首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In the Mekong Delta, alluvial clay soils have been used intensively over many generations for rice monoculture. Currently, farmers are confronted by problems of declining land productivity. Rotations comprising rice and upland crops can increase soil quality, but appropriate cropping systems for paddy soils have received relatively little attention. We therefore established a multiyear field experiment to evaluate the long‐term effects of cropping systems with different rotations on soil chemical quality. Systems laid out in a randomized complete block design with four replications were as follows: (i) traditional rice monoculture with three rice crops per year (R‐R‐R), (ii) rotation with two rice crops and maize (R‐M‐R), (iii) rotation with two rice crops and mung bean (R‐Mb‐R) and (iv) rotation with one rice crop and two upland crops – mung bean and maize (R‐Mb‐M). We hypothesized that systems with rotations of upland crops and their temporary beds improve chemical quality of paddy rice soil. Soil chemical parameters were determined to better understand and evaluate the sustainability of the cropping systems. Results showed an improvement in soil chemical quality for cropping systems with rotations of rice and mung bean or maize grown on temporary beds (R‐M‐R, R‐Mb‐R and R‐Mb‐M), particularly the content of soil organic carbon and a presumed hydrolysable labile carbon fraction compared with rice monoculture. Less pronounced improvements in EC, CEC and total acidity were also found with inclusion of upland crops. Cropping systems of rice with upland crops improved rice grain and straw yield in subsequent season in contrast with rice monoculture.  相似文献   

2.
Cropping systems are thought to alter soil quality in paddy rice fields. This study was conducted to quantify the long‐term effects of continuous crop production under different cropping systems with different crop rotations on physical properties of alluvial clay soil in the Mekong Delta, Vietnam. Soil samples were collected from four treatments: (i) traditional intensive rice monoculture with three rice crops per year (R–R–R); (ii) rotation with two rice crops and maize (R–M–R); (iii) rotation with two rice crops and mung bean (R–Mb–R); and (iv) rotation with one rice and two upland crops, mung bean and maize (R–Mb–M). We hypothesized that cropping systems with rotations of upland crops and their temporary beds improve the physical quality of paddy rice soil; hence, they are better options towards sustainable agriculture. Results show an improvement of soil physical quality for systems with two rice crops and one upland crop (R–M–R and R–Mb–R) and those with one rice crop with two upland crops (R–Mb–M) compared with intensive rice monoculture (R–R–R). This was translated in decreased bulk density and soil strength, increased soil organic carbon and total porosity, and higher aggregate stability index, plant‐available water capacity, and Dexter's S index, especially at depths of 10–20 and 20–30 cm. The systems with different upland crops (maize or mung bean) showed similar high physical quality improvement. To maintain soil quality in future seasons, introducing a cropping system with at least one upland crop in rotation with rice is recommended. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
The influence of amylose content, cooking, and storage on starch structure, thermal behaviors, pasting properties, and rapidly digestible starch (RDS), slowly digestible starch (SDS), and resistant starch (RS) in different commercial rice cultivars was investigated. Long grain rice with high‐amylose content had a higher gelatinization temperature and a lower gelatinization enthalpy than the other rice cultivars with intermediate amylose content (Arborio and Calrose) and waxy type (glutinous). The intensity ratio of 1047/1022 cm–1 determined by Fourier Transform Infrared (FT‐IR), which indicated the ordered structure in starch granules, was the highest in glutinous and the lowest in long grain. Results from Rapid ViscoAnalyser (RVA) showed that the rice cultivar with higher amylose content had lower peak viscosity and breakdown, but higher pasting temperature, setback, and final viscosity. The RDS content was 28.1, 38.6, 41.5, and 57.5% in long grain, Arborio, Calrose, and glutinous rice, respectively, which was inversely related to amylose content. However, the SDS and RS contents were positively correlated with amylose content. During storage of cooked rice, long grain showed a continuous increase in pasting viscosity, while glutinous exhibited the sharp cold‐water swelling peak. The retrogradation rate was greater in rice cultivars with high amylose content. The ratio of 1047/1022 cm–1 was substantially decreased by cooking and then increased during storage of cooked rice due to the crystalline structure, newly formed by retrogradation. Storage of cooked rice decreased RDS content and increased SDS content in all rice cultivars. However, no increase in RS content during storage was observed. The enthalpy for retrogradation and the intensity ratio 1047/1022 cm–1 during storage were correlated negatively with RDS and positively with SDS (P ≤ 0.01).  相似文献   

4.
Crop rotation and cultural practice may influence soil residual N available for environmental loss due to crop N uptake and N immobilization. We evaluated the effects of stacked vs . alternate‐year crop rotations and cultural practices on soil residual N (NH4‐N and NO3‐N contents) at the 0–125 cm depth, annualized crop N uptake, and N balance from 2005 to 2011 in the northern Great Plains, USA. Stacked rotations were durum (Triticum turgidum L.)–durum–canola (Brassica napus L.)–pea (Pisum sativum L.) (DDCP) and durum–durum–flax (Linum usitatissimum L.)–pea (DDFP). Alternate‐year rotations were durum–canola–durum–pea (DCDP) and durum–flax–durum–pea (DFDP). Both of these are legume‐based rotations because they contain legume (pea) in the crop rotation. A continuous durum (CD) was also included for comparison. Cultural practices were traditional (conventional tillage, recommended seeding rate, broadcast N fertilization, and reduced stubble height) and improved (no‐tillage, increased seeding rate, banded N fertilization, and increased stubble height) systems. The amount of N fertilizer applied to each crop in the rotation was adjusted to soil NO3‐N content to a depth of 60 cm observed in the autumn of the previous year. Compared with other crop rotations, annualized crop biomass N was greater with DCDP and DDCP in 2007 and 2009, but was greater with DDFP than DCDP in 2011. Annualized grain N was greater with DCDP than CD, DFDP, and DDFP and greater in the improved than the traditional practice in 2010 and 2011. Soil NH4‐N content was greater with CD than other crop rotations in the traditional practice at 0–5 cm, but was greater with DDCP than CD and DDFP in the improved practice at 50–88 cm. Soil NO3‐N content was greater with CD than other crop rotations at 5–10 cm, but was greater with CD and DFDP than DCDP and DDCP at 10–20, 88–125, and 0–125 cm. Nitrate‐N content at 88–125 and 0–125 cm was also greater in the traditional than the improved practice. Nitrogen balance based on the difference between N inputs and outputs was greater with crop rotations than CD. Increased N fertilization rate increased soil residual N with CD, but legume N fixation increased N balance with crop rotations. Legume‐based crop rotations (all rotations except CD) reduced N input and soil residual N available for environmental loss, especially in the improved practice, by increasing crop N uptake and N immobilization compared with non‐legume monocrop.  相似文献   

5.
Certain food additives commonly used in flour products also have a plasticization effect on product shelf life regarding retrogradation. Sucrose, sorbitol, glycerol, citric acid, and acetic acid at 25, 25, 25, 0.5, and 0.5%, respectively, were added to two different starch gel systems: slurry (high‐amylose rice flour gel) and dough (waxy rice flour dough). All plasticizers increased gelatinization temperature, decreased enthalpy (ΔH), and promoted a more homogeneous system. Sucrose had the greatest effect on gelatinization increase. Rice dough was more susceptible to plasticizers, resulting in higher moisture content and a more amorphous structure. Retrogradation was highly positively correlated with amylose content, moisture retention, ratio of protons of water/starch, and previous occurrence of retrogradation. Moisture retention was increased in plasticizer‐added samples, especially waxy rice dough. Over a longer storage period, sucrose and sorbitol showed an antiplasticization effect in waxy rice flour dough, but glycerol and acid caused higher retrogradation in high‐amylose rice flour gel.  相似文献   

6.
广西多数早籼品种(组合)的糙米率、精米率、粒长、粒形、糊化温度、胶稠度、蛋白质含量等指标。达到了农业部(NY122-86)二级优质食用稻米标准。但完整米率的达标率偏低,胚乳的垩白程度偏大,垩白粒率偏高,直链淀粉含量偏高,米粒的蒸煮延长性差。今后,早籼稻的品质育种应把提高完整米率,降低直链淀粉含量和提高胚乳的透明度作为品质改良的主攻目标。  相似文献   

7.
The effects of summer green manuring crops and zinc (Zn) fertilization on quality of basmati rice during summer rainy seasons of 2008 and 2009 (kharif, April–November) were evaluated in field experiments at the research farm of the Indian Agricultural Research Institute, New Delhi. Quality parameters of basmati rice (viz., physical, biochemical, and cooking quality parameters) increased significantly as a result of summer green manure crop residue incorporation over summer fallow treatment. Incorporation of Sesbania aculeata green manure crop residues led to significantly greater protein (8.44 percent mean of 2 years) and amylose content (25.78 percent mean of 2 years). Zinc fertilization using 2 percent Zn-enriched urea (ZEU) recorded the greatest values for these parameters and also for hulling (73.8 percent mean of 2 years) and milling (62.4 percent mean of 2 years). Zinc fertilization using 2 percent ZEU and incorporation of Sesbania aculeata green manure crop residues also recorded the greatest values for all quality parameters related to cooking quality such as length and breadth of grains before and after cooking. Soil microbiological parameters and yield showed significantly high positive correlations with quality parameters. The 2-year field study clearly demonstrated the benefits of summer green manure nitrogen (N) and Zn enrichment for improving the biochemical, physical, and cooking quality parameters of basmati rice.  相似文献   

8.
【目的】以水稻连作为对照,研究玉米?水稻水旱轮作模式对稻田作物根际和非根际土壤氮素含量及酶活性的影响,为稻田系统玉米?水稻轮作对土壤氮素转化与稻田土壤质量的影响提供科学依据。【方法】利用根际袋盆栽试验进行水稻连作与玉米?水稻轮作,在玉米喇叭口期、抽穗期及成熟期,水稻分蘖期、孕穗期及成熟期分别采取根际与非根际土样,测定土壤铵态氮、硝态氮、全氮含量与脲酶、硝酸还原酶活性变化。【结果】两种种植模式及作物生育期对土壤氮素含量和酶活性均有显著影响。不同种植模式下土壤酶活性变化趋势基本相同。与水稻连作相比,玉米?水稻轮作土壤铵态氮减少了24.7%;土壤硝态氮含量增加了153.4%,主要表现在第一季。与水稻连作相比,玉米?水稻轮作条件下两季作物成熟期土壤全氮含量降低,土壤脲酶活性整体提高24.3%,土壤硝酸还原酶活性整体降低34.6%。水旱轮作对各个指标的影响可持续到第二季。根际土壤铵态氮含量及脲酶活性整体低于非根际土壤,玉米根际土壤硝态氮含量低于非根际,水稻根际土壤硝态氮含量高于非根际土壤,根际土壤硝酸还原酶活性高于非根际土壤。【结论】在本试验中,轮作在第一季对土壤氮素及酶活性的影响可持续至第二季。与水稻连作相比,玉米?水稻轮作可以提高作物根际与非根际土壤的脲酶活性及硝态氮含量,有利于氮素有效性的提高。  相似文献   

9.
Temperature during grain ripening has been shown to affect amylose content and gelatinization temperature of rice starch (1–6). These studies demonstrated that high ambient temperature results in lower amylose content and higher gelatinization temperature of the starch. Rice starches obtained from rice grains that matured at lower temperature had higher iodine blue values and were more susceptible to alkali digestion than those that ripened at higher temperature.  相似文献   

10.
Chalk is an important quality characteristic in rice and occurs most commonly when high temperatures are experienced during grain development. The aims of this report are to determine whether chalk affects cooking quality and to attempt to explain the effects on the basis of starch and protein in chalky and translucent grains. Three cultivars of rice were grown in the glasshouse at either 38/21°C or 26/15°C (day/night temperatures). Rice grown at the higher temperature contained more chalky grains. Grains in the inferior position were more susceptible to forming chalk than were those in the superior position. The presence or absence of chalk affected cooking quality but neither amylose content, amylopectin structure nor protein composition explained the differences in cooking quality. However, the shape, size, and packing of amyloplasts and cells in chalky grains differed from those in translucent grains and might offer an explanation for the differences in cooking quality. It seems likely that the processes involved in the initiation or packing of amyloplasts are susceptible to high temperatures.  相似文献   

11.
The application of conservative agricultural practices such as crop rotation, shallow tillage, and organic fertilizer could usefully sustain crop yield and increase soil fertility, thus playing an important role in the sustainable agriculture. This study was conducted to determine the effects of conservative agronomic practices on yield and quality of wheat. The effects of these practices on soil fertility were further investigated in this four-year study (2005–2008). Two cropping systems, durum wheat in continuous cropping, and in two-year rotation with leguminous crops, were investigated at Foggia (Southern Italy) in rain-fed conditions. Within each cropping system, two levels of crop management were compared: i) conventional, characterized by a higher soil tillage management and mineral fertilizers application; ii) conservative, with a lower soil tillage management and organic-mineral fertilizers. The seasonal weather greatly affected the wheat yield and quality, inducing lower production in years that were characterized by unfavorable climatic conditions. This trend was found when the conventional treatment was applied, both in continuous cropping and rotations. The effects of cropping systems and crop management pointed out the positive role played by the leguminous crops (common vetch and chickpea) in crop rotation. This introduction improved wheat yield in rotation (6.47% compared to the continuous cropping), improved grain protein content (5.88%), and reduced the productive gap between conventional and conservative treatments (9.24 and 14.14% of the wheat in rotation and continuous cropping, respectively). Conversely, the effects of cropping systems and crop management on soil fertility were not very high, since the differences found at the end of the study in total nitrogen values were poor. However, total organic carbon (16.04 and 17.58% for cropping system and crop management, respectively) and available phosphorus values (11.30 and 7.43%) depend on root organic matter contribution, plant biomass residues, and fertilizations. The suitable crop rotation and the sustainable crop management appear important agronomical practices to improve yield and quality of wheat, and may reduce the environmental risks resulting from conventional intensive cropping systems.  相似文献   

12.
Presently, rice cultivars are categorized according to grain dimensions, amylose content, and alkali spreading value (gelatinization temperature type). Categorization of rice cultivars based on total sensory impact is needed. This work endeavors to divide world rices into groups based on amylose, protein, flavor, and texture properties. Ninety‐one rice samples representing 79 different cultivars and seven growing locations were separated into seven groups with Ward's Cluster Analysis. Cluster 1 included a third of the rice samples and had cultivars with a large diversity of grain shapes and amylose contents. Mean attribute scores for this cluster were near the grand mean for the collective rice samples for nearly every sensory attribute. Cluster 2 included conventional U.S. short‐ and medium‐grain cultivars. Cluster 3 included conventional U.S. medium cultivars that were produced in Louisiana. Mean sensory scores for this cluster characterized these cultivars as having relatively undesirable flavor and texture attributes. Cluster 4 included Japanese premium quality cultivars and U.S. medium‐grain cultivars developed for the Japanese market. Cluster 5 included high‐amylose, indica types that had relatively firm textural properties. Cluster 6 included relatively soft cooking, aromatic cultivars. Cluster 7 included waxy cultivars and other soft cooking grains. In several cases, the production environment (location, weather effects, etc.) influenced flavor and texture characteristics and resulted in the cultivar falling into an unexpected cluster. This categorization serves as a catalyst for indexing rice cultivars for cooking and processing qualities.  相似文献   

13.
不同耕作模式对稻田土壤理化性质及经济效益的影响   总被引:6,自引:0,他引:6  
董建江  邵伏文  张林  姜超强  祖朝龙 《土壤》2015,47(3):509-514
为研究不同耕作模式对土壤理化性状和作物经济效益的影响,对皖南地区4种典型耕作模式(单季稻种植、油稻轮作、麦稻轮作、烟稻轮作)的土壤和作物产量进行了研究。结果表明:与单季稻种植相比,轮作显著降低了土壤含水量;麦稻轮作和烟稻轮作土壤体积质量显著增加,孔隙度显著降低;麦稻轮作土壤有机质和碱解氮含量分别显著降低35.8%和47.8%;烟稻轮作土壤速效钾含量显著增加68.2%,速效磷含量提高109.5%。油稻轮作和烟稻轮作总产值比单季稻种植分别显著增加35.3%和155.5%。为解决轮作对土壤的不良影响,要注重增施有机肥和秸秆还田以改善土壤体积质量和孔隙度;麦稻轮作应重点解决土壤p H降低的问题;烟稻轮作要减少烟后晚稻的磷肥和钾肥施用量。总体而言,油稻轮作和烟稻轮作是皖南地区维护农田土壤肥力,促进农业可持续发展,实现农业增产增收的重要耕作模式。  相似文献   

14.
Growing interest in sustainable agriculture has prompted this study aiming to evaluate nutritional content of rice grain produced from an organic production system. Here, we grew nine quality rice cultivars under organic methods in the wet and dry seasons, and the nutritional values, grain quality, and physiological parameters were compared with respective cultivars grown under the standard cultivation method (SCM). Obtained results revealed that the yield and plant height were lower, but tillering capacity was higher, in the organic field compared with the standard one. The organic crop showed significantly lower contents of protein and phytate compared with reference values under the SCM. Antioxidative capacity and its responsible phytochemicals such as phenolics, flavonoids, and γ‐oryzanol were also significantly higher under organic cultivation than under the SCM. Among physicochemical characteristics, apparent amylose content, gel consistency, and area and perimeter of grain were also higher in the organic crops, but hulling quality, milling quality, head rice recovery, and all other cooking qualities were at par. Higher crude oil and lower total protein content of rice bran were observed in the organic crop, but ash, fiber, and moisture contents did not vary significantly in these two cultivation systems.  相似文献   

15.
Amylose content is a parameter that correlates with the cooking behavior of rice. It is measured at the earliest possible stages of rice improvement programs to enable breeders to build the foundations of appropriate grain quality during cultivar development. Amylose is usually quantified by absorbance of the amylose‐iodine complex. The International Network for Quality Rice (INQR) conducted a survey to determine ways that amylose is measured, reproducibility between laboratories, and sources of variation. Each laboratory measured the amylose content of a set of 17 cultivars of rice. The study shows that five different versions of the iodine binding method are in use. The data show that repeatability was high within laboratories but reproducibility between laboratories was low. The major sources of variability were the way the standard curve was constructed and the iodine binding capacity of the potato amylose used to produce the standard. Reproducibility is much lower between laboratories using a standard curve of potato amylose alone compared with those using calibrated rice cultivars. This study highlights the need to standardize the way amylose is measured, and presents research avenues for doing so.  相似文献   

16.
Abstract

The objective of this study was to provide agronomic, nematode, and economic analysis of alternative production rotation systems for soybeans (Glycine max L. Merr.) on a silt loam soil association in Arkansas. Monocropped soybeans and soybeans double‐cropped with wheat (Triocum aestivam L.) was included as well as grain sorghum (Sorghum bicolor L. Moench) under dryland conditions in order to reduce soybean cyst nematode (SCN, Heteroderaglycine Ichinohe) populations. A total of seven crop rotations and eleven treatments that included alternative tillage conditions and wheat stubble management practices were analyzed using data from 1980–1984 experiments conducted at the Arkansas Cotton Branch Experiment Station on a silt loam Loring‐Calloway‐Henry Association (Alfisols). Although crop rotation was effective for nematode suppression, yields for double‐cropped soybeans were comparable to soybean yields under monocropped’ continuous management practices. Economic results indicated that average net returns of $338.50 per hectare (about $ 137 per acre) were highest for the continuous double‐cropped wheat‐soybean production management systems which combine the conventional tillage method with burning of wheat stubble. For the conditions analyzed and level of SCN present, this research provides evidence that control of the soybean cyst nematode through rotation practices that utilize grain sorghum is not economically efficient where continuous double‐cropped wheat‐soybeans systems can be incorporated.  相似文献   

17.
不同轮作模式下氮肥用量对土壤有机氮组分的影响   总被引:7,自引:0,他引:7  
通过三年六季的田间定位试验,对比研究了水旱轮作(水稻/油菜)和旱地轮作(棉花/油菜)下氮肥用量对土壤有机氮含量及其组分的影响。结果表明,经过三年轮作后,周年轮作氮肥投入超过300 kg hm~(-2)(以纯氮计,下同)的处理0~20 cm土壤全氮含量明显增加。与不施氮处理相比,周年氮肥用量为300 kg hm~(-2)和375 kg hm~(-2)水旱轮作处理0~20 cm土壤全氮含量增加了13.6%~23.5%,而旱地轮作处理则增加了15.0%~23.0%,土壤酸解态氮含量增加是土壤全氮变化的主要原因。两种轮作模式下土壤酸解态氮含量无显著差异,但土壤酸解态氮各组分的变化却不相同。水旱轮作中酸解铵态氮增加的比例(33.8%)低于旱地轮作(53.9%),但其酸解未知态氮含量增加的比例(36.0%)高于旱地轮作(16.6%)。综上所述,周年氮肥合理施用能明显提高土壤有机氮含量,水旱和旱地轮作下土壤酸解态氮库各组分变化差异明显。根据不同轮作模式下土壤有机氮库转化特点,优化氮肥施用对于提高作物产量和氮肥利用率具有重要意义。  相似文献   

18.
为探究再生季稻米蒸煮食味品质在不同生态区的差异,并从淀粉结构与性能角度揭示其差异机理,本试验以杂交稻甬优4149、晶两优1468为供试材料,按再生稻栽培模式分别种植于肇庆、长沙、信阳3个生态区,研究了再生季齐穗后温光条件对稻米蒸煮食味品质、RVA 谱特性及淀粉热性能和晶体结构的影响。结果表明,肇庆试验地区的再生季稻米蒸煮食味品质优于长沙、信阳,其直链淀粉含量适中,胶稠度长,糊化温度较低,总淀粉含量较高。再生季齐穗后温光条件与稻米胶稠度、糊化特性以及淀粉热性能和相对结晶度具有显著相关性。籽粒灌浆初中期的温度和光照对再生季稻米淀粉的糊化性能与热性能影响较大;淀粉的相对结晶度受中后期的日均温度影响最为显著。本研究将有助于绿色农业的可持续发展和优质稻米的生产。  相似文献   

19.
Rice pellets were prepared by single‐screw extrusion cooking with an in‐barrel water content of 50 wt%. Three different types of rice, indica glutinous, japonica, and indica, were used as raw materials. Reconstituted rice flour was made to study the effect of amylose content on pellet expansion. The glass transition (Tg) and expansion (Te) temperatures of extruded pellet were determined by differential scanning calorimetry (DSC) and noncontact infrared thermometer, respectively. The amylose content was not significantly affected by extrusion cooking. The reduction in intrinsic viscosity indicated that amylopectin experienced some degradation. The Tg and Te were not functions of amylose content, which affected the expansion ratio of the pellets. The Gordon‐Taylor equation was applied to estimate the Tg of the rice pellets.  相似文献   

20.
张立成  李娟  章明清  姚建族  王煌平 《核农学报》2021,35(10):2385-2393
为克服蔬菜连作障碍,提出高产稳产的优化轮作施肥措施,本研究针对稻田改制为一年三熟制的菜田,采用4种不同轮作施肥模式连续进行7年定位试验,根据每年各季供试作物的实收产量,分别探讨产量可持续性指数和长期趋势产量水平,探讨不同轮作施肥模式对菜田作物产量稳定性影响的定量评价方法。结果表明,菜-菜-稻轮作结合氮磷钾推荐施肥模式的四季豆和芥菜平均产量显著高于菜-菜-菜轮作结合氮磷钾习惯施肥或推荐施肥2个种植模式,但与菜-菜-稻轮作结合氮磷钾习惯施肥模式的平均产量差异未达显著水平。菜-菜-稻轮作比菜-菜-菜轮作平均增产13.6%,推荐施肥比习惯施肥平均增产6.2%,前者均显著高于后者。菜-菜-稻轮作结合氮磷钾推荐施肥模式中四季豆、芥菜和早稻的产量可持续性指数分别为0.794、0.572和0.851,显著高于其他3种轮作施肥模式;水旱轮作和推荐施肥这两个生产措施均有利于提高菜田作物产量可持续性指数。TPGM(1,1)灰色预测模型对7年定位试验产量结果具有最佳拟合效果,12个预测模型的平均拟合误差为8.8%,基本满足了产量预测精度需求。该模型显示菜-菜-稻轮作结合氮磷钾推荐施肥的一年三熟制趋势产量最高。因此,通过产量均值、产量可持续性指数和趋势产量等指标的综合评价,菜-菜-稻轮作结合氮磷钾推荐施肥模式具有高产稳产特性,是当地最佳的菜田轮作施肥模式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号