首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: To compare cardiovascular and systemic effects and analgesia during the postoperative period of epidural anesthesia performed with bupivacaine alone or with fentanyl or sufentanil in bitches maintained at a light plane of anesthesia with continuous infusion of propofol. STUDY DESIGN: Prospective randomized masked clinical trial. ANIMALS: 30 female dogs of various breeds. PROCEDURES: Dogs were allocated into 3 groups of 10 each. One group received fentanyl (2 microg/kg [0.91 microg/lb]) and bupivacaine (1 mg/kg [0.45 mg/lb]), 1 group received sufentanil (1 microg/kg) and bupivacaine (1 mg/kg), and 1 group received bupivacaine (1 mg/kg). All dogs received acepromazine (0.1 mg/kg [0.045 mg/lb]) and continuous infusion of propofol for sedation. The agents were administered into the lumbosacral space and diluted in saline (0.9% NaCl) solution to a total volume of 0.36 mL/kg (0.164 mL/lb). Cardiac and respiratory rates, arterial blood pressures, pH, and blood gases were evaluated. Analgesia, sedation level, serum cortisol concentrations, and plasma catecholamine concentrations were measured regularly for 6 hours. RESULTS: No important changes in cardiovascular, respiratory, or sedation variables were observed. Degree of analgesia in the postoperative period was higher in the sufentanil group, although use of fentanyl and bupivacaine also resulted in a sufficient level of analgesia. CONCLUSIONS AND CLINICAL RELEVANCE: Use of the 3 anesthetic techniques permitted ovariohysterectomy with sufficient analgesia and acceptable neuroendocrine modulation of pain with minimal adverse effects.  相似文献   

2.
OBJECTIVE: To determine the cardiorespiratory effects of an i.v. infusion of propofol alone or in association with fentanyl, alfentanil, or sufentanil in cats and, for each combination, the minimal infusion rate of propofol that would inhibit a response to noxious stimuli. DESIGN: Randomized crossover study. ANIMALS: 6 cats. PROCEDURE: Cats were anesthetized 4 times in random order. After i.v. administration of fentanyl, alfentanil, sufentanil, or saline (0.9% NaCl) solution, anesthesia was induced with propofol (7 mg/kg 13.2 mg/lb], i.v.) and maintained for 90 minutes with a continuous infusion of propofol in conjunction with fentanyl (0.1 microg/kg/min [0.045 microg/lb/min]), alfentanil (0.5 microg/kg/min [0.23 microg/lb/min]), sufentanil (0.01 microg/kg/min [0.004 microg/lb/min]), or saline solution (0.08 mL/kg/min [0.036 mL/lb/min]). RESULTS: Minimal infusion rate of propofol required to prevent a response to a noxious stimulus was higher when cats received saline solution. After 70 minutes, minimal infusion rate of propofol was significantly higher with fentanyl than with sufentanil. Decreases in heart rate, systolic blood pressure, rectal temperature, and respiratory rate were detected with all treatments. Oxygen saturation did not change significantly, but end-tidal partial pressure of carbon dioxide increased with all treatments. There were no significant differences in recovery times or sedation and recovery scores among treatments. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that infusion of propofol in combination with fentanyl, alfentanil, or sufentanil results in satisfactory anesthesia in cats.  相似文献   

3.
OBJECTIVE: To compare indicators of postoperative pain and behavior in dogs with and without a low-dose ketamine infusion added to usual perioperative management. DESIGN: Prospective, randomized, blinded clinical study. ANIMALS: 27 dogs undergoing forelimb amputation. PROCEDURE: Dogs were anesthetized with glycopyrrolate, morphine, propofol, and isoflurane. Thirteen dogs were treated with ketamine IV, as follows: 0.5 mg/kg (0.23 mg/lb) as a bolus before surgery, 10 microg/kg/min (4.5 microg/lb/min) during surgery, and 2 microg/kg/min (0.9 microg/lb/min) for 18 hours after surgery. Fourteen dogs received the same volume of saline (0.9% NaCl) solution. All dogs received an infusion of fentanyl (1 to 5 microg/kg/h [0.45 to 2.27 pg/lb/h]) for the first 18 hours after surgery. Dogs were evaluated for signs of pain before surgery, at the time of extubation, and 1, 2, 3, 4, 12, and 18 hours after extubation. Owners evaluated their dogs' appetite, activity, and wound soreness on postoperative days 2, 3, and 4. RESULTS: Dogs that received ketamine infusions had significantly lower pain scores 12 and 18 hours after surgery and were significantly more active on postoperative day 3 than dogs that received saline solution infusions. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that perioperative administration of low doses of ketamine to dogs may augment analgesia and comfort in the postoperative surgical period.  相似文献   

4.
OBJECTIVE: To determine sedative and cardiorespiratory effects of i.m. administration of medetomidine alone and in combination with butorphanol or ketamine in dogs. DESIGN: Randomized, crossover study. ANIMALS: 6 healthy adult dogs. PROCEDURES: Dogs were given medetomidine alone (30 micrograms/kg [13.6 micrograms/lb] of body weight, i.m.), a combination of medetomidine (30 micrograms/kg, i.m.) and butorphanol (0.2 mg/kg [0.09 mg/lb], i.m.), or a combination of medetomidine (30 micrograms/kg, i.m.) and ketamine (3 mg/kg [1.36 mg/lb], i.m.). Treatments were administered in random order with a minimum of 1 week between treatments. Glycopyrrolate was given at the same time. Atipamezole (150 micrograms/kg [68 micrograms/lb], i.m.) was given 40 minutes after administration of medetomidine. RESULTS: All but 1 dog (given medetomidine alone) assumed lateral recumbency within 6 minutes after drug administration. Endotracheal intubation was significantly more difficult when dogs were given medetomidine alone than when given medetomidine and butorphanol. At all evaluation times, percentages of dogs with positive responses to tail clamping or to needle pricks in the cervical region, shoulder region, abdominal region, or hindquarters were not significantly different among drug treatments. The Paco2 was significantly higher and the arterial pH and Pao2 were significantly lower when dogs were given medetomidine and butorphanol or medetomidine and ketamine than when they were given medetomidine alone. Recovery quality following atipamezole administration was unsatisfactory in 1 dog when given medetomidine and ketamine. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggested that a combination of medetomidine with butorphanol or ketamine resulted in more reliable and uniform sedation in dogs than did medetomidine alone.  相似文献   

5.
OBJECTIVE: To evaluate the effects of butorphanol and carprofen, alone and in combination, on the minimal alveolar concentration (MAC) of isoflurane in dogs. DESIGN: Randomized complete-block crossover study. ANIMALS: 6 healthy adult dogs. PROCEDURE: Minimal alveolar concentration of isoflurane was determined following administration of carprofen alone, butorphanol alone, carprofen and butorphanol, and neither drug (control). Anesthesia was induced with isoflurane in oxygen, and MAC was determined by use of a tail clamp method. Three hours prior to induction of anesthesia, dogs were fed a small amount of canned food without any drugs (control) or with carprofen (2.2 mg/kg of body weight [1 mg/lb]). Following initial determination of MAC, butorphanol (0.4 mg/kg [0.18 mg/lb], i.v.) was administered, and MAC was determined again. Heart rate, respiratory rate, indirect arterial blood pressure, endtidal partial pressure of CO2, and saturation of hemoglobin with oxygen were recorded at the time MAC was determined. RESULTS: Mean +/- SD MAC of isoflurane following administration of butorphanol alone (1.03 +/- 0.22%) or carprofen and butorphanol (0.90 +/- 0.21%) were significantly less than the control MAC (1.28 +/- 0.14%), but MAC after administration of carprofen alone (1.20 +/- 0.13%) was not significantly different from the control value. The effects of carprofen and butorphanol on the MAC of isoflurane were additive. There were not any significant differences among treatments in regard to cardiorespiratory data. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that administration of butorphanol alone or in combination with carprofen significantly reduces the MAC of isoflurane in dogs; however, the effects of butorphanol and carprofen are additive, not synergistic.  相似文献   

6.
OBJECTIVE: To determine sedative and cardiorespiratory effects of romifidine alone and romifidine in combination with butorphanol and effects of preemptive atropine administration in cats sedated with romifidine-butorphanol. DESIGN: Randomized crossover study. ANIMALS: 6 healthy adult cats. PROCEDURES: Cats were given saline (0.9% NaCl) solution followed by romifidine alone (100 microg/kg [45.4 microg/lb], i.m.), saline solution followed by a combination of romifidine (40 microg/kg [18.1 microg/lb], i.m.) and butorphanol (0.2 mg/kg [0.09 mg/lb], i.m.), or atropine (0.04 mg/kg [0.02 mg/lb], s.c.) followed by romifidine (40 microg/kg, i.m.) and butorphanol (0.2 mg/kg, i.m.). Treatments were administered in random order, with > or = 1 week between treatments. Physiologic variables were determined before and after drug administration. Time to recumbency, duration of recumbency, time to recover from sedation, and subjective evaluation of sedation, muscle relaxation, and analgesia were assessed. RESULTS: Bradycardia developed in all cats that received saline solution and romifidine-butorphanol or romifidine alone. Preemptive administration of atropine prevented bradycardia for 50 minutes in cats given romifidine-butorphanol. Oxyhemoglobin saturation was significantly decreased 10 minutes after romifidine-butorphanol administration in atropine-treated cats. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggested that administration of romifidine alone or romifidine-butorphanol causes a significant decrease in heart rate and that preemptive administration of atropine in cats sedated with romifidine-butorphanol effectively prevents bradycardia for 50 minutes.  相似文献   

7.
OBJECTIVE: To compare the efficacy of meloxicam administered perioperatively with transdermal administration of fentanyl via a patch placed preoperatively in dogs undergoing orthopedic surgery. DESIGN: Prospective study. ANIMALS: 16 dogs. PROCEDURE: Unilateral or bilateral osteotomy of the tibia and fibula was surgically performed, and a uniplanar external distraction device was placed in each limb. Postoperative pain and lameness were assessed 24, 48, and 72 hours after administration of the first of 3 doses of meloxicam (0.2 mg/kg [0.09 mg/lb], IV, given preoperatively, followed by 0.1 mg/kg [0.045 mg/lb], IV, after 24 hours, and 0.1 mg/kg, PO, after 48 hours) or preoperative placement of a transdermal fentanyl patch (50 microg/h) left in place for 72 hours. RESULTS: No significant differences in total pain scores were detected between groups. Mean +/- SD lameness scores assessed at 24 and 72 hours were lower in dogs in the meloxicam group than dogs in the fentanyl group. Lameness scores decreased with time in a similar manner in both treatment groups. CONCLUSIONS AND CLINICAL RELEVANCE: Perioperative administration of meloxicam or preoperative placement of a transdermal fentanyl patch provided effective and similar postoperative analgesia in dogs undergoing orthopedic surgery. However, because of its anti-inflammatory effects, treatment with meloxicam reduced the degree of lameness and resulted in rapid functional recovery of the limb.  相似文献   

8.
Objective-To investigate the effect of intraoperative extradural morphine administration on postoperative analgesia in dogs undergoing thoracolumbar spinal surgery to treat disk extrusion. Design-Prospective clinical trial. Animals-26 client-owned dogs undergoing thoracolumbar spinal surgery. Procedures-Animals were randomly allocated to receive morphine (0.1 mg/kg [0.045 mg/lb], extradurally) or no treatment (control group). Following preanesthetic medication with methadone (0.25 mg/kg [0.11 mg/lb], IM), anesthesia was induced with propofol and maintained with isoflurane or sevoflurane in oxygen. Lidocaine and fentanyl were administered during surgery in both groups at fixed rates. In the morphine administration group, morphine was splashed over the dura mater immediately prior to wound closure. Postoperative analgesia was assessed for 48 hours by assessors unaware of group allocation, and methadone was administered as rescue analgesic. Demographic characteristics, urinary output, days of hospitalization, and perioperative use of analgesics were compared via a Mann-Whitney U test. Results-Demographic data were similar between groups. In the morphine administration group, 2 of 13 dogs required postoperative methadone, and in the control group, methadone was administered to 11 of 13 dogs. The total number of doses of methadone administered in the 48 hours after surgery was 28 in the control group and 3 in the morphine administration group. No adverse effects were recorded in any group. Conclusions and Clinical Relevance-Intraoperative extradural morphine administration was effective in reducing postoperative analgesic requirement. Dogs undergoing thoracolumbar spinal surgery benefited from topical administration of preservative-free morphine administered directly on the dura mater as part of analgesic management.  相似文献   

9.
OBJECTIVE: To determine the effects of constant rate infusion of morphine, lidocaine, ketamine, and morphine-lidocaine-ketamine (MLK) combination on end-tidal isoflurane concentration (ET-Iso) and minimum alveolar concentration (MAC) in dogs anesthetized with isoflurane and monitor depth of anesthesia by use of the bispectral index (BIS). ANIMALS: 6 adult dogs. PROCEDURE: Each dog was anesthetized with isoflurane on 5 occasions, separated by a minimum of 7 to 10 days. Individual isoflurane MAC values were determined for each dog. Reduction in isoflurane MAC, induced by administration of morphine (3.3 microg/kg/min), lidocaine (50 microg/kg/min), ketamine (10 microg/kg/min), and MLK, was determined. Heart rate, mean arterial blood pressure, oxygen saturation as measured by pulse oximetry (Spo2), core body temperature, and BIS were monitored. RESULTS: Mean +/- SD isoflurane MAC was 1.38 +/- 0.08%. Morphine, lidocaine, ketamine, and MLK significantly lowered isoflurane MAC by 48, 29, 25, and 45%, respectively. The percentage reductions in isoflurane MAC for morphine and MLK were not significantly different but were significantly greater than for lidocaine and ketamine. The Spo2, mean arterial pressure, and core body temperature were not different among groups. Heart rate was significantly decreased at isoflurane MAC during infusion of morphine and MLK. The BIS was inversely related to the ET-Iso and was significantly increased at isoflurane MAC during infusions of morphine and ketamine, compared with isoflurane alone. CONCLUSIONS AND CLINICAL RELEVANCE: Low infusion doses of morphine, lidocaine, ketamine, and MLK decreased isoflurane MAC in dogs and were not associated with adverse hemodynamic effects. The BIS can be used to monitor depth of anesthesia.  相似文献   

10.
OBJECTIVE: To evaluate the analgesic and adverse effects of epidurally administered levogyral (S[+]) ketamine alone or in combination with morphine on intraoperative and postoperative pain in dogs undergoing ovariohysterectomy. ANIMALS: 30 dogs scheduled for ovariohysterectomy. PROCEDURE: Dogs were randomly allocated to 1 of 3 groups. Dogs in group 1 received S(+) ketamine (1 mg/kg), dogs in group 2 received S(+) ketamine (0.5 mg/kg) and morphine (0.05 mg/kg), and dogs in group 3 received S(+) ketamine (1 mg/kg) and morphine (0.025 mg/kg). The skin was incised 15 minutes after epidural administration of analgesics. Heart rate (HR), respiratory rate (RR), systolic blood pressure (SBP), oxygen saturation as measured by pulse oximetry, and arterial blood gases were obtained before anesthesia, 15 minutes after epidural administration of analgesics, 15 and 30 minutes after initiation of surgery, and at the end of surgery. During the intraoperative period, an increase of > or =20% in baseline values for HR, RR, and SBP was considered a sign of intraoperative pain. Signs of pain and adverse effects were assessed at 2, 4, and 8 hours postoperatively. RESULTS: There were no significant differences in intraoperative or postoperative measurements among the 3 groups. No dogs had intraoperative signs of pain. Mean postoperative pain assessment scores were <3.5 in all 3 groups. Salivation was the most frequent adverse effect in dogs in groups 1 and 3, and sedation occurred more frequently in dogs in groups 2 and 3. CONCLUSIONS AND CLINICAL RELEVANCE: All 3 analgesic regimens provided good respiratory and cardiovascular stability intraoperatively and adequate postoperative analgesia with minimal adverse effects.  相似文献   

11.
Objective— To evaluate the effect of preoperative intrathecal administration of a low dose of morphine on intraoperative fentanyl requirements in dogs undergoing cervical and thoracolumbar spinal surgery.
Study Design— Prospective randomized clinical study.
Animals— Dogs (n=18) matched by surgical procedure administered intrathecal morphine (MG) or no-treatment (control group, CG).
Methods— After premedication with romifidine (4 μg/kg, intravenously) and induction with propofol, anesthesia was maintained with sevoflurane in oxygen. Intrathecal morphine 0.03 (0.023–0.034) mg/kg was administered at lumbar level 41 (25–65) minutes before surgery in MG. Ketamine (0.5 mg/kg) was administered hourly, starting before incision. Fentanyl infusion (1.2 and 4.2 μg/kg/h in MG and CG, respectively) was administered after a loading dose (5 and 10 μg/kg in MG and CG, respectively), and boluses were given if an increase >20% in heart rate and arterial blood pressure was observed. Total amount of fentanyl administered was recorded, to calculate hourly requirements and predict plasma concentration using a computer simulation.
Results— Hourly fentanyl consumption and predicted plasma concentrations at the time of response to surgery were significantly lower in MG compared with CG.
Conclusions— Preoperative administration of a low dose of intrathecal morphine has a sparing effect on intraoperative fentanyl requirements.
Clinical Relevance— Preoperative intrathecal administration of a low dose of morphine at the lumbar level represented a safe and effective mean of providing intraoperative analgesia in dogs undergoing cervical and thoracolumbar spinal surgery.  相似文献   

12.
OBJECTIVE: To determine whether IV administration of a combination of medetomidine and ketamine depresses cardiopulmonary function in healthy adult gopher tortoises. DESIGN: Prospective study. ANIMALS: 3 adult male and 3 adult female nonreleasable gopher tortoises. PROCEDURE: Prior to the study, carotid and jugular catheters were surgically placed in each tortoise for blood collection, direct arterial blood pressure monitoring, and drug administration. Heart rate, direct carotid arterial blood pressure, and body temperature were measured before and every 5 minutes for 45 minutes after IV injection of medetomidine (100 microg/kg [45.5 microg/lb]) and ketamine (5 mg/kg [2.3 mg/lb]). Carotid arterial blood samples were collected before and 5, 15, 30, and 45 minutes after medetomidine-ketamine administration to determine pH, PO2, and PCO2. Atipamezole (500 mg/kg [227 microg/lb], IV) was administered 30 minutes after administration of medetomidine-ketamine. RESULTS: The medetomidine-ketamine combination caused a moderate increase in arterial blood pressure, and moderate hypercapnia and hypoxemia. There were no significant changes in heart rate or body temperature. Intravenous administration of atipamezole rapidly induced severe hypotension. CONCLUSIONS AND CLINICAL RELEVANCE: The combination of medetomidine and ketamine administered IV resulted in effective short-term immobilization adequate for minor diagnostic procedures in gopher tortoises. This combination also caused moderate hypoventilation, and it is recommended that a supplemental source of oxygen or assisted ventilation be provided. Atipamezole administration hastens recovery from chemical immobilization but induces severe hypotension. It is recommended that atipamezole not be administered IV for reversal of medetomidine in tortoises and turtles.  相似文献   

13.
OBJECTIVE: To determine sedative and cardiorespiratory effects of dexmedetomidine alone and in combination with butorphanol or ketamine in cats. DESIGN: Randomized crossover study. ANIMALS: 6 healthy adult cats. PROCEDURES: Cats were given dexmedetomidine alone (10 microg/kg [4.5 mg/lb], IM), a combination of dexmedetomidine (10 microg/kg, IM) and butorphanol (0.2 mg/kg [0.09 mg/lb], IM), or a combination of dexmedetomidine (10 microg/kg, IM) and ketamine (5 mg/kg [2.3 mg/lb], IM). Treatments were administered in random order, with > or = 1 week between treatments. Physiologic variables were assessed before and after drug administration. Time to lateral recumbency, duration of lateral recumbency, time to sternal recumbency, time to recovery from sedation, and subjective evaluation of sedation, muscle relaxation, and auditory response were assessed. RESULTS: Each treatment resulted in adequate sedation; time to lateral recumbency, duration of lateral recumbency, and time to recovery from sedation were similar among treatments. Time to sternal recumbency was significantly greater after administration of dexmedetomidine-ketamine. Heart rate decreased significantly after each treatment; however, the decrease was more pronounced after administration of dexmedetomidine-butorphanol, compared with that following the other treatments. Systolic and diastolic blood pressure measurements decreased significantly from baseline with all treatments; 50 minutes after drug administration, mean blood pressure differed significantly from baseline only when cats received dexmedetomidine and butorphanol. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggested that in cats, administration of dexmedetomidine combined with butorphanol or ketamine resulted in more adequate sedation, without clinically important cardiovascular effects, than was achieved with dexmedetomidine alone.  相似文献   

14.
OBJECTIVE: To determine safety and efficacy of an anesthetic protocol incorporating medetomidine, ketamine, and sevoflurane for anesthesia of injured loggerhead sea turtles. DESIGN: Retrospective study. ANIMALS: 13 loggerhead sea turtles. PROCEDURE: Anesthesia was induced with medetomidine (50 microg/kg [22.7 microg/lb], IV) and ketamine (5 mg/kg (2.3 mg/lb], IV) and maintained with sevoflurane (0.5 to 2.5%) in oxygen. Sevoflurane was delivered with a pressure-limited intermittent-flow ventilator. Heart rate and rhythm, end-tidal partial pressure of CO2, and cloacal temperature were monitored continuously; venous blood gas analyses were performed intermittently. Administration of sevoflurane was discontinued 30 to 60 minutes prior to the end of the surgical procedure. Atipamezole (0.25 mg/kg [0.11 mg/lb], IV) was administered at the end of surgery. RESULTS: Median induction time was 11 minutes (range, 2 to 40 minutes; n = 11). Median delivered sevoflurane concentrations 15, 30, 60, and 120 minutes after intubation were 2.5 (n = 12), 1.5 (12), 1.25 (12), and 0.5% (8), respectively. Heart rate decreased during surgery to a median value of 15 beats/min (n = 11). End-tidal partial pressure of CO2 ranged from 2 to 16 mm Hg (n = 8); median blood gas values were within reference limits. Median time from atipamezole administration to extubation was 14 minutes (range, 2 to 84 minutes; n = 7). CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that a combination of medetomidine and ketamine for induction and sevoflurane for maintenance provides safe, effective, controllable anesthesia in injured loggerhead sea turtles.  相似文献   

15.
16.
OBJECTIVE: To assess the effects of repeated episodes of propofol-associated anesthesia on quality of recovery from anesthesia, clinical status, and erythrocyte physiology in cats. DESIGN: Original study. ANIMALS: 37 cats undergoing short-duration anesthesia for radiotherapy. PROCEDURES: Twice daily on 5 consecutive days, 13 cats with squamous cell carcinoma of the nasal planum (group 1) underwent anesthesia: first via administration of propofol or a midazolam (0.2 mg/kg [0.09 mg/lb])-propofol combination and then via administration of ketamine and midazolam each day (latter data were not analyzed). During a 19-day period, 24 cats with vaccine associated sarcoma (group 2) were anesthetized 12 times with propofol or a midazolam-propofol combination. Anesthesia was maintained with propofol in both groups. Hematologic analysis was performed before, during, and on completion of radiotherapy; changes in Hct and hemoglobin concentration between groups were compared. RESULTS: Mean duration of anesthesia was 8.1 minutes (range, 5 to 20 minutes); no adverse events were detected during recovery. Total dose of propofol administered did not differ between groups 1 (6.34 mg/kg [2.88 mg/lb]) and 2 (4.71 mg/kg [2.14 mg/lb]). Midazolam administration decreased the propofol dose by 26%. Overall decreases from baseline in Hct and hemoglobin concentration were not significantly different between the 2 groups, nor clinically important; however, compared with baseline, values in group 2 were significantly lower after 6 and 12 anesthetic episodes for both protocols. Heinz bodies were identified in low numbers in both groups during radiotherapy. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that repeated propofol-associated short-duration anesthesia does not lead to clinically relevant hematologic changes in cats undergoing short-duration radiotherapy.  相似文献   

17.
OBJECTIVE: To compare physiologic and analgesic effects of morphine when given by IV constant-rate infusion or by IM injection to dogs undergoing laparotomy and to determine pharmacokinetics of morphine in dogs following IV constant-rate infusion. DESIGN: Prospective randomized controlled trial. ANIMALS: 20 dogs. PROCEDURE: Dogs undergoing laparotomy were treated with morphine beginning at the time of anesthetic induction. Morphine was administered by IV infusion (0.12 mg/kg/h [0.05 mg/lb/h] of body weight) or by IM injection (1 mg/kg [0.45 mg/lb]) at induction and extubation and every 4 hours thereafter. Treatments continued for 24 hours after extubation. RESULTS: Blood gas values did not indicate clinically significant respiratory depression in either group, and degree of analgesia (determined as the University of Melbourne Pain Scale score) and incidence of adverse effects (panting, vomiting, defecation, and dysphoria) were not significantly different between groups. Dogs in both groups had significant decreases in mean heart rate, rectal temperature, and serum sodium and potassium concentrations, compared with preoperative values. Mean +/- SEM total body clearance of morphine was 68 +/- 6 ml/min/kg (31 +/- 3 ml/min/lb). Mean steady-state serum morphine concentration in dogs receiving morphine by constant-rate infusion was 30 +/- 2 ng/ml. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that administration of morphine as a constant-rate IV infusion at a dose of 0.12 mg/kg/h induced effects similar to those obtained with administration at a dose of 1 mg/kg, IM, every 4 hours in dogs undergoing laparotomy. Panting was attributed to an opioid-induced resetting of the hypothalamic temperature set point, rather than respiratory depression.  相似文献   

18.
OBJECTIVE: To determine effects of preoperative administration of ketoprofen on whole blood platelet aggregation, buccal mucosal bleeding time, and hematologic indices in dogs after elective ovariohysterectomy. DESIGN: Randomized, masked clinical trial. ANIMALS: 22 healthy dogs. PROCEDURE: 60 minutes before induction of anesthesia, 11 dogs were given 0.9% NaCl solution (control), and 11 dogs were given ketoprofen (2 mg/kg [0.9 mg/lb], IM). Thirty minutes before induction of anesthesia, glycopyrrolate (0.01mg/kg [0.005 mg/lb]), acepromazine (0.05 mg/kg [0.02 mg/lb]), and butorphanol (0.2 mg/kg 10.09 mg/lb]) were given IM to all dogs. Anesthesia was induced with thiopental (5 to 10 mg/kg [2.3 to 4.5 mg/lb], IV) and maintained with isoflurane (1 to 3%). Ovariohysterectomy was performed and butorphanol (0.1 mg/kg [0.05 mg/lb], IV) was given 15 minutes before completion of surgery. Blood samples for measurement of variables were collected at intervals before and after surgery. RESULTS: In dogs given ketoprofen, platelet aggregation was decreased 95 +/- 10% and 80 +/- 35% (mean +/- SD) immediately after surgery and 24 hours after surgery, respectively, compared with preoperative values. At both times, mean values in dogs given ketoprofen differed significantly from those in control dogs. Significant differences between groups were not observed for mucosal bleeding time or hematologic indices. CONCLUSIONS AND CLINICAL RELEVANCE: Preoperative administration of ketoprofen inhibited platelet aggre gation but did not alter bleeding time. Ketoprofen can be given before surgery to healthy dogs undergoing elective ovariohysterectomy, provided that dogs are screened for potential bleeding problems before surgery and monitored closely after surgery.  相似文献   

19.
CASE DESCRIPTION: A healthy 6-year-old 28.5-kg (62.7-lb) spayed female Boxer undergoing surgical repair of a ruptured cranial cruciate ligament was inadvertently administered an overdose of morphine (1.3 mg/kg [0.59 mg/lb]) via subarachnoid injection. CLINICAL FINDINGS: 50 minutes after administration of the overdose, mild multifocal myoclonic contractions became apparent at the level of the tail; the contractions migrated cranially and progressively increased in intensity and frequency during completion of the surgery. TREATMENT AND OUTCOME: The myoclonic contractions were refractory to treatment with midazolam, naloxone, phenobarbital, and pentobarbital; only atracurium (0.1 mg/kg [0.045 mg/lb], IV) was effective in controlling the movements. The dog developed hypertension, dysphoria, hyperthermia, and hypercapnia. The dog remained anesthetized and ventilated mechanically; treatments included continuous rate IV infusions of propofol (1 mg/kg/h [0.45 mg/lb/h]), diazepam (0.25 mg/kg/h [0.11 mg/lb/h]), atracurium (0.1 to 0.3 mg/kg/h [0.045 to 0.14 mg/lb/h]), and naloxone (0.02 mg/kg/h [0.009 mg/lb/h]). Twenty-two hours after the overdose, the myoclonus was no longer present, and the dog was able to ventilate without mechanical assistance. The dog remained sedated until 60 hours after the overdose, at which time its mentation improved, including recognition of caregivers and response to voice commands. No neurologic abnormalities were detectable at discharge (approx 68 hours after the overdose) or at a recheck evaluation 1 week later. CLINICAL RELEVANCE: Although intrathecal administration of an overdose of morphine can be associated with major and potentially fatal complications, it is possible that affected dogs can completely recover with immediate treatment and extensive supportive care.  相似文献   

20.
OBJECTIVE: To characterize the effects of medetomidine-midazolam, midazolam-butorphanol, or acepromazine-butorphanol as premedicants for mask induction of anesthesia with sevoflurane in dogs. ANIMALS: 10 healthy Beagles. PROCEDURE: The following premedicants were administered intramuscularly: medetomidine-midazolam (20 microg/kg and 0.3 mg/kg, respectively), midazolam-butorphanol (0.1 and 0.2 mg/kg, respectively), and acepromazine-butorphanol (0.05 and 0.2 mg/kg, respectively). Saline (0.9% NaCI) solution (0.1 ml/kg) was administered intramuscularly as a control. Anesthesia was induced in each dog with sevoflurane in a 100% O2 at a flow rate of 4 L/min developed by a facemask. Vaporizer settings were increased by 0.8% at 15-second intervals until the value corresponding to 4.8% sevoflurane was achieved. Time to onset and cessation of involuntary movements, loss of the palpebral reflex, negative response to tail-clamp stimulation, and endotracheal intubation were recorded, and the cardiopulmonary variables were measured. RESULTS: Mask induction with sevoflurane in dogs that received each premedicant resulted in a shorter induction time and milder changes in heart rate, mean arterial blood pressure, cardiac output, and respiratory rate, compared with mask induction without premedicants. Treatment with medetomidine-midazolam resulted in a shorter and smoother induction, compared with acepromazine-butorphanol or midazolam-butorphanol treatment, whereas the cardiovascular changes were greater. Cardiopulmonary variables of dogs during induction following treatment with acepromazine-butorphanol or midazolam-butorphanol were maintained close to the anesthetic maintenance values for sevoflurane, with the exception of mild hypotension that was observed in dogs following acepromazine-butorphanol treatment. CONCLUSION AND CLINICAL RELEVANCE: In dogs use of premedicants provides a smoother and better quality mask induction with sevoflurane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号