首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Milling data of four long-grain rice cultivars were analyzed to determine the uniformity in the slope of their curves for head rice yield (HRY) versus the corresponding degree of milling (DOM). The data set for each cultivar comprised samples that had been subjected to various drying air conditions and durations and milled over a range of moisture contents. All treatment combinations were split and milled for either 15, 30, 45, or 60 sec in a McGill no. 2 laboratory mill to obtain HRY versus DOM data. Linear relationships between HRY and DOM, as observed in past research, were confirmed. This implies that as rice is milled to greater extents (higher DOM), the HRY decreases linearly. Within the bounds of the experimental levels tested, neither the drying air condition nor drying duration affected the rate at which HRY changed with DOM. However, the cultivar and the moisture content at which the rice was milled significantly (P < 0.05) influenced this rate. At higher milling moisture contents, the decrease in HRY per unit of increase in the DOM was greater than at lower moisture contents. While not conclusive, there was an indication of a relationship between the average kernel thickness of a cultivar and the HRY versus DOM slope.  相似文献   

2.
Head rice yield (HRY) is the primary parameter used to quantify rice milling quality. However, HRY is affected by the degree of milling (DOM) and thus HRY may not be comparable between different lots if the DOM is different. The objective of this study was to develop a method by which HRY values can be adjusted for varying DOM values when measured by surface lipid content (SLC). Seventeen rough rice lots including long‐grain and medium‐grain cultivars and hybrids were harvested from two 2003 and five 2004 locations. Duplicate subsamples of each lot were milled in a McGill No. 2 laboratory mill for 10, 15, 20, or 40 sec after zero, one, two, three, and six months of storage. HRY and SLC were measured. The average HRY versus SLC slope across all milling duration data sets was 9.4. As such, it is suggested that, when milling with a McGill No. 2 laboratory mill, the HRY of a rice lot can be adjusted by a factor of 9.4 percentage points for every percentage point difference between the rice lot SLC and a specified SLC.  相似文献   

3.
Long-grain rice variety Kaybonnet was milled to three degree of milling (DOM) levels in two commercial milling systems (a single-break, friction milling system and a multibreak, abrasion and friction milling system) and separated into five thickness fractions. For both milling systems, the surface lipid content (SLC) and protein content of the milled rice varied significantly across kernel thickness fractions. SLC was influenced by DOM level more than by thickness, while the protein content was influenced by thickness more than by DOM level. Particularly at the low DOM levels, the thinnest kernel fraction (<1.49 mm) had higher SLC than the other kernel fractions. Protein content decreased with increasing kernel thickness to 1.69 mm, after which it remained constant. In both milling systems, thinner kernels were milled at a greater bran removal rate as indicated by SLC differences between the low and high DOM levels. For rice milled to a given DOM level, the multibreak system produced fewer brokens than did the single-break system.  相似文献   

4.
Optimization of flour yield and quality is important in the milling industry. The objective of this study was to determine the effect of kernel size and mill type on flour yield and end‐use quality. A hard red spring wheat composite sample was segregated, based on kernel size, into large, medium, and small kernels, as well as unsorted kernels. The four fractions were milled in three roller mills: Brabender Quadrumat Jr., Quadrumat Sr., and Bühler MLU‐202 laboratory mills. Large kernels had consistently higher flour yield than small kernels across mills, with the Quadrumat Jr. mill showing the lowest flour yield. Mill type and kernel size significantly affected variation in flour protein molecular weight distribution. When compared with larger kernels, flour milled from the small‐kernel fraction contained a higher gliadin fraction and SDS‐unextractable high‐molecular‐weight polymeric proteins, which had positive correlations with bread loaf volume (r = 0.61, P < 0.05) and mixograph peak time (r = 0.84, P < 0.001). Overall, small kernels could contribute to enhancing flour breadmaking quality while having a detrimental effect on milling yield.  相似文献   

5.
Many rice cultivars and hybrids have unique physical characteristics that affect milling performance. The purpose of this study was to quantify the rate of bran removal during milling for several rice cultivars and hybrids common to the southern United States, and compare the quantity of lipids remaining on the kernel surface to that located throughout the kernel. This was accomplished by analyzing two sample sets. The first comprised cultivars Cocodrie, Cypress, and Lemont, and hybrids XL7 and XL8, which were milled for 0 (brown rice), 20, 30, 40, 50, 60, and 70 sec in a laboratory mill. In the second set, cultivars Cocodrie, Cypress, and Wells, and hybrids XL7 and XL8 were milled for 0, 20, 40, and 60 sec. The surface lipid content (SLC) and color of head rice samples were measured as indications of the degree of milling (DOM). The total lipid content (TLC) of ground head rice was also measured to determine the total amount of lipids present throughout the entire kernel. Results showed that at a given milling duration, SLC and color varied across cultivars and hybrids. In particular, the SLC levels of hybrids were lower than those of cultivars, particularly for Cocodrie, for all milling durations. This research indicated that it may be necessary to mill different cultivars and hybrids for varying durations to attain comparable DOM levels. Milling to a consistent DOM level is necessary to ensure equitable head rice yield comparisons across cultivars and hybrids.  相似文献   

6.
Several important nutraceutical compounds, such as tocotrienols, tocopherols, and oryzanols, can be extracted from rice bran, a by-product of milling. This study was conducted to not only provide information regarding nutraceutical concentrations within the rice kernel based on bran collected from successive milling, but also to determine levels of nutraceutical concentrations across several different thickness fractions. Nutraceutical compounds were measured in the bran from two long-grain rice varieties, Cypress and Drew. Rough rice was separated into three thickness fractions (<1·84, 1·84–1·98, and >1·98 mm) and each fraction milled for three successive 10 s milling durations. Bran was collected from each milling duration of each thickness fraction to allow quantification of the nutraceutical content. Results showed that bran collected from rice milled for longer durations (30 s) had lower levels of tocotrienols and tocopherols compared to bran from shorter milling durations (10 s). The highest concentration of oryzanols was in the rice bran from the first 10 s milling duration. Overall, compared to bran from thinner kernels (<1·84 mm), the bran from thicker kernel fractions contained a higher content of nutraceuticals.  相似文献   

7.
The effects of the soaking and steaming steps in rice parboiling on color changes and the levels of reducing sugars in rice were studied. Brown rice was soaked to different moisture contents (MC, 15, 20, 25, and 30%). The L*, a*, b* color parameters of the Commission Internationale de L'Eclairage (CIE 1976) indicated that during soaking, red and yellow bran pigments diffused from the bran into the endosperm. The increase in brightness brought about by soaking rice was attributed to migration of rice compounds (e.g., lipids) from the inner to the outer bran layers (rice surface). The levels of reducing sugars in brown and milled soaked rice samples increased with increasing brown rice MC after soaking. The total color difference (ΔE) between parboiled and nonparboiled rice increased with increasing MC after soaking and depended on the intensity of the steaming conditions as reflected in the degree of starch gelatinization. Parboiling affected yellowness more than redness in mildly steamed brown rice and most in intermediately steamed brown rice. Severe steaming of brown rice affected redness more than yellowness. All three parboiling conditions equally affected the yellow color more than the red color in milled rice. Linear regression analyses indicated that parboiling had a larger effect on ΔE of milled parboiled rice than of brown parboiled rice. Furthermore, the linear relationship between the level of gelatinized starch and ΔE of the milled parboiled rice samples showed that both parameters are indicators for the degree of parboiling. Reducing sugars were formed and lost during steaming, suggesting Maillard reactions during steaming.  相似文献   

8.
The effects of the degree of milling (based on surface lipids content [SLC]) on cooked rice physicochemical properties were investigated. Head rice yield (HRY), protein, and SLC decreased with increasing milling, while the percent of bran removed and whiteness increased. Results showed that SLC significantly (P < 0.05) affected milled as well as cooked rice properties across cultivar, moisture content (MC) at harvest, and location (Stuttgart, AR, and Essex, MO). Cooked rice firmness ranged from 90.12 to 111.26 N after milling to various degrees (SLC). The decrease in cooked rice firmness with increasing milling was attributed to the lowering of total proteins and SLC. Cooked rice water uptake increased with increasing degree of milling. Water uptake by the kernel during cooking dictated the cooked rice firmness. The increase in cooked rice stickiness with increasing degree of milling was attributed to an increase in starch leaching during cooking because of the greater starch granule swelling associated with a greater water uptake.  相似文献   

9.
The degree of milling (DOM) of rice is a measure of how well the germ and bran layers are removed from the surface of rice kernels during milling. Because the majority of rice kernel lipids are found on the surface, measuring the surface lipid content (SLC) of rice after milling may be one way to quantify the DOM of rice. While there are several methods to measure the lipid content (LC) of rice, there is not an established standard method for determining the SLC of milled rice. The objective of this study was to evaluate the primary operating variables of a Soxtec apparatus in measuring the SLC of milled rice. This was accomplished by varying the preextraction drying, boiling, rinsing, and postextraction drying durations, as well as the solvent used for extraction, to achieve the maximum extraction of lipids from rice. Experiments were performed on stored Oryza sativa L. ‘Cypress’ and ‘Bengal’ rice milled for 10, 30, and 60 sec. Results showed that durations of 1 hr of preextraction, 20 min of boiling, 30 min of rinsing, and 30 min of postextraction drying provided the maximum lipid extraction from milled head rice with petroleum ether. Of the three solvents tested, petroleum ether, and ethyl ether yielded similar extraction results.  相似文献   

10.
During rice milling, the bran and germ are successively removed from the caryopsis (kernel). Because bran and germ contain large quantities of lipid, the amount of lipid remaining on the kernel surface may be used as a method for the assessment of milling quality. Bulk samples of rice pureline varieties and an experimental hybrid were milled for 0, 10, 20, 30, and 40 s. Scanning electron microscopy (SEM) revealed that brown rice kernels had large contours of linear protuberances and depressions running lengthwise along the kernel surface. The protuberances were abraded successively during milling, but varying amounts of material remained in the depressions. Light microscopy combined with the lipid-specific probes Nile Blue A or Sudan Black B demonstrated that the material in the depressions observed with SEM was lipid. Sections of whole, milled rice kernels, prepared using a modified sectioning technique and stained with Nile Blue A, showed that portions of the embryo remain after milling and that lipid is located on or near the surface of the kernel. Differences in quantity and distribution of residual lipid as milling duration increased were documented photographically to indicate the extent to which the bran and embryo components were removed during milling. This paper provides proof of concept that residual lipid is a robust measure of the degree of milling.  相似文献   

11.
The objective of this research was to study the effects of different milling conditions and postmilling handling procedures on appraised milling quality of rough rice. Rough rice (M202) with moisture content of 11.5 ± 0.2% was used for this study. The samples were milled with a McGill number 3 mill under four milling conditions, including normal milling, milling at high temperature, milling with cooling using ice water, and room temperature water. The milled rice samples were cooled in closed and open plastic containers and in open pans with three temperatures: 15, 23, and 35°C. The effects of milling and postmilling conditions on milled rice temperature, moisture loss, cooling rate, single and multiple fissuring rates, total rice yield (TRY), head rice yield (HRY), whiteness index (WI), and total lipid content (TLC) were evaluated. Results showed that high single and multiple fissuring rates and low TRY and HRY were inherent in improper milling and postmilling conditions. Single fissuring rates were 15.9 and 17.6% and multiple fissuring rates were 3.5 and 7.2% for rice samples milled under normal and high‐temperature conditions, respectively. Cooling methods that used open containers and pans had more moisture losses and further resulted in lowering appraised milling quality than methods that used closed containers. Low‐temperature milling conditions followed by cooling in closed containers significantly reduced single and multiple fissuring rates and improved TRY and HRY by 0.9 and 1.5 percentage points, respectively. The effects of tested milling and postmilling conditions on WI and TLC were not significant. Obtained results constitute valuable information for developing milling and cooling procedures to achieve consistent, accurate, and reliable milling quality appraisals for rough rice.  相似文献   

12.
Improvement of milling quality is an important aspect in wheat breeding programs. However, the milling quality of Chinese wheats remains largely unexplored. Fifty‐seven Chinese winter wheat cultivars from four regions were used to investigate the variation of milling quality parameters and to determine the associations between milling quality traits and color of noodle sheet. Substantial variation was presented for all measured parameters in this germplasm pool. Complete soft, hard, and medium‐hard types were observed. Soft wheat and hard wheat show significant differences in flour ash content, flour bran area, and flour color grade. No simple trait can be used to select for flour milling quality. High flour ash content and bran speck area contributed negatively to brightness of dry flour. Correlation coefficients (r) between L* value of dry flour and flour ash content and bran speck area were ‐0.47 and ‐0.65 for hard cultivars, and ‐0.51 and ‐0.72 for soft cultivars, respectively. Flour color grade (FCG) was significantly and positively associated with bran speck area; r = 0.56 and 0.73 for hard and soft wheats, respectively. There was a high correlation between FCG and L* value of flour water slurry (r = ‐0.95). Strong associations were also established between milling quality index (MQI) and FCG, L* value of dry flour, flour‐water slurry, and white salted noodle sheet for both hard and soft wheats. In conclusion, substantial progress could be achieved in improvement of milling quality in Chinese winter wheats through genetic selection, and FCG and MQI could be two important parameters for evaluation of milling quality in breeding programs.  相似文献   

13.
Three cultivars of long-grain rice were milled to three degree of milling (DOM) levels. Inverse linear relationships were established between surface fat concentration (SFC) and Satake milling meter (MM1B) optical DOM measurement values, including whiteness, transparency, and DOM, for the unfractionated head rice within each cultivar. Milled bulk rice for each cultivar was subsequently separated into thickness fractions. Effects of milled rice kernel thickness on SFC and optical DOM measurements were investigated. For a given DOM level, SFC decreased with increasing milled rice kernel thickness up to a thickness of 1.67 mm, after which it remained constant. As the overall DOM level increased, the difference in DOM between thin kernels and thick kernels lessened, implying that thin kernels were milled at a greater bran removal rate than thick kernels. Milled rice kernel thickness significantly (at the 0.05 significance level) affected MM1B whiteness and MM1B transparency in two of the cultivars because of the predominant effects of the thinner kernel fractions. Within each cultivar, MM1B DOM was not significantly influenced by milled rice kernel thickness.  相似文献   

14.
Degree of milling (DOM) of rice plays a key role in determining rice quality and value. Therefore, accurate, nondestructive, quick, and automated surface lipid content (SLC) measurement would be useful in a commercial milling environment. This study was undertaken to provide calibration models for commercial use to provide quick and accurate evaluation of milled rice SLC and Hunterlab color parameters (L,a,b) as indications of rice DOM. In all, 960 samples, including seven cultivars from seven southern United States locations, stored for 0, 1, 2, 3, and 6 months, were milled for four durations to obtain samples of varying DOM. The samples were used to develop calibration models of milled rice SLC and L,a,b values. Another sample set (n = 58) was commercially milled and used to validate the developed models. A DA 7200 diode array analyzer was used to scan milled rice samples in wavelength spectra of 950–1,650 nm. SLC and color parameters were measured using a Soxtec system and a HunterLab colorimeter, respectively. The partial least squares regression (PLS) method using the full near‐infrared spectra was used to develop prediction models for rice SLC and color parameters. Milled rice SLC was well fitted with a correlation of determination of predicted and measured values of (R2 = 0.934). Color parameters were also successfully fitted for L (R2 = 0.943), a (R2 = 0.870), and b (R2 = 0.855). Performance of the developed models to predict rice DOM was superior in predicting SLC and L,a,b values with R2 predicted and measured values of 0.958, 0.836, 0.924, and 0.661, respectively.  相似文献   

15.
The effects of nighttime air temperature (NTAT) on the color of milled rice were investigated. Elevated NTATs occurring during the critical grain‐filling stages of kernel development impacted the color of head rice. Six cultivars, grown at multiple field locations from northern to southern Arkansas during 2007–2010, were evaluated for head rice color, using whiteness (L*) and yellowness (b*) indices, and for chalk. Nighttime temperatures were recorded throughout production at each of the selected locations, and the 95th percentiles of NTAT frequencies (NT95) were calculated for each cultivar's reproductive (R) stages. Head rice color values were analyzed in relation to NT95 occurring during the grain‐filling (R6–R8) stages and in relation to percent chalkiness. Whiteness generally increased with increasing NTAT and with increasing chalkiness. Yellowness decreased as chalkiness increased. Moreover, kernel whiteness increased even when measured in the absence of chalky kernels, suggesting that starch granule organization throughout the kernel, even in nonchalky portions, was altered, which could result in compromised physical integrity and processing functionality. Cultivars varied in their susceptibility to the effect of NTAT on color, as has been previously demonstrated with milling quality and functional properties.  相似文献   

16.
The objective was to describe a laboratory‐scale dry‐milling procedure that used single‐stage tempering and determine the effect of hybrid on yields and fraction compositions in milled corn. Samples of 11 commercially available hybrids were processed through a laboratory dry‐milling procedure that used 1 kg samples of corn to produce milling fractions of large grits, small grits, fines, germ, and pericarp. Compositions of milling fractions (protein, neutral detergent fiber, ash, and crude fat) were determined. The procedure used a single‐stage tempering step that increased corn moisture from 15 to 23.5% wb during an 18‐min tempering period. Germ were separated from endosperm particles using a roller mill followed by screening over a sieve with 1.68‐mm openings. Coefficients of variability were small, indicating acceptable repeatability. Overall yield means were 39.2, 25.3, 13.8, 78.2, 14.3, and 6.8 g/100 g (db) for large grits, small grits, fines, total endosperm, germ, and pericarp, respectively. There were effects due to hybrid (P < 0.05) on fraction yields and compositions of milling fractions. Correlations (r) among endosperm fractions (large grits, small grits, and fines) ranged from 0.54 to |–0.92|. Correlations among endosperm fractions and germ and pericarp were <0.68. The developed dry‐milling method estimated milling yields among hybrids with low standard deviations relative to the means and should be a useful tool for research and industry in measuring dry‐milling characteristics.  相似文献   

17.
Worldwide, nearly 20 times more common wheat (Triticum aestivum) is produced than durum wheat (T. turgidum subsp. durum). Durum wheat is predominately milled into coarse semolina owing to the extreme hardness of the kernels. Semolina, lacking the versatility of traditional flour, is used primarily in the production of pasta. The puroindoline genes, responsible for kernel softness in wheat, have been introduced into durum via homoeologous recombination. The objective of this study was to determine what impact the introgression of the puroindoline genes, and subsequent expression of the soft kernel phenotype, had on the milling properties and flour characteristics of durum wheat. Three grain lots of Soft Svevo and one of Soft Alzada, two soft‐kernel back‐cross derived durum varieties, were milled into flour on the modified Quadrumat Senior laboratory mill at 13, 14, and 16% temper levels. Samples of Svevo (a durum wheat and recurrent parent of Soft Svevo), Xerpha (a soft white winter wheat), and Expresso (a hard red spring wheat) were included as comparisons. Soft Svevo and Soft Alzada exhibited dramatically lower single‐kernel characterization system kernel hardness than the other samples. Soft Svevo and Soft Alzada had high break flour yields, similar to the common wheat samples, especially the soft hexaploid wheat, and markedly greater than the durum samples. Overall, Soft Svevo and Soft Alzada exhibited milling properties and flour quality comparable, if not superior, to those of common wheat.  相似文献   

18.
Phytic acid (myo‐inositol‐1,2,3,4,5,6‐hexakisphosphate) is the most abundant form of phosphorus (P) in cereal grains and is important to grain nutritional quality. In mature rice (Oryza sativa L.) grains, the bulk of phytic acid P is found in the germ and aleurone layer, deposited primarily as a mixed K/Mg salt. Phosphorus components and minerals were measured in whole grain produced by either the rice (Oryza sativa L.) cv. Kaybonnet (the nonmutant control) or the low phytic acid 1‐1 (lpa1‐1) mutant, and in these grains when milled to different degrees (10, 12, 17, 20, 22, and 25%, w/w). Phytic acid P is reduced by 42–45% in lpa1‐1 whole grain as compared with Kaybonnet, but these whole grains had similar levels of total P, Ca, Fe, K, Mg, Mn, and Zn. In both genotypes, the concentration of phytic acid P, total P, Ca, Fe, K, Mg, and Mn in the milled products was reduced by 60–90%, as compared with whole grain. However, a trend was observed for higher (25–40%) total P, K, and Mg concentrations in lpa1‐1 milled products as compared with Kaybonnet milled products. The reduction in whole grain phytic acid P in rice lpa1‐1 is accompanied by a 5‐ to 10‐fold increase in grain inorganic P, and this increase was observed in both whole grain and milled products. Phytic acid P was also reduced by 45% in bran obtained from lpa1‐1 grain, and this was accompanied by a 10‐fold increase in inorganic P. Milling had no apparent effect on Zn concentration. Therefore, while the block in the accumulation of phytic acid in lpa1‐1 seed has little effect on whole grain total P and mineral concentration, it greatly alters the chemistry of these seed constituents, and to a lesser but detectable extent, alters their distribution between germ, central endosperm, and aleurone. These studies suggest that development of a low phytate rice might improve the nutritional quality of whole grain, milled rice and the bran produced during milling.  相似文献   

19.
Rice bran contains high amounts of beneficial antioxidants including tocopherols, tocotrienols, and oryzanols. Current rice milling technology produces rice bran from different layers of the kernel caryopsis. Under current practices, these layers are combined and then steam‐extruded to form a stabilized rice bran pellet that is storage‐safe prior to oil extraction. Each of these rice bran intermediates can vary in antioxidant content. The objective of this study was to investigate the changes in selected antioxidants in rice bran from both long‐ and medium‐grain rice during commercial milling and bran processing. Rice bran collected from various milling breaks of a commercial system had varying antioxidant levels. Bran collected after milling break 2 had the highest levels of tocopherol and tocotrienol. Oryzanol concentration was significantly higher in outer bran layers. Results also indicate that the long‐grain rice bran averaged ≈15% more antioxidants than the medium‐grain rice bran.  相似文献   

20.
Rice bran is a rich source of phytochemicals including tocopherols (T), tocotrienols (T3), and γ‐oryzanol that have purported positive effects on human health. The screening of germplasm to determine the genetic diversity influencing contents of these compounds requires knowledge of how sample preparation influences concentrations of the phytochemicals in rice bran. Obtaining this knowledge was the objective of this study. Cultivars with different milling qualities were all milled to different degrees. The differences in bran removal among cultivars decreased as the milling time increased. Samples that were milled for 30 and 40 sec (milled to the degree of 0.23–0.44% surface lipid content [SLC]) showed no significant differences in T and T3 concentrations in the bran within cultivars. Bran starch concentration affected the rankings of cultivars based on phytochemical contents. Expression of the γ‐oryanol concentration in bran after subtracting starch reduced the concentration differences resulting from differences in degree of milling (DOM). Bran from the mature thin kernels had phytochemical contents similar to that of the mature thick kernels milled for 30 sec. The immature thin kernels had significantly lower contents of most of the bran phytochemicals than did the mature kernel fractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号