首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The physical deterioration of soil under continuous cropping is a problem in many humid, temperate areas. While soils of the Kairanga Series (Typic Endoaquept), Manawatu Region, North Island, New Zealand, are widely used for continuous cereal production, there is concern over the long-term sustainability of this land use. We report the results of a field experiment conducted on a sequence of sites on Kairanga soils, with cropping durations of 0, 4 and 28 years. Study objectives were to quantify physical differences between these soils and to assess a field method for measuring sensitivity to further compaction. Significant changes in key soil physical properties were recorded between the pasture and cropped sites in the 0–30 cm depth range. Most changes had occurred within the first 4 years of cropping. Physical properties that changed significantly included macropore volume (>60 μm), air capacity volume (>30 μm), air permeability, saturated hydraulic conductivity, unsaturated hydraulic conductivity (−0.4 kPa), and shear strength. Bulk density increased significantly only after a long cropping period, and penetration resistance measurements did not significantly differentiate sites of increasing cropping duration. Hence, bulk density and penetration resistance measurements on their own may not be adequate to assess cropping impact. Agricultural tractors were used under moist spring conditions to impose wheel traffic at an intensity of 273–305 Mg km ha−1 on the study sites. The wheel traffic experiment confirmed the trends revealed by the initial site sampling, and also indicated that both soil deformation and soil compaction were the operational forms of soil disturbance at a soil water matric potential of −10 kPa. Soil physical conditions at the long-term cropped site (28 years) had stabilised and were in equilibrium with the soil’s biological and physical environments, while the short-term cropped site (4 years) was still in a transition state, with the likelihood of further increases in bulk density and shear strength. To start appropriate amelioration, it is important to identify when soils are in transition between pasture and long-term cropped states.  相似文献   

2.
Soil compaction is a main cause of soil degradation in the world and the information of soil compaction in subtropical China is limited. Three main Ultisols (quaternary red clay, sandstone and granite) in subtropical China were homogenized to pass through 2 mm sieve and recompacted into soil cores at two bulk densities (1.25 and 1.45 g cm−3). The soil cores were equilibrated at different matric potential values (−3, −6 and −30 kPa) before subjected to multi-step compaction tests. Objectives of this study were to determine how different initial soil conditions and loading time intervals influence pre-compression stress and to evaluate an easy measure to determine soil vulnerability to compaction. It became evident that the soil strength indicator, pre-compression stress, was affected by soil texture, initial soil bulk density and matric potential. The coarser the soil texture, the lower the bulk density and the higher the matric potential, the lower was the pre-compression stress. The pre-compression stress decreased exponentially with increasing initial soil water content. Soil water content and air permeability decreased after compaction. The amount of water loss was affected not only by soil texture, bulk density and initial water content but also by loading time interval. These results indicate soil pore structure and hydraulic conductivity changed during compactions. The applied stress corresponding to the highest changes of pore water pressure during compaction had a significant linear relationship with the pre-compression stress (R=0.88, P<0.001). The correlation was ascribed to that the changes in pore water pressure describe the dynamics of the interactive effects of soil pore characters and soil water movement during compaction. The results suggested the evaluation of soil vulnerability to compaction have to consider the initial soil condition and an easy method to measure the changes in pore water pressure can be applied to compare soil strength and soil vulnerability to compaction.  相似文献   

3.
Soil compaction caused by traffic of heavy vehicles and machinery has become a problem of world-wide concern. The aims of this study were to evaluate and compare the changes in bulk density, soil strength, porosity, saturated hydraulic conductivity and air permeability during sugar beet (Beta vulgaris L.) harvesting on a typical Bavarian soil (Regosol) as well as to assess the most appropriate variable factors that fit with the effective controlling of subsequent compaction. The field experiments, measurements and laboratory testing were carried out in Freising, Germany. Two tillage systems (conventional plough tillage and reduced chisel tillage) were used in the experiments. The soil water contents were adjusted to 0.17 g g−1 (w1), 0.27 g g−1 (w2) and 0.35 g g−1 (w3).Taking the increase in bulk density, the decrease in air permeability and reduction of wide coarse pore size porosity (−6 kPa) into account, it seems that CT (ploughing to a depth of 0.25 m followed by two passes of rotary harrow to a depth 0.05 m) of plots were compacted to a depth of at least 0.25 m and at most 0.40 m in high soil water (w3) conditions. The trends were similar for “CT w1” (low soil water content) plots. However, it seems that “CT w1” plots were less affected than “CT w3” plots with regard to bulk density increases under partial load. In contrast, diminishments of wide coarse pores (−6 kPa) and narrow (tight) coarse pores (−30 kPa) were significantly higher in “CT w1” plots down to 0.4 m. Among CT plots, the best physical properties were obtained at medium soil water (w2) content. No significant increase in bulk density and no significant decrease in coarse pore size porosity and total porosity below 0.2 m were observed at medium soil water content. The soil water content seemed to be the most decisive factor.It is likely that, CS (chiselling to a depth of 0.13 m followed by two passes of rotary harrow to a depth 0.05 m) plots were less affected by traffic treatments than CT plots. Considering the proportion of coarse pore size porosity (structural porosity) and total porosity, no compaction effects below 0.3 m were found. Medium soil water content (w2) provides better soil conditions after traffic with regard to wide coarse pore size porosity (−6 kPa), air permeability (at 6 and 30 kPa water suction), total porosity and bulk density. Proportion of wide coarse pores, air permeability and bulk density seems to be suitable parameters to detect soil compaction under the conditions tested.  相似文献   

4.
Denitrification rates are often greater in no-till than in tilled soils and net soil-surface greenhouse gas emissions could be increased by enhanced soil N2O emissions following adoption of no-till. The objective of this study was to summarize published experimental results to assess whether the response of soil N2O fluxes to the adoption of no-till is influenced by soil aeration. A total of 25 field studies presenting direct comparisons between conventional tillage and no-till (approximately 45 site-years of data) were reviewed and grouped according to soil aeration status estimated using drainage class and precipitation during the growing season. The summary showed that no-till generally increased N2O emissions in poorly-aerated soils but was neutral in soils with good and medium aeration. On average, soil N2O emissions under no-till were 0.06 kg N ha−1 lower, 0.12 kg N ha−1 higher and 2.00 kg N ha−1 higher than under tilled soils with good, medium and poor aeration, respectively. Our results therefore suggest that the impact of no-till on N2O emissions is small in well-aerated soils but most often positive in soils where aeration is reduced by conditions or properties restricting drainage. Considering typical soil C gains following adoption of no-till, we conclude that increased N2O losses may result in a negative greenhouse gas balance for many poorly-drained fine-textured agricultural soils under no-till located in regions with a humid climate.  相似文献   

5.
The precompression stress value defines the transition from the reloading curve to the virgin compression line in the stress–strain curve, which can be used to quantify the highest load or the most intense predrying previously applied to the soil. Thus, in soils with well-defined structured soil horizons, each layer can be characterized by such mechanical strength. Penetration resistance measurements, on the other hand, can be used to determine total soil strength profiles in the field. The effect of long-term tillage systems on physical and mechanical properties was determined in undisturbed and remolded samples collected at 5 and 15 cm depth, 6 months after applying no-till (NT), chisel plow (CP), and conventional tillage (CT) treatments, along with the application of mineral fertilizer and poultry litter. The compressibility tests were performed under confined conditions, with normal loads varying from 10 to 400 kPa after a defined predrying to −6 or −30 kPa. Penetration resistance was determined in the field, after seeding, in three positions: seeding row (SR), untrafficked interrow (UI), and recently trafficked interrow (TI). No-till system showed greater soil resistance to deformation than tilled treatments, as determined by the higher precompression stress and lower coefficient of compressibility. When original soil structure was destroyed (remolded samples), smaller differences were found. The application of extra organic matter (poultry litter) resulted in a reduction of precompression stress in undisturbed samples. Penetration resistance profiles showed greater differences among tillage treatments in the upper layer of the untrafficked interrow, where NT system showed the higher values. Smaller differences were found in the seeding row (with lower values) and in recently trafficked interrow (with higher values), showing that even traffic with a light tractor after soil tillage reduced drastically the effect of previous tillage by loosening up the soil. On the other hand, the tool used to cut the soil and to open the furrow for seeding, incorporated in the direct seeding machine, was sufficient to realleviate surface soil compaction.  相似文献   

6.
Soil compaction can affect the turnover of C and N (e.g. by changing soil aeration or by changing microbial community structure). In order to study this in greater detail, a laboratory experiment simulating total soil porosities representative of field conditions in cropped and pasture soils was set up. Soils were silty clay loams (Typic Endoaquepts) from a site that had been cropped with cereals continuously for 28 years, a permanent pasture and a site that had been cropped with maize continuously for 10 years. Soils from the three sites were compacted into cores to different total porosities (corresponding bulk densities ranging from 0.88 to 1.30 Mg m−3). The soil cores were equilibrated to different matric potentials (ranging from −1 to −100 kPa), yielding values for the fraction of air-filled pores of < 0.01 to 0.53 m3 m−3, and then incubated at 25°C for 21 days. C-mineralization was on average 15, 33 and 21 μg C g−1 day−1 for soils from the cropped, pasture and maize sites, respectively, and was positively correlated with soil water contents. Net N-mineralization showed a similar pattern only for well-aerated, high total porosity cores (corresponding bulk density 0.88 Mg m−3) from the pasture soil. Denitrification at < 0.20 m3 m−3 for the fraction of air-filled pores may have caused the low N-mineralization rates observed in treatments with high water content or low porosity. Microbial biomass estimates decreased significantly with increasing water contents if measured by fumigation-extraction, but were not significantly affected by water content if estimated by the substrate-induced respiration method. The degree of soil compaction did not affect the microbial biomass estimates significantly but did affect microbial activity indirectly by altering aeration status.  相似文献   

7.
In soil mechanics, precompression stress is an essential parameter for estimations of the compaction risk of cultivated land. In order to determine this factor, regression equations were developed. They require various input variables of water and air regime, dry bulk density as well as the shear strength parameters c and φ. In this paper, we propose a regression model, which estimates the precompression stress from the two parameters dry bulk density (BD) and aggregate density (AD). The experiments were conducted on various structured arable soils in Germany. Altogether 25 natural soils and seven disturbed substrates were examined with three to seven replications. On all sites, precompression stress (log σP) was determined by means of stress–strain measurements under drained conditions and a matric potential of −6 kPa. The same samples were used for estimating the dry bulk density. Parallel to this, density measurements of aggregates with a diameter of 8–10 mm were made at a matric potential of −6 kPa. Aggregate density and dry bulk density were put into a relation (AD/BD ratio). This quotient shows the state of the inter-aggregate pore system and thus the load-support strength between the aggregates. A multiple linear regression equation of simple design allows to determine the level of precompression stress using the input variables AD/BD ratio and dry bulk density. Precompression stress rises with increasing dry bulk density. An increasing AD/BD ratio leads to a decline of precompression supposing the density values remain constant. The model produced good agreement with the measured values. The determination coefficient of the regression function was 0.84, the mean absolute error (MAE) 0.12 and the root mean square error (RMSE) 0.14. The index of agreement according to Willmot [Willmot, C.J., 1982. Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. 63 (11), 1309–1313] was 0.95.  相似文献   

8.
The concept of degree of compactness (DC), referred to as field bulk density (BD) as a percentage of a reference bulk density (BDref), was developed to characterize compactness of soil frequently disturbed, but for undisturbed soil such as under no-tillage critical degree of compactness values have not been tested. The objective of this study was to compare methods to determine BDref and limits of DC and BD for plant growth under no-tillage in subtropical soils. Data from the literature and other databases were used to establish relationships between BD and clay or clay plus silt content, and between DC and macroporosity and yield of crops under no-tillage in subtropical Brazil. Data of BDref reached by the soil Proctor test on disturbed soil samples, by uniaxial compression with loads of 200 kPa on disturbed and undisturbed soil samples, and 400, 800 and 1600 kPa on undisturbed soil samples, were used. Also, comparisons were made with critical bulk density based on the least limiting water range (BDc LLWR) and on observed root and/or yield restriction in the field (BDc Rest). Using vertical uniaxial compression with a load of 200 kPa on disturbed or undisturbed samples generates low BDref and high DC-values. The standard Proctor test generates higher BDref-values, which are similar to those in a uniaxial test with a load of 1600 kPa for soils with low clay content but lower for soils with high clay content. The BDc LLWR does not necessarily restrict root growth or crop yield under no-tillage, since field investigations led to higher BDc Rest-values. A uniaxial load greater than 800 kPa is promising to determine BDref for no-tillage soils. The BDref is highly correlated to the clay content and thus pedotransfer functions may be established to estimate the former based on the latter. Soil ecological properties are affected before compaction restricts plant growth and yield. The DC is an efficient parameter to identify soil compaction affecting crops. The effect of compaction on ecological properties must also be further considered.  相似文献   

9.
The extreme climate of the northern Great Plains of North America requires cropping systems to possess a resilient soil resource in order to be sustainable. This paper summarizes the interactive effects of tillage, crop sequence, and cropping intensity on soil quality indicators for two long-term cropping system experiments in the northern Great Plains. The experiments, located in central North Dakota, were established in 1984 and 1993 on a Wilton silt loam (FAO: Calcic Siltic Chernozem; USDA1: fine-silty, mixed, superactive frigid Pachic Haplustoll). Soil physical, chemical, and biological properties considered as indicators of soil quality were evaluated in spring 2001 in both experiments at depths of 0–7.5, 7.5–15, and 15–30 cm. Management effects on soil properties were largely limited to the surface 7.5 cm in both experiments. For the experiment established in 1984, differences in soil condition between a continuous crop, no-till system and a crop–fallow, conventional tillage system were substantial. Within the surface 7.5 cm, the continuous crop, no-till system possessed significantly more soil organic C (by 7.28 Mg ha−1), particulate organic matter C (POM-C) (by 4.98 Mg ha−1), potentially mineralizable N (PMN) (by 32.4 kg ha−1), and microbial biomass C (by 586 kg ha−1), as well as greater aggregate stability (by 33.4%) and faster infiltration rates (by 55.6 cm h−1) relative to the crop–fallow, conventional tillage system. Thus, soil from the continuous crop, no-till system was improved with respect to its ability to provide a source for plant nutrients, withstand erosion, and facilitate water transfer. Soil properties were affected less by management practices in the experiment established in 1993, although organic matter related properties tended to be greater under continuous cropping or minimum tillage than crop sequences with fallow or no-till. In particular, PMN and microbial biomass C were greatest in continuous spring wheat (with residue removed) (22.5 kg ha−1 for PMN; 792 kg ha−1 for microbial biomass C) as compared with sequences with fallow (SW–S–F and SW–F) (Average=15.9 kg ha−1 for PMN; 577 kg ha−1 for microbial biomass C). Results from both experiments confirm that farmers in the northern Great Plains of North America can improve soil quality and agricultural sustainability by adopting production systems that employ intensive cropping practices with reduced tillage management.  相似文献   

10.
Poor crop establishment, due to poor land preparation methods and inadequate soil moisture, continues to be a major constraint to crop production for smallholder farmers in the semi-arid tropics. On-farm seed priming (soaking seed in water) has been offered as a solution to this problem, but the ways in which this technology interacts with soil conditions are not well understood. The interactions between seed priming and soil physical conditions on cotton (Gossypium hirsutum L.) and maize (Zea mays L.) emergence and seedling growth were determined in laboratory pot experiments. The treatments included seed treatment (primed and non-primed), initial soil matric potential (−10, −50, −100, −200 and −1500 kPa) and aggregate size (<1, 1–2, 2–4.75 and 4.75–16 mm). Non-sieved soil was used as a control. The soil used (a Chromic Cambisol) was collected from Save Valley Experiment Station in the southeastern lowveld of Zimbabwe. The pots of soil were allowed to dry out after planting, to simulate a deteriorating seedbed. Emergence was subsequently monitored, and plant growth measured 8 days after planting. Final percent emergence and seedling growth decreased with initial matric potential but increased with priming in both crops. Large aggregate sizes generally had an adverse effect on emergence and growth. The data are consistent with the hypothesis that on-farm seed priming can partly compensate for the negative effects of low soil matric potential and large aggregate sizes on crop establishment.  相似文献   

11.
Tillage alters corn root distribution in coarse-textured soil   总被引:3,自引:0,他引:3  
Root responses to tillage vary and the driving factors are not well understood. Characterization of root response is requisite to optimize fertilizer placement and to understand limitations to no-till production. Corn (Zea mays L.) root length and weight were measured in the top 0.3 m of coarse-textured soil (Psammentic Hapludalf) in southwestern Ontario, Canada after 5, 6 and 7 yr of conventional and no-till management. Root length density in the top 0.1 m was greater under no-till (17 km m−3) than under conventional till (7 km m−3) 2 yr out of 3. Root length density was 4 km m−3 lower under no-till than under conventional till in the 0.15 to 0.3 m layer 1 yr out of 3, but otherwise root growth below 0.1 m was unaffected by tillage. Each year, root length and weight were distributed more horizontally under no-till than under conventional till. Corn grain yields did not vary with tillage, even though soil water content was often greater under no-till. The increase in soil water (of between 0.01 and 0.03 m3 m−3) was partly due to increased water holding capacity—water held between −8 and −200 kPa matric potential was usually greater under no-till (0.07 m3 m−3) than under conventional till (0.06 m3 m−3) in the top 0.15 m. The shift in root distribution was apparently driven by soil structure because variation in bulk density with tillage and depth followed the same trends as variation in root length. Bulk density was greater under no-till (1.5 Mg m−3) than under conventional till (1.4 Mg m−3) in the top 0.15 m. In the top 0.075 m, the proportion of the total space occupied by capillary pores (<36 μm diameter) was greater under no-till (17%) than under conventional till (15%), there were more dry-stable aggregates under no-till (9% of total soil in the 0.85–5.7 mm size fraction) than under conventional till (7%), and a greater proportion of these aggregates were water-stable under no-till (25%) than under conventional till (16%). Greater bulk density may trigger formation of lateral roots, and greater aggregation contribute to the more superficial development by deflecting roots from their gravitropic pathway. Given the more superficial root distribution under no-till, shallower placement of downwardly mobile nutrients such as nitrogen may be more efficient than knife-injection.  相似文献   

12.
In a field experiment, a sandy loam was subjected to single passes with a sugar beet harvester at two different soil water potentials. Different hopper fillings resulted in ground contact pressures of 130 kPa (partial load) and 160 kPa (full load) underneath the tyre. Bulk density, macroporosity (equivalent pore radius >100 μm), penetrometer resistance, air permeability and pre-consolidation pressure were measured within and next to the wheel tracks at depths of 0.12–0.17, 0.32–0.37 and 0.52–0.57 m. Furthermore, the soil structure at two horizons (Ahp 7–24 cm, B(C) 24–38 cm) was visually assessed and classified.

The moist plot responded to a wheel load of 11.23 mg (160 kPa) with an increase in bulk density and pre-consolidation pressure as well as with a decrease in air permeability and macroporosity at a depth of 0.12–0.17 m. With a wheel load of 7.47 mg (130 kPa) on the moist plot and with both wheel load levels on the dry plot, only slight changes of the soil structure were detected. At a depth of 0.32–0.37 and 0.52–0.57 m, the measurements did not indicate any compaction. An ANOVA indicates that the factor “soil water potential” and the factor “wheel load” significantly influence the bulk density at a depth of 0.12–0.17 m. No interactions occurred between these two factors. The wheel traffic on the test plot had no effect on the yield of winter wheat planted after the experimental treatment.

Bulk density, macroporosity and pre-consolidation pressure proved to be sensitive to detect compaction because they varied only slightly and are easy to measure. In contrast, the standard deviation of air permeability is large. The soil structure determined visually in the field confirms the values measured in the laboratory. The results of the penetrometer resistance measurements were not explainable.  相似文献   


13.
Soil degradation is accelerated when perennial crops are converted to annual row crops, primarily due to increased soil disturbance from tillage. Subsequent heavy rainfall may induce soil settling, reduce macroporosity and increase hardsetting upon drying. An experiment involving plow and no-tillage and two simulated rainfall treatments (‘wet’ and ‘dry’) was conducted on Kingsbury clay loam soil in northern New York in 1992 and 1993 to study their effects on soil structure under maize (Zea mays L.) after conversion from alfalfa (Medicago sativa L.), and to evaluate the use of spectral analysis of micropenetrometer observations for studying soil aggregation. Undisturbed soil cores were collected from the row and trafficked and non-trafficked interrow positions at the 0.05 and 0.15 m depths and used for laboratory measurement of soil strength and pore system properties. These well-structured soils show a high contribution (up to 0.15 m3 m−3) of macropores to the total porosity of the soil. Soil strength was generally slightly higher for no-till (NT) than plow till (PT), although only significant in 1992. Soil strength in the surface layer did not change significantly with drying. Spectral density patterns did not show strong treatment effects, although distinct peaks reflect 3.0–3.5 mm stable structural units within macroaggregates. Simulated rainfall treatments and tillage treatments generally did not strongly affect measured soil properties, presumably due to stable soil structure. Structurally stable clay loam soils show little effect of tillage or settling on soil physical properties in the first years after alfalfa to maize conversion, and have good potential for long-term annual crop production if properly managed.  相似文献   

14.
Soil erosion contributes to the removal and redistribution of soil organic C from cultivated fields. The soil organic C content of wind erodible and water unstable aggregates is an important factor in determining the amount of carbon loss occurring in erosion processes. The relative distribution of organic carbon among aggregate size fractions may also affect the response of soils to erosion. Soil organic C distribution is dependent on the chosen management system. The effects of no-till, till, and grassland management systems on organic C content of erodible and non-erodible aggregates were examined in six Ustolls and two Usterts of central South Dakota. Organic C contents were related to dry- and wet-sieving to represent the potential influence of wind and water erosion on C loss in the absence of vegetative cover. Loss of aggregate stability in cultivated soils was associated with organic C loss. Most structural characteristics developed under tilled systems persisted after 6–16 years of no-till. Changes in distribution of organic C due to management systems were most evident in Ustolls where cultivation resulted in net soil C losses. Soil organic C was not significantly increased by the no-tillage practices applied in this on-farm study (in Ustolls 49 Mg ha−1 in no-till versus 41 Mg ha−1 in till, for 0–0.20 m depth). Soil properties of Usterts were less affected by land use and management practices due to the high shrink swell action and self-mixing. In both soil orders the greater concentration of organic C in the wind erodible (<1 mm) dry aggregate size fraction implies a high potential for organic C loss by erosion in addition to organic C loss from mineralization after tillage. Grassland when compared to cultivated topsoil showed the largest amounts of organic carbon stored and the minimal potential for erosion loss of soil organic C.  相似文献   

15.
A model for soil crumbling, called the capillary crumbling model (CCM) was introduced by Aluko and Koolen [Aluko, O.B., Koolen, A.J., 2000. The essential mechanics of capillary crumbling of structured agricultural soils. Soil Till. Res. 55, 117–126]. According to the CCM, the optimum soil water content for tillage (θOPT) may be defined as the water content at which the capillary bonding strength between aggregates is minimum. The objective of this study was to evaluate the CCM for the arable layer of 10 agricultural soils (sandy loam to clay textures) from semi-arid regions in western Iran. The results were compared with conventional soil workability limits such as 0.85 of the soil plastic limit (0.85θPL), Proctor critical water content (θProctor), 0.6 or 0.7 of water content at matric suction of 50 hPa (0.6–0.7θ50 hPa), and the Kretschmer optimum water content (θKretschmer = θPL − 0.15(θLL − θPL)) where θLL is the soil liquid limit. Repacked soil cores were prepared from intact soil aggregates (0.50–4.75 mm) to 0.9 of the critical bulk density (to represent the soil conditions before tillage). Tensile strength and matric suction of the cores were determined at different soil water contents obtained by slow drying. The CCM provided evidence for the physics and mechanics of crumbling in the studied soils. It revealed that effective stresses are the dominant inter-aggregates forces, at least for the wet range of soil water content. A fall in strength of inter-aggregate bonds (i.e. tensile strength) was recorded due to water emptying from structural pores in a narrow range of matric suction (hOPT) which was consistent with the model. With increasing soil organic matter and clay contents the fall became more distinct, indicating increased structural stability. The θOPT values determined by the CCM were found in the hOPT range 551–612 hPa corresponding to 0.91–0.79θPL, which was in agreement with published values for the soil workability limit. Negative correlations between hOPT and clay and organic matter contents clearly confirmed the increasing effect of soil structure on the enlargement of inter-aggregate pores. High correlations were observed between θOPT and 0.85θPL, θProctor or 0.7θ50 hPa. The results showed that the CCM might be recommended as a physically based method for the determination of θOPT. Considering the 1:1 relationships between θOPT and 0.85θPL or θProctor, and easy determination of θPL and θProctor, use of these indices is recommended in situations where the CCM is not applicable.  相似文献   

16.
Traditionally, soil strength is estimated from uniaxial, confined compression tests by procedures adopted from classical soil mechanics. The heterogeneity of agricultural topsoil calls for an alternative approach. Undisturbed soil cores were collected in the plough layer of 14 soils in arable agriculture. Soil texture ranged from coarse sandy to silty loam soils with a maximum of 20% clay. The samples were drained to either of six matric potentials in the range from − 30 to − 300 hPa. Uniaxial, confined compression was applied to ∼800 kPa with strain-controlled stress application (1 mm min−1). Measured strain was fitted to stress by the Morgan-Mercer-Flodin (MMF) model. The model fitted data remarkably well for all samples. Three fitting parameters of the model reflected physical characteristics of soil reaction to stress. The estimates of soil compressibility calculated from the model at 10 kPa (C10) correlated closely and linearly to the Cs index considered to reflect elastic deformation in classical studies of soil compression tests. Soil bulk density and content of soil organic matter decreased C10 as well as compressibility at 100 (C100) and 400 kPa (C400). A complex pattern in the effects of soil texture and soil moisture on compressibility was revealed. The pattern in strain-stress data is interpreted as a reflection of a gradual transition from elastic to plastic deformation of the mixture of structural units. The MMF model is suggested for interpretation of strain-stress data from uniaxial, confined compression tests. This implies use of stress in a linear scale.  相似文献   

17.
Factors affecting the compaction susceptibility of South African forestry soils were assessed. Two traditional measures of compaction susceptibility were used: maximum bulk density (ρmbd) determined by the standard Proctor test, defined compactibility, and the compression index using a simple uni-axial test, defined compressibility. Soils were chosen from a broad range of geological and climatic regions and they varied greatly in texture (8 to 66 g 100 g−1 clay) and organic matter content (0.26 to 5.77 g 100 g−1 organic carbon). Soils showed a wide range in ρmbd values, from 1.24 to 2.00 Mg m−3, and this reflected the wide range of particle size distributions and organic matter contents of the soils. Very good correlations were achieved between measures of particle size distribution, particularly clay plus silt and both compactibility and compressibility. Both compactibility and compressibility were significantly correlated with loss-on-ignition (LOI) which is a measure reflecting the combined effects of soil texture and organic matter on soil physical properties. Indices of compaction susceptibility were influenced more by particle size distribution than by organic carbon content. Clear effects of organic carbon on compaction behaviour were only evident for soils with low clay contents (< 25 g 100 g−1. No clear relationship between compactibility and compressibility was found. Compactibility generally increased with decreasing clay plus silt content, whereas compressibility increased up to about 70 g 100 g−1 clay plus silt before decreasing again. It is difficult to define compaction susceptibility solely in terms of indices of compactibility or compressibility particularly as there is no clear relationship between these two properties. A classification system for compaction risk assessment is presented, based on the relationship between compactibility (ρmbd) and LOI, and between clay plus silt content and compressibility.  相似文献   

18.
Soil compaction limits soil water availability which adversely affects coconut production in Sri Lanka. Field experiments were conducted in coconut (Cocos nucifera L.) plantations with highly and less compacted soils in the intermediate climatic zone of Sri Lanka. Soil physical properties of sixteen major soil series planted with coconut were evaluated to select the most suitable soil series to investigate the effect of deep ploughing on soil water conservation. Soil compaction and soil water retention with respect to deep ploughing were monitored during the dry and rainy seasons using cone penetrometer and neutron scattering techniques, respectively. Evaluation of soil physical properties showed that the range of mean values of bulk density (BD) and soil penetration resistance (SPR) in the surface soil (0–10 cm depth) of major soil series in coconut lands was from 1.38 ± 0.02 to 1.57 ± 0.07 g/cm3 and 55 ± 10 to 315 ± 16.4 N/cm2 respectively. The total available water fraction increased with clay content of soil as a result of high micropores. However, due to soil compaction, ability of soils to conserve water and to remain aerated was low for those series. Deep ploughing during the rainy and dry periods in highly compacted soils (BD > 1.5 g/cm3 and SPR > 250 N/cm2) greatly increased conserved soil water in the profile, while in less compacted soils (BD < 1.5 g/cm3 and SPR < 250 N/cm2) conserved water content was adversely affected. Soil water retention in bare soils of both highly and less compacted soil series was higher than that of live grass-covered soil. Amount of water conserved in ploughed Andigama series with respect to bare soils and grass-covered treatments during the severe dry period was 10.4 and 16.9 cm/m, while water storage reduction in the same treatments with ploughed Madampe series was 6.55 and 5.45 cm/m respectively. In addition, deep ploughing even in the effective root zone with live grass-covered highly compacted soils around coconut tree was favorable for soil water retention compared to that of live grass-covered less compacted soils.  相似文献   

19.
Soil modification via biopedturbation by burrow-building seabirds was examined in a Mediterranean, island ecosystem. Physical and chemical soil properties were compared between a colony of Wedge-tailed Shearwaters (Puffinus pacificus) and adjacent heath across a 14-month period. When compared to heath soil, the biopedturbated soil was 28% drier (6.04±5.40 vol%), had increased bulk density (by 29% to 1.30±0.11 g cm−3, 51% porosity), wetting capacity (by 83% to 0.55±0.83 molarity of ethanol droplet), hydraulic conductivity (by 266% to 398.91±252.04 mm h−1), and a greater range in soil surface temperature (31.7±6.2 °C diurnally to 18.3±3.2 °C nocturnally). Soil penetration resistance was reduced by 26% at a depth of 0–100 mm (326.5±122.4 kPa) and by 55% at 500–600 mm (1116.8±465.0 kPa). Colony soil also had increased levels of nitrate (by 470%), phosphorous (118%), ammonium (102%), sulphur (69%), and potassium (34%), decreased levels of iron (by 50%) and organic carbon (61%), was more alkaline, and had a 78% greater conductivity. Shearwaters deposited guano at a rate of 234.4 kg ha−1 yr−1 (dry mass). Chemical analysis of guano equated this to 50.9, 5.7, 5.5, and 3.6 kg ha−1 yr−1 of nitrogen, potassium, sulphur, and phosphorous, respectively. Experimentally constructed burrows demonstrated that digging alone can alter physical and chemical soil factors, but that changes in the nutrient profile of colony soils are predominantly guano-driven. We argue that the physical impact of seabirds on soil should not be overlooked as a soil-forming and ecosystem-shaping factor in island ecosystems, and that biopedturbation can exert major bottom-up influences on insular plant and animal communities.  相似文献   

20.
A simplified soil mechanical model was constructed to predict compaction beneath agricultural wheels when running on soils of certain characteristics. Soil strength functions were developed from in situ measurements of field soils and some laboratory measurements. Soil strain was measured by surface sinkage and changes of dry bulk density by gamma-ray transmission methods. Soil stresses were measured by deformable spherical transducers and compared to predicted stresses using equations developed by Söhne. A method of analysis was devised to identify a form of the virgin compression line from field data. Changes of the slope and intercept of this line were monitored over a range of moisture contents for two soils and used in the prediction model. The prediction model was tested against compaction measured during independent experiments at different sites. Good prediction was found for soils of initial dry bulk density greater than 1.1 g cm?3 and cone resistance greater than 500 kPa, using a 30°, 12.9mm diameter cone. On looser and weaker soils the predicted compaction was often less than measured values. Using the model for simulation of compaction beneath a range of wheels revealed that contact pressure alone can be a misleading guide to compaction. Increases of bulk density below 10cm are considerably influenced by wheel load. The most effective way of reducing compaction requires the use of both a minimum load and a maximum contact area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号