphosate, atrazine and paraquat providing good control of most of the populations screened in this survey. Ninety five per cent of L. rigidum populations contained plants with resistance to at least two herbicide modes of action. These results demonstrate that resistance levels have increased dramatically for the ACCase‐ and ALS‐inhibiting herbicides since the last survey in 2003 (>95% vs. 70–90%); therefore, the use of a wide range of integrated weed management options are required to sustain these cropping systems in the future.  相似文献   

11.
Resistance to glyphosate and paraquat has evolved in some populations of Conyza spp. from California, USA. This study evaluated whether herbicide absorption and translocation were involved in the mechanism of resistance to both herbicides. Three lines of each species were used: glyphosate‐paraquat‐susceptible (GPS), glyphosate‐resistant (GR) and glyphosate‐paraquat‐resistant (GPR). Radiolabelled herbicide was applied to a fully expanded leaf, and absorption and movement out of the treated leaf were monitored for up to 24 h for paraquat and 72 h for glyphosate. Plants treated with paraquat were incubated in darkness for the first 16 h and then subjected to light conditions. More glyphosate was absorbed in C. bonariensis (52.9–58.3%) compared with C. canadensis (28.5–37.6%), but no differences in absorption were observed among lines within a species. However, in both species, the GR and GPR lines translocated less glyphosate out of the treated leaf when compared with their respective GPS lines. Paraquat absorption was similar among lines and across species (71.3–77.6%). Only a fraction of paraquat was translocated in the GPR lines (3% or less) when compared with their respective GPS or GR lines (20% or more) in both species. Taken together, these results indicate that reduced translocation is involved in the mechanism of resistance to glyphosate and paraquat in C. bonariensis and C. canadensis.  相似文献   

12.
Between 2005 and 2007 a total of 1364 oilseed rape (OSR) fields in 12 federal states of Germany was surveyed. Investigations took place in late autumn and included the identification and counting of all weeds in unsprayed parts of rape fields. Results on the impact of tillage intensity and crop sowing date on the level of total weed infestation, weed species number and weed flora composition in OSR fields are shown and those species identified which are sensitive to the analysed factors. Neither tillage intensity nor crop sowing date affect the level of weed infestation in OSR fields. In contrast, species richness was enhanced by non-inversion tillage as well as by an early crop sowing. While there were statistically proofed differences in the weed species composition of ploughed and unploughed OSR fields due to canonical correspondence analysis, the crop sowing date only had minor effects on species composition. Nevertheless, a multitude of single weed species was affected by tillage intensity and sowing date showing significantly differing relative frequencies and/or densities in fields with inversion and non-inversion tillage as well as between early and late sown crop. Among others Centaurea cyanus, Anchusa arvensis, A. spica-venti and Elymus repens were more abundant and partly reached higher densities after ploughing, whereas non-inversion tillage mainly favoured Galium aparine, Geranium spp. and Sisymbrium spp.. Lots of weed species tended to have higher populations when OSR was sown before August 15th, species significantly increased by early sowing date were e. g. Centaurea cyanus, Convolvulus arvensis, Euphorbia spp. and Anchusa arvensis. However, only V. arvensis reached significantly higher densities when OSR was sown after September 1st.  相似文献   

13.
Four field experiments were conducted at The International Rice Research Institute during the 1975 and 1976 crop seasons to develop minimum and zero tillage techniques for transplanted rice (Oryza sativa L.). High rates of glyphosate followed by a lower rate of paraquat effectively controlled Paspalum distichum L., but not Fimbristylis littoralis L. The tenminimum tillage treatments based on different combinations and sequences of pre-plant herbicide application, tillage and flooding, gave a similar grain yield to conventional tillage, and significantly higher grain yield than zero tillage treatments. Conventional, minimum and zero tillage were compared over four successive crops. After two crops with zero tillage, the plots were dominated by the perennials, P. distichum and Scirpus maritimus L., but with minimum or conventional tillage, weed control and grain yield were satisfactory. Efficiency of nitrogen fertilizer usage by the crop was the same with minimum as with conventional tillage but higher than with zero tillage and was increased by placement at 10 cm depth. The studies indicate that minimum tillage systems are a dependable alternative to conventional tillage for lowland rice production.  相似文献   

14.
An Eleusine indica population was previously reported as the first global case of field‐evolved glufosinate resistance. This study re‐examines glufosinate resistance and investigates multiple resistance to other herbicides in the population. Dose–response experiments with glufosinate showed that the resistant population is 5‐fold and 14‐fold resistant relative to the susceptible population, based on GR50 and LD50 R/S ratio respectively. The selected glufosinate‐resistant subpopulation also displayed a high‐level resistance to glyphosate, with the respective GR50 and LD50 R/S ratios being 12‐ and 144‐fold. In addition, the subpopulation also displayed a level of resistance to paraquat and ACCase‐inhibiting herbicides fluazifop‐P‐butyl, haloxyfop‐P‐methyl and butroxydim. ACCase gene sequencing revealed that the Trp‐2027‐Cys mutation is likely responsible for resistance to the ACCase inhibitors examined. Here, we confirm glufosinate resistance and importantly, we find very high‐level glyphosate resistance, as well as resistance to paraquat and ACCase‐inhibiting herbicides. This is the first confirmed report of a weed species that evolved multiple resistance across all the three non‐selective global herbicides, glufosinate, glyphosate and paraquat.  相似文献   

15.
An arable field was subdivided and subjected to either deep inversion ploughing or non‐inversion cultivation after viable seeds of Bromus sterilis had been sown into oilseed rape stubble. After sowing in isolated plots distributed within the field, sequences of cropping treatments for the establishment of two successive winter wheat crops were applied. Each subfield was split into an uphill and a downhill direction for soil cultivation. The field had a 10° slope. In the season following seed introduction, 2.6% of the introduced seeds had successfully germinated and established in the non‐inversion cultivation regime, when no effective graminicide was applied. Ploughing eradicated B. sterilis. Using differential global positioning system (DGPS) mapping of the whole field population, emerged plants were observed up to 8.7 m (uphill treatment) and 21.3 m (downhill treatment) of their initial source. The median distance seeds were transported was 2.3 m uphill and 4.8 m downhill. Post‐emergence application of the herbicide propoxycarbazone slightly reduced weed density and seed weight, and almost halved weed seed production. Application of fenoxaprop‐P‐ethyl was followed by higher density of plants, tillers and seeds of B. sterilis. Seed viability was unaffected by herbicide use. Thus, in the second wheat crop following seed rain, the weed population was dispersed more widely in the field, such that 20–30% of seeds were dispersed more than 5 m distance from the first year's foci of infestation. The relevance of soil cultivation to secondary dispersal of B. sterilis is discussed.  相似文献   

16.
G Fried  B Chauvel  X Reboud 《Weed Research》2015,55(5):514-524
Temporally repeated data sets can provide useful information about the management practices governing changes in the arable weed flora. This study aimed (i) to investigate changes in the most common weed species in winter oilseed rape crops in France between the 1970s and the 2000s and (ii) to pinpoint the main plant biological traits and associated management practices underlying the development of a specific weed flora in this crop. We compared two large‐scale surveys covering France in the 1970s and the 2000s, the later survey including several floristic samplings, on two dates, and both herbicide‐free control and treated plots. This last survey aimed to identify the species best able to maintain high densities over a growing season of oilseed rape. Since the 1970s, the frequency of two‐thirds (69%) of the 26 most common species has changed, spectacularly in some cases, with several species once considered rare becoming very common (e.g. Geranium dissectum) and, conversely, some formerly common species becoming rarer (e.g. Stellaria media). Our results indicated a general strong increase in specialist weeds of oilseed rape. Weed species success was favoured by tolerance to oilseed rape herbicides and germination synchronous with the crop. The proportion of specialist oilseed rape weed species tended to increase with herbicide treatment intensity and to decrease with increases in the proportion of spring‐sown crops in the rotation. Changes to the rotation may therefore constitute an additional or alternative means of controlling some weeds well adapted to oilseed rape crops.  相似文献   

17.
Lutman  Bowerman  Palmer  Whytock 《Weed Research》2000,40(3):255-269
Ten experiments have investigated competition between winter oilseed rape and Stellaria media (common chickweed). Yield losses caused by this weed were often high, but differed greatly between experiments, 5% yield loss being calculated to be caused by 1.4–328 plants m?2. Predictions of yield loss based on relative weed dry weights [weed dry weights/(crop + weed dry weights)] in December were somewhat less variable than those based on weed density, 5% yield loss being caused by 1.4–10.6% relative weed dry weight. The variations in yield loss were related to variations in the competitiveness of the oilseed rape and the S. media, caused by weather differences between years and sites, and the long period between weed assessment and harvest (8–10 months). However, despite the lack of precise relationships, there were indications that the greater the crop dry weights in December, the lower the final yield loss. Delayed sowing of oilseed rape until late September did not clearly increase the competitive effects of the weed compared with late August/early September sowings. Weed competition was not clearly affected by reduced crop density (44–113 plants m?2), because of the compensatory ability of the lowest density. The results of the experiments are discussed in relation to the prediction of yield loss and, thus, possible adjustment of weed control strategies to meet expected crop losses.  相似文献   

18.
BACKGROUND: Herbicide‐resistant crop technology could provide new management strategies for the control of parasitic plants. Three herbicide‐resistant oilseed rape (Brassica napus L.) genotypes were used to examine the response of attached Cuscuta campestris Yuncker to glyphosate, imazamox and glufosinate. Cuscata campestris was allowed to establish on all oilseed rape genotypes before herbicides were applied. RESULTS: Unattached seedlings of C. campestris, C. subinclusa Durand & Hilg. and C. gronovii Willd. were resistant to imazamox and glyphosate and sensitive to glufosinate, indicating that resistance initially discovered in C. campestris is universal to all Cuscuta species. Glufosinate applied to C. campestris attached to glufosinate‐resistant oilseed rape had little impact on the parasite, while imazamox completely inhibited C. campestris growth on the imidazolinone‐resistant host. The growth of C. campestris on glyphosate‐resistant host was initially inhibited by glyphosate, but the parasite recovered and resumed growth within 3–4 weeks. CONCLUSION: The ability of C. campestris to recover was related to the quality of interaction between the host and parasite and to the resistance mechanism of the host. The parasite was less likely to recover when it had low compatibility with the host, indicating that parasite‐resistant crops coupled with herbicide resistance could be highly effective in controlling Cuscuta. Published 2009 by John Wiley & Sons, Ltd.  相似文献   

19.
The potential of oilseed rape to suppress weed growth while maintaining optimal yield and quality is not well understood under field conditions in Australia. This study, conducted in Condobolin and Wagga Wagga, New South Wales (NSW), during 2015 and 2016, examined a diverse range of commercial oilseed rape cultivars for their inherent ability to suppress weeds and maintain yields when in competition with natural weed infestations, with and without pre-emergent herbicide treatment. Cultivar differences were observed in oilseed rape canopy architecture and yield; however, early-season biomass, light interception, leaf area index and visual vigour ratings exhibited both year and location interactions. Cultivars with the highest biomass, light interception, leaf area indices and visual vigour were typically also the most weed-suppressive, in particular GT-50 and Hyola 600RR. Although crop and weed biomass accumulation differed significantly among cultivars for both location and year, weed biomass was inversely related to cultivar biomass in both years and locations. Hybrid Hyola and GT-50 cultivars exhibited up to 50% less weed biomass while maintaining consistently high levels of dry crop biomass. In addition, pre-emergent herbicide applications reduced weed infestation and contributed to higher crop yield in both locations and years. Given the consistent aboveground competitive ability of certain oilseed rape cultivars, our study demonstrated that diverse cultivar-dependent competitive traits such as early growth vigour, biomass production, absorption of photosynthetically active radiation and production and retention of crop residue significantly impacted weed establishment and total weed biomass. Our findings suggest that cultivar selection offers potential as a tool for maintaining suitable grain yield in the presence of weeds while potentially delaying the development of herbicide resistance through efficacious weed suppression.  相似文献   

20.
Use of reduced and no-tillage systems has increased in recent years due to concerns for ecological and economic sustainability of agricultural production. Effective weed control is a serious concern in reduced tillage production. This study was conducted to investigate weed control practices in reduced and no-till maize production. The most effective timing of glyphosate application, either before or after sowing, was investigated in combination with pre-emergence application of acetochlor (840 g a.i/L), post-emergence application of foramsulfuron (22.5 g a.i/L), and two hoeing treatments. The treatments were maintained on the same plots during 2011 and 2012 to evaluate the cumulative effects of the treatments. Main plot treatments consisted of four timings of glyphosate application: 20 or 10 days before sowing, day of sowing, 5 days after sowing, and an untreated control. Sub-plot treatments were: pre- plus post-emergence herbicides, pre-emergence herbicide plus rotary hoeing, post-emergence herbicide plus rotary hoeing, and post-emergence herbicide plus two hoeing treatments (rotary and lister hoe). In the main plots, the lowest weed biomass was produced in glyphosate treatments at sowing and 5 days after sowing; the highest biomass was produced in control plots and in the plots with glyphosate treatments 20 days before sowing. In the sub-plots, the greatest weed biomass was produced in plots with two hoeing treatments (rotary and lister hoe). Glyphosate treatments at sowing and post-emergence herbicide treatment combinations produced the best weed control. Economic analysis revealed that pre-sowing, non-selective herbicide treatments provided a slight increase in net profit. Mechanical hoeing decreased net income due to increased production costs. The highest income was obtained from the pre-emergence plus post-emergence herbicide treatment combinations with no glyphosate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号