首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Granule size distribution of wheat starch is an important characteristic that can influence its chemical composition, which in turn may affect its functionality. The granule size distribution and chemical composition of soft wheat starches were characterized and compared and relationships among those properties were identified. Thirty-four starch samples from 12 soft wheat cultivars grown in the eastern half of the United States were examined. Granule size distribution was characterized using a laser light-scattering technique. Amylose and phospholipid contents were determined using colorimetric procedures. A clear trimodal distribution of granule sizes was shown by 26 out of 34 starch samples: small granules with diameters <2.8 μm, midsize granules with diameters of 2.8–9.9 μm, and large granules with diameters >9.9 μm. Volume% distribution of granules within the three size classes had ranges of 9.7–15.2% (small), 13.4–27.9% (medium), and 57.9–76.9% (large). Highly significant differences were seen among the cultivars for volume% of granules within the ranges of 9.9–18.5 μm and 18.5–42.8 μm. Cultivar specific surface area means also differed. The environment affected granule size distribution, with some cultivars exhibiting more variation than others. Pioneer 2555 was the least variable, whereas Pioneer 2550 and Geneva were the most variable cultivars. Mean total amylose (TAM), apparent amylose (AAM), and lysophospholipid (LPL) values varied significantly among cultivars. TAM was positively correlated with the volume% of granules of 9.9–18.5 μm. LPL was negatively correlated with mean starch granule diameter and positively correlated with specific surface area of granules, indicating smaller granules tended to have higher lipid contents. Results suggest that significant differences exist in granule size distribution of soft wheat starches and affect starch chemical composition. Data also suggest it is possible that lipid is preferentially associated with the biosynthesis of small starch granules.  相似文献   

2.
优质小麦子粒淀粉组成与糊化特性对氮素水平的响应   总被引:1,自引:0,他引:1  
在大田条件下,选用3个不同类型优质小麦品种: 豫麦47(强筋品种)、山农8355(中筋品种)和豫麦50(弱筋品种),设置3个氮肥水平: 施N 0、15和30 g/m2,研究了小麦子粒淀粉的粒度分布、直支链淀粉组成、糊化特性及其对氮素水平的响应。结果表明,优质小麦子粒中淀粉粒的粒径分布范围为1~45 μm,其数目分布呈单峰或双峰曲线变化,体积和表面积分布均呈双峰曲线变化,峰谷位于10 μm处; 据此可将淀粉粒分为两种类型: A型大淀粉粒(10~45 μm)和B型小淀粉粒(1~10 μm)。优质小麦子粒淀粉粒组成存在显著的基因型差异。强筋品种豫麦47子粒中B型淀粉粒的比例较高,弱筋品种豫麦50子粒中A型淀粉粒的比例较高,中筋品种山农8355居中。施氮水平对优质小麦子粒中淀粉的粒度分布存在显著影响。在本试验条件下,随氮素水平的提高,强筋品种豫麦47子粒中A型淀粉粒的比例提高,而B型淀粉粒的比例下降; 增施氮肥后弱筋品种豫麦50和中筋品种山农8355子粒中B型淀粉粒的比例增大,而A型淀粉粒的比例降低,且前者变化的幅度较大。适量增施氮肥提高优质小麦子粒中的淀粉含量,氮肥用量进一步增大后,淀粉含量降低; 增施氮肥后优质小麦子粒中直链淀粉含量降低。增施氮肥对优质小麦子粒淀粉的糊化特性存在较大影响,且此影响的趋势因基因型和施氮量而异。其中强筋品种豫麦47表现为低谷粘度、最终粘度、反弹值、糊化温度和峰值时间提高,而高峰粘度和稀懈值降低; 当氮肥用量增大至30 g/m2时,糊化温度和峰值时间降低,而以粘度为单位的参数均提高。弱筋品种豫麦50表现为增施氮肥后,RVA参数呈下降趋势,与之相对应中筋品种山农8355的呈上升趋势。相关性分析表明,B型淀粉粒的数目、体积和表面积比例与高峰粘度和稀懈值存在显著正相关; 与低谷粘度、最终粘度和反弹值存在显著负相关。子粒中直链淀粉含量、支链淀粉含量和总淀粉含量与高峰粘度和稀懈值呈显著负相关,与低谷粘度、最终粘度、反弹值和峰值时间呈一定程度正相关; 直链淀粉相对含量与RVA特征参数之间的相关趋势与子粒中直链淀粉含量的趋势一致,但均未达显著水平。由此可以认为,氮肥通过调控小麦子粒中淀粉的直、支链组成和粒度分布而影响其糊化特性。  相似文献   

3.
Starch granule composition and amylopectin structure affect starch digestibility, an important factor influencing wheat grain utilization for human food consumption. Six bread wheat cultivars with four belonging to the Canada Western Red Spring (CWRS) and two Canada Prairie Spring Red (CPSR) market classes were analyzed for the relationship between their grain constituents and in vitro enzymatic hydrolysis of starch. CPSR cultivars had higher starch and amylose concentrations compared with CWRS cultivars, which had a higher protein concentration. Starch granule size distribution did not differ among the genotypes, except AC Foremost, which had significantly (P < 0.05) higher volume percent of B‐type starch granules (≈15%) and lower volume percent of A‐type starch granules (≈9%) compared with other cultivars. Fluorophore‐assisted capillary electrophoresis revealed a lower content of R‐IV (DP 15–18, ≈6%) and a higher content of R‐VII (DP 37–45, ≈7%) chains in the CPSR cultivars compared with the CWRS cultivars. Starch in vitro enzymatic hydrolysis showed that compared with CWRS cultivars, the two CPSR cultivars had reduced amounts of readily digestible starch and higher amounts of slowly digestible starch and resistant starch. Consequently, the two CPSR cultivars also showed lower hydrolysis indexes in grain meal as well as extracted starch. CPSR cultivars, with higher starch and amylose concentrations, as well as a higher content of long chains of amylopectin, showed a reduced starch in vitro enzymatic hydrolysis rate.  相似文献   

4.
Flours of two soft wheat cultivars were fractionated into native, prime, tailing, A‐, and B‐type starch fractions. Starch fractions of each cultivar were characterized with respect to A/B‐type granule ratio, amylose content, phosphorus level (lysophospholipid), and pasting properties to investigate factors related to wheat starch pasting behavior. While both cultivars exhibited similar starch characteristics, a range of A‐type (5.7– 97.9%, db) and B‐type granule (2.1–94.3%, db) contents were observed across the five starch fractions. Though starch fractions displayed only subtle mean differences (<1%) in total amylose, they exhibited a range of mean phosphorus (446–540 μg/g), apparent amylose (18.7–23%), and lipid‐complexed amylose (2.8–7.5%) values, which were significantly correlated with their respective A‐ and B‐type granule contents. A‐type (compared with B‐type) granules exhibited lower levels of phosphorus, lipid‐complexed amylose, and apparent amylose, though variability for the latter was primarily attributed to starch lipid content. While starch phosphorus and lipid‐complexed amylose contents exhibited negative correlation with fraction pasting attributes, they did not adequately account for starch fraction pasting behavior, which was best explained by the A/B‐type granule ratio. Fraction A‐type granule content was positively correlated with starch pasting attributes, which might suggest that granule size itself could contribute to wheat starch pasting behavior.  相似文献   

5.
To obtain an indication of the effect of increasing the starch amylose content above normal levels (27–74%) and increasing the percentage of B‐type starch granules (11–60%) on durum dough properties and the quality of the spaghetti derived from these doughs, the reconstitution approach was used. Reconstituted flours were prepared from a common Wollaroi gluten, solubles and tailings fraction combined with starches containing varying B‐granule contents, or with starches from maize with varying amylose content. An increased B‐granule content increased farinograph water absorption. Cooked spaghetti firmness was highest with B‐type granules at 32–44% (volume percentage basis), which is ≈10–15% higher than normally found in durum starch. Increasing the amylose content in the starch caused the dough to be more extensible, increased spaghetti firmness, and decreased water absorption with optimum quality of amylose at 32–44%. The information indicates there would be benefit in producing durum wheats with slightly elevated B‐granule and amylose contents.  相似文献   

6.
Starch is a crucial component determining the processing quality of wheat‐based products such as Chinese steamed bread (CSB) and raw white noodles (RWN). Flour from wheat cultivar Zhongmai 175 was used for fractionation into starch, gluten, and water solubles by hand washing. The starch fraction was successfully separated into large (>10 μm diameter) and small starch granules (<10 μm diameter) by repeated sedimentation. Flour fractions were reconstituted to original levels in the flour by using constant gluten and water solubles and varying the weight ratio of large and small starch granules. As the proportion of small granules increased in the reconstituted flours, farinograph water absorption increased, and amylose content, pasting peak viscosity, trough, and final viscosity decreased. Starch granule size distribution significantly affected processing quality of CSB and RWN. Superior crumb structure score (12.0) was observed in CSB made from reconstituted flour with 35% small starch granules. CSB made from reconstituted flours with 30 and 35% small starch granules exhibited the highest total scores, with values of 85.4 and 83.3, respectively. Significant improvements in color, viscoelasticity, and smoothness of RWN were obtained with an increase in small starch granule content, and reconstituted flours with 30–40% small starch granules produced RWN with moderate firmness.  相似文献   

7.
Flours from five spelt cultivars grown over three years were evaluated as to their breadbaking quality and isolated starch properties. The starch properties included amylose contents, gelatinization temperatures (differential scanning calorimetry), granule size distributions, and pasting properties. Milled flour showed highly variable protein content and was higher than hard winter wheat, with short dough‐mix times indicating weak gluten. High protein cultivars gave good crumb scores, some of which surpassed the HRW baking control. Loaf volume was correlated to protein and all spelt cultivars were at least 9–51% lower than the HRW control. Isolated starch properties revealed an increase in amylose in the spelt starches of 2–21% over the hard red winter wheat (HRW) control. Negative correlations were observed for the large A‐type granules to bread crumb score, amylose level, and final pasting viscosity for cultivars grown in year 1999 and to pasting temperature in 1998 samples. Positive correlations were found for the small B‐ and C‐type granules relative to crumb score, loaf volume, amylose, and RVA final pasting viscosity for cultivars grown in 1999, and to RVA pasting temperature for samples grown in 1998. The environmental impact on spelt properties seemed to have a greater effect than genetic control.  相似文献   

8.
The effects of growing conditions on properties of starch from wheat grain were examined. Growing conditions affected starch and amylose content, granule size distribution, protein associated with starch granules, and starch swelling power in grains from five commercial Australian milling wheat varieties grown at multiple locations in two years in crop production systems. Soil nitrogen and meteorological conditions were major contributors to variability in grain yield and grain protein and starch contents. The volume proportion of B‐granules was positively affected by warmer temperatures before flowering but negatively correlated with high temperatures during grain filling. Genotype was the main source of variability in the proportion of B‐granules and granule dimensions, starch‐granule proteins, and starch swelling power, although there were also significant contributions to variability from the growing conditions. Seasonal effects and interactions between genotype and season and location were significant sources of variability in amylose content, proportion of short chains of amylopectin, and flour swelling power. The positive relationships between starch content and the number of clear days and atmospheric temperatures before flowering indicate that conditions that enhance accumulation of assimilates before anthesis influence the deposition of reserves in developing grain.  相似文献   

9.
Physical properties of resistant starch (RS) were examined in a range of barley genotypes to determine the contribution of starch and seed physical characteristics to the RS component. Thirty‐three barley genotypes were studied, which varied significantly in their RS, amylose, and starch contents and grain yield. From 33 genotypes, 13 exhibiting high RS were selected for detailed physicochemical analysis of starch. In high‐RS varieties, granule size and number were unimodal, compared with normal starches from a reference genotype, which showed a bimodal distribution. Principal component analysis (PCA) showed that a higher content of granules <15 µm was positively correlated with RS and amylose content, whereas the proportion of granules 15–45 µm was negatively correlated with the RS and amylose contents. Physical fractionation of starches by centrifugation into different population sizes demonstrated that size alone is not an accurate indicator of the population of A‐type and B‐type granules within a given genotype. PCA also showed that large 15–45 µm granules were positively correlated with seed thickness and that thousand grain weight was positively correlated with seed width. High‐RS and high‐amylose genotypes showed variation in overall yield and starch content, with some genotypes showing yield comparable to the reference genotype. Analysis of amylopectin chain length distribution showed that high amylose or RS content was not associated with a higher proportion of amylopectin long chains when compared with either waxy or reference (normal) barley genotypes. This study highlights useful markers for screening barley genotypes with favorable starch characteristics.  相似文献   

10.
Wheat starches isolated from seeds harvested between 7 and 49 days after anthesis (DAA) were fractionated into large (>8 μm) and small (<8 μm) granules and studied for starch structure and architecture. Starch granules at 7 DAA possessed unimodal size distribution, whereas it was bimodal at later maturity stages. The apparent amylose fraction of starch granules at early maturity (7 and 14 DAA) consisted of intermediate‐type materials, whereas starch at later maturity stages (28 and 49 DAA) contained branched amylose. Wide‐angle X‐ray scattering (WAXS) revealed a well‐developed polymorphic structure already at 7 DAA. Although the presence of a small proportion of B‐type crystallites mixed with A‐type crystallites was observed in the X‐ray diffractogram of starches at early maturation (7 and 14 DAA), it was masked by the A‐type crystallites at later maturity stages. However, the large granules had a higher proportion of B‐type crystallites and lower relative crystallinity (RC) than their small‐granule counterpart. The iodine absorption properties of the starch granules demonstrated different levels of mobility of the starch polymers at different stages of maturity and the mobility of more glucan polymers in the large granule population compared with the small granules at the same maturity stage. Iodine did not change the characteristic A‐type crystalline pattern of starch, but it increased RC. Changes in peak width at half height based on WAXS data further suggested the possible interaction of iodine with amylopectin intercluster chain segments and branch chains in formation of inclusion complexes.  相似文献   

11.
The relationship between starch physical properties and enzymatic hydrolysis was determined using ten different hulless barley genotypes with variable carbohydrate composition. The ten barley genotypes included one normal starch (CDC McGwire), three increased amylose starches (SH99250, SH99073, and SB94893), and six waxy starches (CDC Alamo, CDC Fibar, CDC Candle, Waxy Betzes, CDC Rattan, and SB94912). Total starch concentration positively influenced thousand grain weight (TGW) (r(2) = 0.70, p < 0.05). Increase in grain protein concentration was not only related to total starch concentration (r(2) = -0.80, p < 0.01) but also affected enzymatic hydrolysis of pure starch (r(2) = -0.67, p < 0.01). However, an increase in amylopectin unit chain length between DP 12-18 (F-II) was detrimental to starch concentration (r(2) = 0.46, p < 0.01). Amylose concentration influenced granule size distribution with increased amylose genotypes showing highly reduced volume percentage of very small C-granules (<5 μm diameter) and significantly increased (r(2) = 0.83, p < 0.01) medium sized B granules (5-15 μm diameter). Amylose affected smaller (F-I) and larger (F-III) amylopectin chains in opposite ways. Increased amylose concentration positively influenced the F-III (DP 19-36) fraction of longer DP amylopectin chains (DP 19-36) which was associated with resistant starch (RS) in meal and pure starch samples. The rate of starch hydrolysis was high in pure starch samples as compared to meal samples. Enzymatic hydrolysis rate both in meal and pure starch samples followed the order waxy > normal > increased amylose. Rapidly digestible starch (RDS) increased with a decrease in amylose concentration. Atomic force microscopy (AFM) analysis revealed a higher polydispersity index of amylose in CDC McGwire and increased amylose genotypes which could contribute to their reduced enzymatic hydrolysis, compared to waxy starch genotypes. Increased β-glucan and dietary fiber concentration also reduced the enzymatic hydrolysis of meal samples. An average linkage cluster analysis dendrogram revealed that variation in amylose concentration significantly (p < 0.01) influenced resistant starch concentration in meal and pure starch samples. RS is also associated with B-type granules (5-15 μm) and the amylopectin F-III (19-36 DP) fraction. In conclusion, the results suggest that barley genotype SH99250 with less decrease in grain weight in comparison to that of other increased amylose genotypes (SH99073 and SH94893) could be a promising genotype to develop cultivars with increased amylose grain starch without compromising grain weight and yield.  相似文献   

12.
The structural features of rice starch that may contribute to differences in the functionality of three long‐grain rice cultivars were studied. Dried rough rice samples of cultivars Cypress, Drew, and Wells were analyzed for milling quality, grain physical attributes, and starch structures and physicochemical properties. Drew was lower in head rice yield and translucency and higher in percentage of chalky grains compared with Cypress and Wells. Apparent amylose content (21.3–23.1%), crude protein (8.3–8.6%), and crude fat (0.48–0.64%) of milled rice flours were comparable, but pasting properties of rice flours as measured by viscoamylography, as well as starch iodine affinity and thermal properties determined by differential scanning calorimetry were different for the three cultivars. Drew had higher peak, hot paste, and breakdown viscosities, and gelatinization temperature and enthalpy. Molecular size distribution of starch fractions determined by high‐performance size‐exclusion chromatography showed that the three samples were similar in amylose content (AM) (20.0–21.8%) but differed in amylopectin (AP) (64.7–68.3%) and intermediate material (IM) (10.9–13.5%). Drew had highest AP and lowest IM contents, whereas Cypress had the lowest AP and highest IM contents. High‐performance anion‐exchange chromatography of isoamylase‐debranched starch indicated that the AP of Drew was lower in A and B1 chains but higher in B2, B3, and longer chains.  相似文献   

13.
Starches were isolated from 12 soft wheat (Triticum aestivum L.) cultivars and were characterized for waxy (Wx) allelic expression, thermal pasting characteristics, and starch granule size. Gels were produced from the thermally degraded starches and were evaluated using large deformation rheological measurements. Data were compared with cultivar kernel texture, milling characteristics, starch chemical analyses, and flour pasting characteristics. Larger flour yields were produced from cultivars that had larger starch granules. Flour yield also was correlated with lower amylose content and greater starch content. Harder starch gels were correlated with higher levels of amylose content and softer kernel texture. The cultivar Fillmore, which had a partial waxy mutation at the B locus, produced the highest peak pasting viscosity and the lowest gel hardness. Softer textured wheats had greater lipid‐complexed amylose and starch phosphorus contents and had less total starch content. Among these wheats of the soft market class, softer textured wheats had larger starch granules and harder textured wheats had smaller starch granules. In part, this may explain why soft wheats vary in texture. The smaller granules have larger surface area available for noncovalent bonding with the endosperm protein matrix and they also may pack more efficiently, producing harder endosperm.  相似文献   

14.
Small starch particles were prepared by hydrolyzing waxy rice starch using α‐amylase and then ultrasonicating in ethanol. Differential scanning calorimetry (DSC) revealed that a mild hydrolysis for 3 hr increased the melting enthalpy of the starch, which might indicate that the hydrolysis was selective in the amorphous regions. Later, at 6–24 hr, the hydrolysis rate was reduced, with gradual decreases in DSC melting enthalpy, indicating that the crystalline regions were eroded simultaneously. X‐ray diffraction patterns revealed the same trend as the DSC results. Average diameter of starch granules or particles was decreased dramatically in both volume‐ and number‐based measurements (5.94→1.64 μm, and 0.45→0.18 μm, respectively) during the early stage of rapid hydrolysis (up to 3 hr). Native waxy rice starch exhibited a particle size distribution with a major peak at 5.6 μm. After hydrolysis for 3 hr, the volume distribution of starch granules changed to two major size peaks at 0.5 and 3.6 μm. The starch fragment of 0.5 μm was assumed to consist of crystalline blocklets. With excessive hydrolysis (24 hr) or ultrasonication, however, starch particle diameter was increased, indicating that the particles might be swollen or aggregated into clusters.  相似文献   

15.
《Cereal Chemistry》2017,94(2):341-348
Recently, hairless canary seed has received generally recognized as safe (GRAS) status from the U.S. Food and Drug Administration and an approval as a novel food from Health Canada. There is a need to characterize its components for food and nonfood applications. In this study, thermal and functional properties of starch obtained from two hairless canary seed varieties were investigated and compared with commercial wheat starch. Both canary seed starches (CSS) had polygonal granules with a diameter range of 0.5–7.5 μm and average of 2.6 μm. The CSS showed a typical crystal structure (A‐type) of cereal starches but exhibited a strong amylose‐lipid complex peak at 4.4°A. DSC data showed that CSS have higher gelatinization transition temperatures (onset, peak, and conclusion temperatures) and broader gelatinization range compared with wheat starch. The CSS also exhibited higher peak, trough, final, breakdown, and setback viscosity in addition to higher swelling power and water solubility index than wheat starch. The exudate from CSS gels after freeze‐thawing treatment was lower than that of wheat starch gel, but CSS suspensions showed less clarity. The distinct properties of CSS, particularly having uniform and small granules, low amount of damaged starch and amylose, and better gel stability, would make it a promising nonconventional starch source.  相似文献   

16.
Starch was isolated from flour of four wheats representing hard red winter (Karl), hard red spring (Gunner), durum (Belfield 3), and spelt (WK 86035‐8) wheat classes. Digital image analysis (IA) coupled with light microscopy was used to determine starch size distributions where the volume of granules was calculated as spherical particles or oblate spheroids. Starch granules were classified into three size ranges: A‐type granules (> 15 μm), B‐type granules (5–15 μm), and C‐type granules (<5 μm). An error was noted in using digital image analysis because the perimeter of some granules touch the edge (PTE) of the field being analyzed. To correct for this error, the PTE granules were manually replaced into the field by measuring their diameters and entering them into the database. The results showed differences in the starch size distributions between the classes of wheat evaluated, as well as the method of analysis. Four laser diffraction sizing (LDS) instruments were used to measure granule distributions of the four classes of wheat. LDS compared with IA resulted in a ≈40% underestimation of the A‐type granule diameter and a ≈50% underestimation of the B‐type granule diameter. A correction factor (adjustment) was developed from IA data to correct LDS analysis. LDS data correlations before adjustments to IA data were R2 = 0.02ns to 0.55***. After adjustment, these correlations improved to R2 = 0.81*** to 0.93*** depending on the class of wheat starch evaluated.  相似文献   

17.
Twelve hard winter wheat flours with protein contents of 11.8–13.6% (14% mb) were selected to investigate starch properties associated with the crumb grain score of experimentally baked pup‐loaf bread. The 12 flours were classified in four groups depending on the crumb grain scores, which ranged from 1 (questionable‐unsatisfactory) to 4 (satisfactory). Flours in groups 1, 2, 3, and 4 produced breads with pup‐loaf volumes of 910–1,035, 1,000–1,005, 950–1,025, and 955–1,010 cm3, respectively. Starches were isolated by a dough handwashing method and purified by washing to give 75–79% combined yield (dry flour basis) of prime (62–71%) and tailing (7–16%) starches. The prime starch was fractionated further into large A‐granules and small B‐granules by repeated sedimentation in aqueous slurry. All starches were assayed for weight percentage of B‐granules, swelling power (92.5°C), amylose content, and granular size distribution by quantitative digital image analysis. A positive linear correlation was found between the crumb grain scores and the A‐granule sizes (r = 0.65, P < 0.05), and a polynomial relationship (R2 = 0.45, P < 0.05) occurred between the score and the weight percentage of B‐granule starch. The best crumb grain score was obtained when a flour had a weight percentage of B‐granules of 19.8–22.5%, shown by varietal effects.  相似文献   

18.
Native starch granules of 11 selected cultivars (potato, waxy potato, sweet potato, normal maize, high‐amylose maize, waxy maize, wheat, normal barley, high‐amylose barley, waxy barley, and rice) were treated with a calcium chloride solution (4M) for surface gelatinization. The surface‐gelatinized starch granules were investigated using light microscopy and scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). In general, those starches with larger granule sizes required longer treatment time to complete the gelatinization. The salt solution treatment of starch was monitored by light microscopy and stopped when the outer layer of the granule was gelatinized. The surface gelatinized starch granules were studied using scanning electron microscopy. On the basis of the gelatinization pattern from calcium chloride treatments, the starches could be divided into three groups: 1) starches with evenly gelatinized granule surface, such as normal potato, waxy potato, sweet potato, maize, and high‐amylose maize; 2) starches with salt gelatinization concentrated on specific sites of the granule (i.e., equatorial groove), such as wheat, barley, and high‐amylose barley; and 3) starches that, after surface gelatinization, can no longer be separated to individual granules for SEM studies, such as waxy barley, waxy maize, and normal rice. The morphology of the surface gelatinized starch resembled that of enzyme‐hydrolyzed starch granules.  相似文献   

19.
The variability in grain and starch characteristics and their relationship with the accumulation of starch granule associated proteins were investigated in five maize landraces of Northwest Mexico (Blando de Sonora, Chapalote, Elotero de Sinaloa, Reventador, and Tabloncillo). Significant differences were observed in grain hardness related traits, starch physicochemical properties, and structural properties. Blando de Sonora showed very soft grains, whereas the hardest grains were observed for Chapalote and Reventador. Starch granules isolated from landraces with hard grains contained more amylose and showed polygonal shapes, lower crystallinity and enthalpy of gelatinization, and greater retrogradation and proportion of long amylopectin chains. Proteomic analysis identified the enzymes granule‐bound starch synthase I (GBSSI), starch synthase I and IIa, starch branching enzyme IIb, sucrose synthase 1, and pyruvate phosphate dikinase 2 as granule‐associated proteins. The abundance of GBSSI correlated significantly with amylose content, consistent with the positive correlation observed between amylose and grain hardness. These results showed that the variability in the characteristics evaluated was mainly related to changes in the proportion of amylose in the starch granules, which were associated with differences in the expression of GBSSI. This information may be useful to define strategies for the exploitation and conservation of the landraces.  相似文献   

20.
Mature wheat (Triticum aestivum L.) endosperm contains two types of starch granules: large A-type and small B-type. Two methods, microsieving or centrifugal sedimentation through aqueous solutions of sucrose, maltose, or Percoll were used to separate A- and B-type starch granules. Microsieving could not completely separate the two types of starch granules, while centrifuging through maltose and sucrose solutions gave a homogenous population for B-type starch granules only. Centrifuging through two Percoll solutions (70 and 100%, v/v) produced purified populations of both the A- and B-type starch granules. Analysis of starch granule size distribution in the purified A- and B-type granule populations and in the whole-starch granule population obtained directly from wheat endosperm confirmed that the purified A- and B-type starch granule populations represented their counterparts in mature wheat endosperm. Centrifugations through two Percoll solutions were used to purify A- and B-type starch granule populations from six wheat cultivars. The amylose concentrations and gelatinization properties of these populations were analyzed. All of the A-type starch granules contained higher amylose concentrations and had higher gelatinization enthalpies than did B-type starch granules. Although A- and B-type starch granules started to gelatinize at a similar temperature, B-type starch granules had higher gelatinization peak and completion temperatures than did A-type starch granules  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号