首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
The dynamics of soil inorganic nitrogen (NH4^+ -N and NO3^- -N) and microbial biomass carbon (Cmic) and nitrogen (Nmic) under 30-year-old fenced Pinus sylvestris L. var. mongolica Litvin (SF), unfenced P. sylvestris L. var. mongolica Litvin (SUF), and unfenced Pinus densiflora Siebold et Zucc. (DUF) plantations in the Zhanggutai sandy soil of China were studied during Apr. to Oct. 2004 by the in situ closed-top core incubation method. All mentioned C and N indices in each stand type fluctuated over time. The ranges of inorganic N, Cmic, and Nmic contents in the three stand types were 0.7-2.6, 40.0-128.9, and 5.4-15.2 μg g^-1, respectively. The average contents of soil NH4^+ -N and Cmic under the three 30-year-old pine plantations were not different. However, soil NO3^ -N and total inorganic N contents decreased in the order of SUF ≥ SF ≥ DUF, the Nmic content was in the order of SF = SUF 〉 DUF, and the Cmic:Nmic ratio was in the order of SUF = DUF 〉 SF. Seasonal variations were observed in soil inorganic N, microbial biomass, and plant growth. These seasonal variations had certain correlations with microbe and plant N use in the soil, and their competition for NH4^+ -N was mostly regulated by soil N availability. The influence of tree species on inorganic N and Nmic were mainly because of differences in litter quality. Lack of gazing decreased the Cmic:Nmic ratio owing to decreased carbon output and increased the ability of soil to supply N. The soil N supply under the P. sylvestris var. mongolica plantation was lower than under the P. densiflora plantation.  相似文献   

2.
A field experiment was conducted at Kezuohouqi County, Inner Mongolia Autonomous Region of China, which was located on the southeastern edge of the Horqin Sandy Land, to study the spatial variability of soil nutrients for a small-scale, nutrient-poor, sandy site in a semi-arid region of northern China; to investigate whether or not there were "islands of fertility" at the experimental site; and to determine the key nutrient elements that sustained ecosystem stability. Results obtained from geostatistical analysis indicated that the spatial distribution pattern of soil total nitrogen (STN) was far different from those of soil organic matter (SOM), total phosphorus (STP), and total potassium (STK). Compared to SOM, STP, and STK, STN had a lower structural heterogeneity ratio and a longer range, while other elements were all similar. In addition, STN had an isotropic spatial structure, whereas the others had an anisotropic spatial structure. The spatial structure patterns of herbage species, cover, and height also differed, indicating that spatial variability was subjected to different ecological factors. Differences in the spatial variability patterns among soil nutrients and vegetation properties showed that soil nutrients for a small-scale were not the primary limiting factors that influenced herbage spatial distribution patterns. Incorporating spatial distribution patterns of tree species, namely, Pinus sylvestris var. mongolica Litv. and shrub Lespedeza bicolor Turcz. in a research plot and using fractal dimension, SOM, STP, and STK were shown to contribute to the "islands of fertility" phenomenon, however STN was not, possibly meaning that nitrogen was a key limiting element. Therefore, during restoration of similar ecosystems more attention should be given to soil nitrogen.  相似文献   

3.
The objective of this study is to evaluate different agricultural land‐use practices in terms of N leaching and to give recommendations for a sustainable agriculture on sandy soils in Middle Germany. Soil mineral N (Nmin) and leachate N were quantified at a sandy soil in N Saxony during 3 years. Two treatments were applied: intensive (I)—using inorganic and organic fertilizer and pesticides, and organic (O)—exclusively using organic fertilizer, legume‐based crop rotation, and no pesticides. Split application of mineral fertilizers did not result in substantial N losses at treatment I. Legumes induced a considerable increase of soil mineral N and particularly of leachate mineral N (Nmin_perc) at treatment O. High Nmin_perc concentrations (up to 78 mg N L–1) were observed during as well as after the cultivation of legumes. These high Nmin_perc concentrations are the reason why clearly higher Nmin_perc losses were determined at treatment O (62 kg N ha–1 y–1) compared to treatment I (23 kg N ha–1 y–1). At both treatments, the quantity of N losses was strongly affected by the precipitation rates. Concentrations and losses of dissolved organic N (DONperc) were assessed as above average at both treatments. The results suggest that the DONperc concentration is influenced by precipitation, soil coverage, and organic fertilizers. Higher values were determined in the percolation water of treatment O. The average annual DONperc losses amounted to 15 kg N ha–1 at I and to 32 kg N ha–1 at O. The average monthly percentage of DONperc losses on the loss of the dissolved total N of percolation water (DTNperc) ranged between <1% and 55% at O and between 2% and 56% at I. For the whole measuring period of 29 months, the relative amounts of DONperc of DTNperc (21% at O and 25% at I) were more or less the same for both treatments. The results show that DONperc can contribute significantly to the total N loss, confirming the importance to consider this N fraction in N‐leaching studies. It was concluded that at sandy sites, a split application of mineral fertilizers, as applied at treatment I, seems to be more expedient for limiting the N leaching losses than legume‐based crop rotations.  相似文献   

4.
Continuous conventional tillage can cause serious soil degradation in rain‐fed agriculture, which reduces crop productivity. Adopting suitable tillage practices is very important for improving the soil and increasing crop productivity. Between 2007 and 2010, a 3‐year field study was conducted in semi‐arid areas of southern Ningxia, China, to determine the effects of rotational tillage practices on bulk density, soil aggregate, organic carbon concentration and crop yields. Three tillage treatments were tested: no‐tillage the first and third year and subsoiling the second year (NT/ST/NT); subsoiling the first and third year and no‐tillage the second year (ST/NT/ST); and conventional tillage each year (CT). A conventional tillage treatment was used as the control. Under the rotational tillage treatments, the mean soil bulk density at a depth of 0–60 cm was significantly (P < 0.05) decreased by 4.9% compared with CT, and with the best effect under ST/NT/ST. The soil organic carbon (SOC) concentration and aggregate size fractions and stability at 0–40 cm depth were significantly (P < 0.05) increased in rotational tillage treatments when compared with the conventional tillage, and the ST/NT/ST treatment produced the highest increases. Significant differences were detected in the SOC concentration in 2 to 0.25–mm size fractions at 0–30 cm depth between rotational tillage treatments and conventional tillage. Biomass and grain yield with the rotational tillage practices were significantly positively influenced over 3 years, and ST/NT/ST produced the highest average crop yields among the three treatments. Therefore, it was concluded that the application of rotational tillage with subsoiling every 2 years and no‐tillage every other year (ST/NT/ST) should be of benefit in promoting the development of dryland farming in semi‐arid areas of northwest China.  相似文献   

5.
Properly estimating soil nitrogen (N) mineralization as a consequence of different agronomic practices would result in better soil N fertility management. In this study, we tested the differences between laboratory and in situ resin‐core incubation methods for estimating soil net N mineralization for long‐term burley tobacco (Nicotiana tobacum L .) tillage and rotation systems. The laboratory incubation method used crushed, homogenized, litter‐free soil samples, and the in situ resin‐core incubation method used an intact soil core with the inclusion of any plant residue below or above ground. Comparisons showed that no‐tillage had significantly increased soil net N mineralization compared to conventional tillage with the laboratory incubation method, while there was no significant difference between tillage methods with the in situ resin‐core method. This indicates that soil pretreatment in the laboratory incubation method can create an “artificial tillage effect” for soil previously managed with no‐tillage, resulting in overestimated soil net N mineralization. The rotation comparison showed that different crop sequences had no impact on measured net N mineralization with the laboratory incubation method. However, a preceding soybean crop did significantly increase net soil N mineralization compared to preceding corn when measured with the in situ resin‐core method. This suggests that discarding plant residue in the laboratory incubation method can neglect the potential effect of plant residue on soil N mineralization. Therefore, it is important to be aware that soil pretreatment may influence soil N mineralization estimates, potentially resulting in flawed decisions for soil N fertility management.  相似文献   

6.
Revegetation has been reported as one of the most effective counter measures to reduce soil and water erosion on the Loess plateau in China. Soil aggregate stability and the distribution of organic carbon and nitrogen in different aggregate fractions would be affected by different plant communities. The objectives of this study were to elucidate the effects of different plant communities on soil aggregate stability and the distribution of organic carbon and nitrogen in different aggregate fractions in order to prove that the different plant covers enhance soil aggregate stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号