首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Cereal Chemistry》2017,94(5):798-800
Internal stresses owing to moisture and temperature gradients often result in the development of rice kernel fissures. Fissured rough rice kernels tend to break upon milling and potentially reduce the market value of rice. This work was conducted on the premise that fissures may be healed by soaking in water at a specific temperature and duration. Fissured rough rice kernels of a long‐grain cultivar, Wells, were selected by X‐ray imaging. Fissured kernels were soaked in a water bath at six soaking temperatures (22, 60, 65, 70, 75, and 80°C) and three soaking durations (1, 2, and 3 h) and then gently dried for characterization. X‐ray images revealed that soaking at 75°C for 3 h healed up to 70.0% of the fissured kernels. Soaking at 22, 60, or 65°C did not result in healing. For normal kernels, soaking at different temperatures for 3 h created fissures. Bending tests using a texture analyzer showed that brown rice breaking force increased from 18.5 N (fissured kernels) to 43.7 N (healed kernels). Soaking rough rice in water at a temperature slightly above its onset gelatinization temperature may potentially heal fissures.  相似文献   

2.
预糊化条件对萌芽糙米蒸煮质构特性及品质的影响   总被引:1,自引:1,他引:0  
为了解决萌芽糙米不易蒸煮且蒸煮后米饭口感较硬、黏弹性不足、粗糙感明显等问题,该文应用预糊化技术对萌芽糙米进行品质改良,评价了预糊化条件(米粒含水率43.21%±2.15%、34.64%±1.49%、29.83%±1.67%,蒸汽处理时间2、5、10、15、20、25 min)对萌芽糙米蒸煮特性、米饭质构特性及感官品质的影响。研究结果表明,随着米粒含水率的降低,预糊化萌芽糙米的蒸煮时间、蒸煮吸水率、体积膨胀率显著增大(P0.05),固形物损失率显著降低(P0.05);预糊化萌芽糙米的米饭硬度、黏附性、黏聚性、胶黏性、弹性、咀嚼性随米粒含水率降低的变化较为复杂。随着蒸汽处理时间的延长,预糊化萌芽糙米的蒸煮时间显著缩短(P0.05),蒸煮吸水率、体积膨胀率、固形物损失率变化较小且无明显规律;预糊化萌芽糙米的米饭硬度先减小后增大,黏附性、黏聚性先增大后减小,胶黏性、弹性、咀嚼性变化较为复杂。感官评定结果表明,预糊化萌芽糙米的米饭感官评分随米粒含水率降低的变化较为复杂,随蒸汽处理时间的延长先增大后降低。总体而言,米粒含水率29.83%±1.67%、蒸汽处理15 min的预糊化条件可以显著改善萌芽糙米的蒸煮特性、质构特性及感官品质,使其接近白米的品质指标。研究结果可为预糊化萌芽糙米的产业化开发提供依据。  相似文献   

3.
This research studied developing quick cooking brown rice by investigating the effect of ultrasonic treatment at different temperatures on cooking time and quality. The medium grain brown rice was ultrasonically treated in water at temperatures of 25, 40, and 55°C for 30 min and then dried by air at 25°C to its initial moisture content (11.0 ± 0.6%, wb) before cooking. The microstructure of rice kernel surface, chemical composition, and optimal cooking time of treated brown rice were determined. The pasting and thermal properties and chemical structure of flour and starch from treated brown rice were also examined. The results showed that the optimal cooking times were 37, 35, and 33 min after treatment at 25, 40, and 55°C, respectively, compared to the control of 39.6 min. The ultrasonic treatment resulted in a loss in natural morphology of rice bran, allowing water to be absorbed by a rice kernel easily, particularly at high‐temperature treatment. Even through rice flour still maintained an A‐pattern in the pasting properties, the crystallinity significantly increased after treatment at 55°C. Ultrasonic treatment increased the peak, hold, and final viscosities and decreased the onset temperature (To) and peak temperature (Tp), significantly. Thus, ultrasonic treatment could be used for reducing cooking time of brown rice.  相似文献   

4.
Germinated brown rice is popular in Asia for its increased γ‐aminobutyric acid (GABA) content and sweeter and softer texture compared with conventional brown rice. However, most studies investigated germinated rice properties on medium‐grain or aromatic rice. The objective of this study was to compare differences between a medium‐grain (Jupiter) and a long‐grain (Wells) rice under similar germination conditions on their milling, physicochemical, and textural properties over the course of germination. Rough rice was soaked in water at 25°C for 12 h and then incubated at 30–34°C for four germination durations. Wells had a higher breakage percentage and a greater weight decrease than Jupiter during germination. Wells had a significantly lower GABA content before germination and at the first two germination durations than Jupiter, but the GABA content in Wells significantly increased at the third germination duration to become significantly higher than that of Jupiter. There were no significant changes in gelatinization temperatures and pasting properties of germinated rice from both cultivars at different germination durations. The cooked rice hardness from Wells decreased at the longest germination duration, whereas Jupiter showed a more significant decrease in cooked rice stickiness from germination. The results demonstrate that the impacts of germination on physical, chemical, and textural properties of rice were affected by grain type and germination duration.  相似文献   

5.
If properly executed, parboiling, a hydrothermal treatment consisting of soaking, steaming, and drying of rice, substantially reduces its milling breakage susceptibility. Here, brown rice was soaked at 40, 55, or 65°C for different times (150 s to 240 min) and subsequently parboiled under standardized steaming and drying conditions. The moisture absorption during initial soaking induced fissures in more than 90% of the rice grains, which disappeared with further soaking. The fissuring incidence in the soaked rice samples was related to that of the parboiled rice samples. The extent of starch gelatinization during steaming increased with the moisture content of the soaked grains. In addition, as a result of starch gelatinization, the level of white bellies (i.e., parboiled grains with translucent outer layers and an opaque center) decreased from over 90% to less than 3%. Rice grains need to absorb sufficient moisture during soaking to minimize the level of breakage‐susceptible white bellies and fissured rice grains in the parboiled end product.  相似文献   

6.
The water absorption characteristics and volume changes of rice with various degrees of milling during soaking were measured at five temperatures (5–40°C). The measured data were fitted to the exact solution for the infinite plane sheet diffusion model, which is an exact solution for the diffusion equation. The measured results agreed well with the model. The effects of temperature and the degree of milling on the water absorption rate constant were investigated. Volume changes of samples were determined by measuring particle density and bulk density. An empirical equation relating the moisture content of the sample during soaking and at temperatures of 10–50°C to specific volume was derived. In addition, bulk density was related to the quadratic function of the moisture content of the sample during soaking.  相似文献   

7.
Chalkiness is one of the most influential factors on head rice yield. Parboiling is known to be an effective way to remove chalkiness and improve head rice yield. However, the steps involved in the removal of chalkiness are still not completely resolved. This study investigated the effects of soaking temperature, soaking duration, and drying conditions on the removal of rice chalkiness. Chalky brown rice kernels were selected and soaked at 25, 65, 70, or 75°C for 3 h. After 1, 2, or 3 h, the rice samples were frozen before drying or immediately dried. Soaking at 25°C did not remove chalkiness and caused no morphological change in starch granules. When the soaking temperature increased from 25 to 65, 70, and 75°C, the chalkiness decreased from 100% to 34.1, 29.7, and 15.9%, respectively. Soaking rice at temperatures above the starch glass transition temperature but below the gelatinization temperature reduced chalkiness owing to rearrangement of starch granules and protein denaturation to fill the void spaces in the chalky area. During soaking, the morphology of starch granules also changed from round to angular in shape. Drying at temperatures above the starch glass transition temperature also facilitated rearrangement of starch granules to further reduce rice chalkiness.  相似文献   

8.
The experiment was conducted to study the effects of aging on the physicochemical properties of two Thai cultivars of milled glutinous rice (RD6 and RD8). The amylose and protein content of rice samples did not change when stored from 0 to 4 months. Amylograph curves from samples of milled rice stored from 0 to 8 months were analyzed. Both cultivars gave constant gelatinization temperature during aging. The values for peak viscosity, final viscosity on cooking at 94°C, viscosity on cooling to 50°C and breakdown decreased significantly for RD6 cultivar, whereas the setback value and consistency were not changed significantly. For RD8 cultivar, no significant difference was observed for viscosity on cooling to 50°C and consistency during aging up to 8 months. Peak viscosity and breakdown value were reduced during storage, whereas the final viscosity on cooking at 94°C and setback value increased with time. Raw milled rice of both RD6 and RD8 cultivars have similar water uptake rates. Stored rice tended to have a lower water uptake rate which increased proportionately with soaking time. Samples from both rice cultivars were used to make rice crackers to study the effects of aging on quality. Volume expansion of rice crackers made from RD6 and RD8 cultivars tended to decrease during storage which resulted in an increase in the hardness of the crackers.  相似文献   

9.
Rice parboiled at various combinations of soaking temperature and steaming time were analyzed by differential scanning calorimetry (DSC) and X‐ray diffraction (XRD). Generally, gelatinization enthalpy decreased as the soaking temperature increased from 30°C to 50°C and 70°C to 90°C, and gelatinization enthalpy decreased as steaming times increased from 4 and 8 min to 12 min. As expected, a distinctive A‐pattern was observed in the XRD of raw rice. The most severely parboiled laboratory sample (90°C for 12 min), showed no discernable change toward the V‐pattern. Crystallinity decreased from the raw rice (24.6%) with increased cooking temperature.  相似文献   

10.
Sorghum (Sorghum bicolor (L.) Moench) grain was boiled or autoclaved in alkali, washed, drained, and dried into shelf-stable half-products (pellets). The pellets were deep-fat fried to produce a crunchy snack product. Effects of cooking time, drying method (pellet moisture content), and sorghum cultivar on unfried and fried pellets were evaluated. Increasing the alkaline cooking time from 30 to 60 min decreased the yield of the pellets from 96 to 84% (on a dry weight basis). Cooked sorghum dried at room temperature (24°C) for 18 hr, followed by oven-drying at 50°C for an additional 18 hr, produced pellets with a low moisture content (≤5%), that required a higher frying temperature (≥220°C). However, cooked sorghum dried at room temperature for 18 hr followed by oven-drying at 50°C for 5 hr produced pellets with 9% moisture and a lighterdensity highly acceptable product when fried at 220°C. Fat content of fried pellets averaged 18%. The optimum method for producing a light, crunchy, fried product was cooking for 60 min, drying to 9% moisture, and frying at 220°C. ATx631*Tx436, the hardest endosperm-texture sorghum used in the study, had the highest unfried and fried pellet yields. Dorado, an intermediate-to-soft endosperm-texture sorghum, and ATx Arg-1*Tx2907, a waxy sorghum, had lower yields. The fried pellets produced from Dorado and waxy sorghum (ATxArg-1*Tx2907) were more expanded than those produced from ATx631*Tx436.  相似文献   

11.
Starch and protein are the main polymeric ingredients of pasta and they determine the structural and textural properties of cooked pasta. The present investigation sought better understanding of the impact of high‐temperature (HT) drying on the starch and the protein fraction, and their role in structure and texture of pasta. Durum wheat spaghetti was prepared in a pilot‐plant installation. The drying conditions were selected for the HT phase at 80 or 100°C applied at high, intermediate, or low product moisture content. Spaghetti dried at 55°C served as a reference sample. The color of dry pasta was measured and the changes in the starch and protein fractions were determined by protein solubility, light microscopy, confocal scanning laser microscopy (CSLM), cooking tests, and texture measurements. HT drying at 100°C and low product moisture promoted browning of pasta. At the molecular level, HT drying promoted protein denaturation. At the microscopic level, HT drying contributed to a better preservation of the protein network and reduced swelling of starch and disintegration of granules. At the macroscopic level, HT drying enhanced the firmness of cooked pasta and reduced surface stickiness. In general, the changes were more pronounced by increasing the drying temperature from 80 to 100°C and by shifting the HT phase from an early to a late stage of the drying process. The drying conditions are determinant for the phase morphology of protein and starch in cooked pasta which, in turn, govern the textural properties of pasta.  相似文献   

12.
Germinated brown rice is considered a more nutritious and palatable cooked product than conventional brown rice. However, germination usually decreases rice milling yield and alters some physicochemical properties. Parboiling is commonly used to increase milling yield and retain nutrients, but it also changes rice color and texture. The objective of this study was to investigate the effect of parboiling on milling, physicochemical, and textural properties of a medium‐grain and a long‐grain rice after germination at varying durations. Germinated rice samples of three germination durations were prepared with one germination time before the optimum time at which 70% of rice revealed hull protrusion, the optimum time, and one time after. Germinated rice was then immediately parboiled at 120°C for 20 min and was then immediately dried. The milling, physicochemical, and textural properties of parboiled germinated rice from both cultivars were determined. Parboiling significantly decreased the percentage of brokens, whiteness, and the apparent amylose content and increased γ‐aminobutyric acid content (GABA) in the nongerminated rice and rice at the first germination duration for both cultivars. Parboiling reduced pasting viscosities for both cultivars, but Jupiter still exhibited higher pasting viscosities than Wells. Cooked parboiled germinated rice was overall softer than nonparboiled rice because of kernel splitting, but Wells remained harder and less sticky than Jupiter. In conclusion, it is beneficial to combine parboiling with germination to enhance nutritional values and improve milling properties without affecting textural properties for both rice cultivars.  相似文献   

13.
Brown rice was blasted with rice flour rather than sand in a sand blaster to make microperforations so that water could easily penetrate the brown rice endosperm and cook the rice in a shorter time. The flour‐blasted American Basmati brown rice, long‐grain brown rice, and parboiled long‐grain brown rice samples were stored in Ziploc storage bags under atmospheric conditions and in vacuum‐packed bags. They were periodically tested for over 10 months for changes in water absorption, free fatty acid (FFA), peroxide value (POV), viscosity changes of flour using the Rapid ViscoAnalyser (RVA), and texture of whole cooked kernel using a texture analyzer during cooking. Flour‐blasted brown rice absorbed less water but needed less cooking time than its counterpart that was not flour‐blasted. There was an increase in FFA, POV, peak viscosity (PV), final viscosity (FV), breakdown viscosity (BD), and setback viscosity (SB) during storage of flour‐blasted brown rice for 300 days, but no change was observed in texture (hardness, gumminess) and water absorption. The combined coefficient of correlation (including all types of rice) between FFA and FV is r = 0.86 and between FFA and SB is r = 0.90 at P < 0.0001.  相似文献   

14.
Three experiments were conducted to determine the influence of hotplate surface temperature (250, 300, 350, and 400°C), pasta‐to‐water ratio, and beaker material (glass versus stainless steel) on the final quality of cooked spaghetti. In all the experiments, 13, 20, 27, 33, and 48 g of pasta were cooked and its final quality measured as cooking loss, cooked weight, and cooked firmness. Cooking time was greater when cooked at 250 than 400°C, with 48 than 13 g of pasta, and with a glass than with a stainless steel vessel. Cooking loss, cooked weight, and cooked firmness were greater when cooked at 400 than 250°C, with 13 than 48 g of pasta, and with a stainless steel than with a glass vessel. Evidence of the effects of hotplate surface temperature, pasta‐to‐water ratio, and beaker material on pasta cooking time and cooked quality suggests that these parameters should be addressed in AACC International Approved Method 66‐50.01.  相似文献   

15.
提高发芽糙米得率的复合酶预处理工艺优化   总被引:2,自引:2,他引:0  
为解决传统工艺生产发芽糙米浸泡时间长、生产效率低等问题,提出以纤维素酶和木聚糖酶的复合溶液代替蒸馏水浸泡发芽前糙米的新工艺。以糙米为原料,探究复合酶预处理工艺中酶解时间、酶解温度、复合酶浓度及配比对发芽糙米得率的影响规律,采用二次正交旋转中心组合设计试验,建立了各因素对发芽糙米得率影响的数学模型。结果表明:酶解时间、酶解温度、复合酶浓度及酶配比对发芽糙米得率影响显著(P0.05),得到优化参数组合为:酶解时间135 min,酶解温度35℃,复合酶浓度0.57 g/L、纤维素酶和木聚糖酶质量比1.86:1,在此条件下,与传统工艺相比浸泡时间缩短62.5%、发芽糙米得率及γ-氨基丁酸含量分别提高约3.90%和3.86 mg/(100 g)。通过对酶解后糙米皮层微观结构的观察分析,糙米皮层在复合酶作用下部分降解,胚乳中淀粉更易与水分子相结合,从而吸水速率提升。研究结果可为发芽糙米生产提供参考。  相似文献   

16.
Rough rice (cv. Bengal) was stored at four moisture contents (8.8, 10.7, 12.9, and 13.6% MC) and three temperatures (3, 20, and 37°C) for up to six months. The amylograph overall paste viscosity of the milled rice increased during storage. This increase was most apparent in all samples stored at 37°C. For rice stored at 20 and 37°C at all MC levels, a 30–50% increase in peak viscosity (PV) was observed during the first three months of storage. PV subsequently leveled off for rice stored at 12.9 and 13.6% MC but declined for samples stored at 8.8 and 10.7% MC. The final viscosities also increased during storage. The water-absorption ratio of the samples during cooking in excess water increased by an average of 15% over six months of storage. The amylograph and cooking properties were significantly affected (P < 0.05) by rough rice storage duration, temperature, MC, and their respective interactions.  相似文献   

17.
A process was described for creating puffed wheat starch based or hybrid starch and rice snack foods processed in a rice cake puffing machine. Puffed cakes consisting of wheat starch and whole grain brown rice, created by mixing wheat starch beads with brown rice before processing and puffing for 10 sec (cooking time) at 210°C, exhibited greater flexibility and fracture strength than traditional rice cakes. The density of puffed wheat starch cakes decreased with increasing moisture content independent of particle size for particles 0.8–5 mm in diameter. The addition of sucrose and shortening promoted the formation of lower density puffed cakes at lower moistures, while salt had little effect.  相似文献   

18.
This study evaluated the effects of bread baking temperature on the staling kinetics of crumb. Bread dough was leavened and baked in sealed molds. Cooking trials were performed at various temperatures ranging from 90 to 110°C. The crumb samples were then stored at 20°C at constant moisture, and staling was evaluated by measuring crumb elastic modulus (using an Instron dynamometer) and starch retrogradation degree (using differential scanning calorimetry). Results show that the cooking temperature greatly influences bread staling. The lower the cooking temperature, the lower the staling rate, both in terms of crumb hardening and of starch retrogradation. Starch and protein solubility was evaluated on crumb cooked at 90 and 110°C. An increase in cooking temperature resulted in an increase in protein insolubilization and starch granule disruption.  相似文献   

19.
The effects of the degree of milling (based on surface lipids content [SLC]) on cooked rice physicochemical properties were investigated. Head rice yield (HRY), protein, and SLC decreased with increasing milling, while the percent of bran removed and whiteness increased. Results showed that SLC significantly (P < 0.05) affected milled as well as cooked rice properties across cultivar, moisture content (MC) at harvest, and location (Stuttgart, AR, and Essex, MO). Cooked rice firmness ranged from 90.12 to 111.26 N after milling to various degrees (SLC). The decrease in cooked rice firmness with increasing milling was attributed to the lowering of total proteins and SLC. Cooked rice water uptake increased with increasing degree of milling. Water uptake by the kernel during cooking dictated the cooked rice firmness. The increase in cooked rice stickiness with increasing degree of milling was attributed to an increase in starch leaching during cooking because of the greater starch granule swelling associated with a greater water uptake.  相似文献   

20.
The effects of drying conditions, final moisture content, and degree of milling on the texture of cooked rice varieties, as measured by texture profile analysis, were investigated. Instrumentally measured textural properties were not significantly (α = 0.05) affected by drying conditions, with the exception of cohesiveness. Cohesiveness was lower in rice dried at lower temperatures (18°C or ambient) than in that dried at the higher commercial temperatures. Final moisture content and degree of milling significantly (α = 0.05) affected textural property values for adhesiveness, cohesiveness, hardness, and springiness; their effects were interdependent. The effects of deep milling were more pronounced in the rice dried to 15% moisture than that dried to 12%. In general, textural property values for hardness were higher and those for cohesiveness, adhesiveness, and springiness were lower in regular-milled rice dried to 15% moisture than in that dried to 12%. In contrast, hardness values were lower and cohesiveness, adhesiveness, and springiness values were higher in deep-milled rice dried to 15% moisture than in that dried to 12% moisture. Deep milling resulted in rice with lower hardness values and higher cohesiveness, adhesiveness, and springiness values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号