首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The capacity of three active Mn(IV)-reducing isolates to dissolve Mn in sterilized samples of two Egyptian soils and a pure sand enriched with MnO2 were studied. These isolates were identified as Penicillium variable (P. v.), Aspergillus niger (A. n.) and Streptomyces exfoliatus (S. e.). The data indicated that inoculation with the fungi and actinomycete mentioned increased the soil contents of water soluble + exchangeable manganese (Mnws+ex) but decreased the easily reducible form (Mner). The increase in Mn-mobility depended on soil type, organism used and time of incubation. The maximum level of Mnws+ex appeared after 14 days in the 3 soil samples. The release of Mn (II) ranged from 19.6 to 49.4 ppm in the sand samples, from 34.8 to 53.3 ppm in samples of a clay loam soil and from 9.9 to 19.8 ppm in samples of a calcareous sandy loam soil. The increase in Mnws+ex was at the expense of Mner but not in stochiometric amounts. The organisms tested can be ranked according to their capacity to reduce MnO2 in the following order (for all soils) Streptomyces exfoliatus > Aspergillus niger > Penicillium variable. Statistical analysis of the data revealed significant differences due to inoculation, soil type, incubation time and their interactions.  相似文献   

2.
Manganese (Mn) release in 18 soil–water suspensions after their equilibration for 24 and 240 h periods at 25°C was studied in a laboratory experiment. Total dissolved Mn released into the soil solution was observed to increase from a range of 0.03–0.41 mg L?1 (mean = 0.13 mg L?1) to a range of 0.45–44.44 mg L?1 (mean = 22.40 mg L?1) with the increase in incubation periods from 24 to 240 h, respectively. The increase in Mn released was observed to be related with the redox potential (pe) induced by incubation conditions. After 24 h of equilibration period, pe of soil–water suspension ranged from ?1.75 to 0.77 (mean = ?0.24). Increasing the incubation period to 240 h, pe of soil–water suspensions declined in the range of ?4.49 to ?2.74 (mean = ?3.29). Laboratory results of redox pe and corresponding dissolved manganese concentrations of some soil–water equilibrated systems were compared with the leaf Mn content in wheat and rice plants grown in the fields, from where soil samples were collected for laboratory experiment. These results demonstrated that decline in pe due to longer equilibration period (240 h) of soil–water systems in the laboratory experiment or keeping standing water for a couple of weeks in the fields for cultivation of rice crop results in higher release of Mn and eventually its higher uptake in rice than in wheat plants. Leaf manganese content in rice ranged from 94 to 185 mg kg?1, which was markedly higher than its range from 25 to 62 mg kg?1 found in the wheat grown at 10 different sites. Pourbaix diagrams were drawn for different soil–water systems containing carbonate, phosphate, or sulfate along with manganese. The presence of carbonate and phosphate anions along with manganese oxides minerals in the soil–water systems of all soils results in its precipitation as MnCO3 and MnHPO4, respectively, in both oxidized and reduced soil field environment. In Punjab, wheat and rice crops are generally cultivated on soils heavily fertilized with P fertilizers. The presence of phosphate anion with manganese oxides minerals in the soil–water systems of all soils results in the precipitation MnHPO4 in both oxidized and reduced soil field environment. Thus, in P-fertilized soil, MnHPO4 compound is even more predominant than aqueous Mn2+ and its solubility actually controlled the availability of Mn2+ to plants.  相似文献   

3.
Summary Five bacterial strains capable of Mn reduction were isolated from the rhizosphere of plants growing in different South Australian soils. They differed in their Mn-reducing capacity. The antagonism of these strains compared to the imported strain 2–79 (from the United States) against Gaeumannomyces graminis var. tritici was tested in agar and in a soil sandwich experiment at different Mn2+ concentrations in the soil. In addition, wheat seeds were coated with the different strains and with MnSO4 or with MnSO4 only in order to investigate their effect on plant growth and Mn uptake. With one exception, all strains inhibited the growth of G. graminis in agar, but to different degrees. In contrast, only two strains significantly inhibited the growth of the fungus in the soil. The hyphal density was decreased more than the hyphal length. The Mn2+ concentration in the soil also had a marked effect on fungal growth; low Mn concentrations slightly increased while high Mn concentrations strongly decreased the fungal growth. Seed treatment with MnSO4 only (+Mn) increased Mn uptake above that of the control (no seed treatment). Only the weakest Mn reducer on agar significantly increased plant growth and Mn uptake from soil in comparison with the Mn treatment. One strain was tested as seed coating without adding MnSO4; it increased the plant growth to an extent similar to the Mn treatment. Increasing the Mn uptake by plants may be one of the growth-promoting effects exerted by rhizosphere bacteria.  相似文献   

4.
Knowledge of the release of heavy metals (HM) and their chemical speciation is necessary for characterizing HM behavior in soils. The kinetics and characteristics of iron (Fe) and manganese (Mn) release were studied in 10 contaminated calcareous soils using 0.01 M calcium chloride (CaCl2), 0.01 M ethylenediamine tetraacetic acid (EDTA), and 0.01 M malic acid (malic acid) extractions. Iron and Mn in soil samples were fractionated before and after 2084 h kinetic release using a sequential extraction procedure. The proportion of Fe and Mn released by EDTA was greater than that with CaCl2 and malic acid. A power model satisfactorily described Fe and Mn release from soils. In general, the mean release rate of Fe was greater than that of Mn, indicating a greater rate of Fe release from contaminated soils. It was shown that Fe and Mn distributions were similar in native soils and they were mainly found in Fe-Mn oxides and organic-matter (OM) fractions. There were changes in the proportional distribution of Fe and Mn in all soils during the 2084 h kinetic study with different extraction solutions. In general, the proportions of Fe and Mn associated with carbonate (CARB) and OM fractions tended to decrease, with corresponding increases in the Fe-Mn oxides for Mn and residual (RES) fractions for Fe during the kinetic study with all extraction solutions. The Fe and Mn solubility at the initial and final stages of release was controlled by siderite (FeCO3), vivianite [(Fe)3(PO4)2·8H2O], MnCO3(am), MnHPO4, and rhodochrosite (MnCO3) minerals in all extraction solutions. Based on a risk assessment and percentage of release of metals, there is a high potential for Mn release into the food chain from contaminated soils.  相似文献   

5.
本试验研究了一种合成水钠锰矿对Mn2+的持留机理和Mn2+被吸附后的去向,并进一步探讨了三种锰盐溶液(MnSO4,MN(NO3)2和MnCl2)对水钠锰矿晶体结构变化的影响。.试验结果表明,水钠锰矿对MN2+离子的吸附包括专性吸附和非专性吸附。随着吸附后的老化过程,吸附在矿物表面的锰逐渐扩散到晶格内,其置换性随之降低。.在MnSO4,Mn(NO3)2和MnCl2溶液中,水钠锰矿最终转化成六方锰矿(Nsutite),一种比水钠锰矿更稳定,结晶更好的晶体。MnSO4溶液在加入水钠锰矿后pH值比其它两种溶液高,除生成六方锰矿外还形成大量拉锰矿(Ramsdellite)。随着生成新矿物的老化,最初被吸附的Mn被固定在晶格内而失去其置换性和生物有效性。  相似文献   

6.
Plant genotypes within species differ widely in tolerance to excess manganese (Mn) that may occur in acid soils, or in neutral or alkaline soils having poor aeration caused by imperfect drainage or compaction. However, Mn tolerance mechanisms in plants are largely unknown. Silicon (Si) is reported to detoxify Mn within plants, presumably by preventing localized accumulations of Mn associated with lesions on leaves. Because Mn is paramagnetic, electron paramagnetic resonance (EPR) spectroscopy, shows promise as a tool for characterizing toxic and non‐toxic forms of Mn in tolerant and sensitive plants. The objective of our study was to use EPR to: i) determine the chemical/ physical state of Mn in Mn‐tolerant and ‐sensitive snapbean cultivars; and ii) characterize the protective effects of Si against Mn toxicity. Manganese‐sensitive Wonder Crop 2 (WC) and Mn‐tolerant Green Lord (GL) cultivars of snapbean were grown at pH 5.0, in a greenhouse, in a modified Steinberg solution containing: Mn=0.05mg.L‐1 (optimal); Mn=1.0mgL‐1 (toxic); Mn=1.0 mg L‐1 plus Si=4 mg L‐1; and Mn=0.05 mg L‐1 plus 4 mg Si L‐1. All trifoliate leaf samples exhibited a 6‐line EPR signal that is characteristic of hexaaquo Mn2+. In both cultivars, a higher EPR Mn2+ signal‐intensity generally correlated with lower total leaf mass, higher total Mn concentrations and more pronounced symptoms of toxicity. Tolerance to excess Mn coincided with lower Mn2+ signal intensity. Silicon treatments ameliorated Mn toxicity symptoms in both genotypes, decreased total leaf Mn concentrations, and decreased EPR Mn2+ signal intensity. Results suggest that Mn toxicity is associated with reduced electron transport and accumulation of oxidation products in leaves. Amelioration of Mn toxicity by Si is regarded as connected with a reduction in this Mn‐induced process. Results indicated that EPR spectroscopy can be useful in investigating the biochemical basis for differential Mn tolerance in plants. The EPR observations might also help plant breeders in developing Mn‐tolerant cultivars.  相似文献   

7.
Soybean (Glycine max) commonly experience Mn deficiencies in the coarse-textured soils of Coastal Plain Virginia, especially under high pH conditions. The objective of this study was to investigate the ability of a novel coated fertilizer to provide Mn and B to soybeans in soils where Mn deficiency is common and B deficiency, although far less common than with Mn, is possible. A 60-d greenhouse experiment was conducted with three treatments: control, uncoated KCl, and Mn +B coated KCl applied to Bojac and Dragston sandy loams. Soil and whole plant tissue samples were collected throughout the experiment. Bojac and Dragston soils treated with the coated KCl contained 12.0 mg kg?1 and 15.8 mg kg?1 more Mehlich 1 – Mn, 21.7 mg kg?1 and 23.0 mg kg?1 more Mehlich 3 Mn, and 4.5 mg kg?1 and 4.6 mg kg?1 CaCl2 – Mn than the control and uncoated KCl, respectively. Coated KCl increased above ground tissue Mn by 42.9 mg kg?1 compared to the control and the uncoated KCl treatments in the Bojac soil, while the Dragston soil showed no significant differences in Mn tissue concentration between treatments. Above ground tissue, Mn was much lower in the Dragston soil than the Bojac, probably due to greater organic matter which chelates Mn keeping it less plant available. Boron concentrations did not differ in plant tissue or soil, regardless of the extraction method. Results indicate that the coated KCl product could consistently provide increased Mn concentration in acidic sandy soils despite varying levels of organic matter, but is not effective for B.  相似文献   

8.

Background

Evidence of trivalent manganese (Mn3+) in the aqueous phase of soils is unknown so far although this strong oxidant has large environmental implications.

Aims

We aimed to modify a spectrophotometric protocol (porphyrin method) and to discriminate between Mn2+ and Mn3+ in the aqueous phase of forest soils based on kinetic modeling.

Methods

We investigated manganese speciation in 12 forest floor solutions and 41 soil solutions from an acidic forest site by adjusting pH and correcting for absorbance.

Results

The solutions showed broad ranges in pH (3.4−6.3), dissolved organic carbon (DOC, 1.78−77.1 mg C L−1), and total Mn (MnT, 23.9−908 µg L−1). For acidic solutions, a pH-buffer was added to increase the pH of the solutions to 7.5−8.0, and background absorption was corrected for colored solutions, that is, solutions high in DOC. This was done to accelerate the reaction kinetics and avoid overestimation of MnT concentrations. After the pH and color adjustments, the comparison of MnT concentrations between the porphyrin method and optical emission spectrometry showed good agreement. Trivalent Mn, which is stabilized by organic ligands, constitutes significant proportions in both forest floor solutions (10−87%) and soil solutions (0.5−74%).

Conclusions

The dissolved Mn3+ is present in acidic forest soils. Thus, we revise the paradigm that this species is not stable and encourage to apply the revised method to other soils.  相似文献   

9.
Abstract

Calcareous soils often need supplemental manganese (Mn) to support optimum plant growth, but some reports show that the apparent recovery of applied Mn is very low in such soils, i.e., nearly all of the applied Mn is retained in the soil. This experiment was conducted to find the relationship between the retained Mn and selected properties of calcareous soils. Eleven surface (0–20 cm) soil samples with pH ranging from 7.7 to 8.1 and calcium carbonate equivalent (CCE) ranging from 20 to 50% were used in the Mn adsorption study. Two‐gram subsamples of each soil were equilibrated with 20 mL of 0.01M CaCl2 solutions initially containing 10 to 200 mg Mn L‐1. The Mn that disappeared from solution (after 6 h shaking at 25°C) was considered as adsorbed (retained) Mn. The adsorption data showed a highly significant fit to Freundlich and also to the two‐surface Langmuir adsorption isotherms. The coefficients of both isotherms showed significant positive correlations with cation exchange capacity (CEC), organic matter (OM), and CCE of the soils indicating that OM and calcium carbonate are the sites of Mn retention in calcareous soils. Comparison of the adsorption data of this experiment with those of plant Mn uptake of the same soils (published earlier) shows that as the Langmuir second surface adsorption maxima (maximum retention capacity) of the soils increase the plant Mn concentration and uptake decrease.  相似文献   

10.
Manganese (Mn) contamination of drinking water may cause aesthetic and human health problems when concentrations exceed 50 and 500 μg l?1, respectively. In the UK, the majority of Mn-related drinking water supply failures originate from unpolluted upland catchments. The source of Mn is therefore soil, but the exact mechanisms by which it is mobilised into surface waters remain unknown. Elevated Mn concentrations in surface waters have been associated with the rewetting of dried upland soils and with conifer afforestation. We investigated these hypotheses in a laboratory experiment involving the drying and rewetting of intact soil cores (1,900 cm3 volume) of horizons of four representative soil type-land use combinations from an upland water supply catchment in southwest Scotland. Although no statistically significant effect of land use or soil type was detected on Mn concentrations in soil water, Mn release occurred from three soil horizons upon rewetting. Soil water Mn concentrations in the moorland histosol H2 (10–30 cm), the histic podzol H and Eh horizons increased from means of 5.8, 6.2 and 0.6 μg l?1 prior to rewetting to maxima of 90, 76 and 174 μg l?1 after rewetting, respectively. The properties of these three horizons indicate that Mn release is favoured from soil horizons containing a mixture of organic and mineral material. Mineral material provides a source of Mn, but relatively high soil organic matter content is required to facilitate mobilisation. The results can be used alongside soil information to identify catchments at risk of elevated Mn concentrations in water supplies.  相似文献   

11.
Samples of five soils whose pH in the field had been adjusted to between 5.0 and 7.5 were incubated with water or 0.01 m CaCl2 at 90% field capacity. Additional samples of the most acid soil were limed to various pH values immediately before incubation. Manganese, zinc and cobalt concentrations in the soil solutions, collected by displacement, decreased as the pH increased; the concentrations in calcium chloride solutions were higher than those in water solutions. The free divalent ions Mn2+, Zn2+ and Co2+ were the major metal species in solution at pH 5 but the proportion of the metals present as the free ion decreased as the pH increased. Differences in the manganese and zinc concentrations in the solutions were due not only to the pH of these solutions but also to the original pH of the soil in the field.  相似文献   

12.
Applying lime to ameliorate soil acidity has been observed to induce manganese (Mn) deficiency in canola (Brassica napus L.) crops grown on acid sandy soils near Albany and gravelly acid sands of the Great Southern Districts of southwestern Australia. These soils were often Mn-deficient in patches for wheat (Triticum aestivum L.) production when they were newly cleared for agriculture requiring application of Mn fertilizer to ensure grain yields were not reduced by the deficiency. Since then, these soils have acidified and in the 1990s, canola started to be grown on these soils in rotation with wheat and lupins (Lupinus angustifolius L.). These limed soils may now have become marginal to deficient in Mn for canola production. The effect of liming may change the effectiveness of fertilizer Mn. In addition, the effect of liming on the residual value of Mn fertilizer applied to these soils for canola production is unknown. Therefore, a glasshouse experiment was conducted using Mn deficient sand. Three levels of finely-powdered calcium carbonate were added and incubated in moist soil for 42 days at 22±2°C to produce 3 soils with different pH values [1:5 soil:0.01 M calcium chloride (CaCl2)]: 4.9 (original soil), 6.3, and 7.5. Five Mn levels, as solutions of Mn sulfate, were then added and incubated in moist soil for 0, 50, and 100 days before sowing canola. To estimate the residual value (RV) of incubated Mn for canola production, the effectiveness of the incubated Mn was calculated relative to the effectiveness of Mn applied just before sowing canola (freshly-applied Mn). The RV of the incubated Mn was determined using yield of dried canola shoots, the Mn application level required to produce 90% of the maximum shoot yield, and Mn content in dried shoots (Mn concentration in shoots multiplied by yield of dried shoots). As measured using both yield of dried shoots and Mn content of dried shoots, the residual value of Mn decreased with increasing soil pH and with increasing period of incubation of Mn with moist soil. The critical Mn concentration, for 90% of the total yield of dried canola shoots, was (mg Mn kg?1) ~17 in youngest mature growth (apex and youngest emerged leaf, YMG), and ~22 for the rest of dried shoots. These values were similar to current critical values for un-limed soils suggesting critical Mn concentrations remain the same for limed soils. Plant testing of canola is recommended if soils are to be limed to ameliorate soil acidity. When plant tests indicate a high likelihood of Mn deficiency, foliar Mn sprays need to be applied to that crop to ensure Mn deficiency does not reduce grain production that year, and fertilizer Mn needs to be re-applied to the soil when sowing the next crop to reduce the likelihood of Mn deficiency for subsequent crops.  相似文献   

13.
Glyphosate is largely used to control weeds in wetland soils of Brazil. We investigated changes in the chemistry of soluble manganese (Mn) and iron (Fe) in these soils as affected by glyphosate dosage. Triplicate samples of the A horizon of wetland soils with different organic-matter contents were incubated with deionized water (1:2) for 1, 3, and 30 days under flooding. Three different glyphosate doses (0, 0.048, and 0.096 g L?1 m?2) were spiked on the flooded water at the beginning of the incubation periods. After incubation, pH was measured and samples of the supernatant were collected for determination of Mn/Fe concentrations by atomic absorption. Glyphosate application impacted Mn but had no effect on pH and Fe. Soluble Mn concentrations decreased as glyphosate dosage increased for the high organic-matter soil after 3 days of incubation. It indicated that glyphosate application can change the chemistry of soil metals. The intensity of these changes depends on the glyphosate dosage, evolved metal, incubation time, and soil properties.  相似文献   

14.
Enhancement of manganese (Mn) availability in saline and Mn-deficient soils is very important for plant growth. An experiment was carried out to evaluate the effect of Pseudomonas sp. rhizobacteria (P0 (control), P1, P2 and P3) and Mn (0 and 10 mg Mn kg?1 soil) on the distribution of Mn in the rhizosphere of pistachio seedlings under salinity stress (0, 1000 and 2000 mg NaCl kg?1 soil). The results showed that salinity decreased the dry weight, Mn uptake and chlorophyll content of the pistachio seedlings. However, inoculation with rhizobacteria increased these parameters in saline conditions. Application of rhizobacteria increased the availability of Mn in the rhizosphere soil. The use of rhizobacteria decreased the residual-Mn form in the rhizosphere. Inoculation with rhizobacteria increased the percent of Mn2+ and MnCl+ species in the soil solution. However, pistachio seedlings inoculation with rhizobacteria increased the contents of Mn available forms in the rhizosphere soil.  相似文献   

15.
The use of methylcyclopentadienyl manganese tricarbonyl (MMT) in unleaded gasoline has become a source of manganese (Mn) contamination to which urban ecosystems are exposed. The potential of coniferous trees as spatial and chronological indicators of Mn pollutation was investigated. Manganese concentrations in xylem from blue spruce (Picea pungens) growing near (high-exposure site) and far (low-exposure site) from a road were measured as a function of the year of wood formation. Exchangeable Mn content, which is the soil fraction most readily available for uptake by trees, was also measured in the soils of both sectors. The results of the soil analysis show that exchangeable Mn concentrations are about 10 times higher in soils exposed to contamination (p<0.0005), in=" comparison=" with=" the=" concentrations=" found=" in=" soils=" weakly=" exposed.=" however,=" the=" mn=" concentrations=" in=" the=" trees=" near=" the=" road=" were=" not=" significantly=" different=" from=" those=" in=" the=" reference=" trees=" (p=">0.05). Therefore, it appears that blue spruce is not sensitive to soil Mn contamination arising from the use of MMT in gasoline.  相似文献   

16.
Abstract

General agreement does not exist as to the most appropriate method to estimate plant available Mn in soils. In the current investigation soil and soil solution Mn were measured in limed and unlimed treatments of 11 acidic subsoil horizons and related to plant Mn concentrations, Mn uptake and growth of subterranean clover (Trifolium subterraneum L. cv. Mt. Barker) and switchgrass (Panicum virgatum cv. Cave‐in‐Rock). Manganese measurements were taken at planting and harvest and included: Mn extracted by 1M NH4OAc (pH 7), 0.01M CaCl2, 0.05M CaCl2, 0.033M H3PO4, 0.005M DTPA, 0.2% hydroquinone in 1M NH4OAc (pH 7), 0.01M NH2 OH.HCl 4 2 in 0.01M HNO3, total soil solution Mn and concentrations and 2+ activities of Mn2+ calculated from the GEOCHEM program. Measured and calculated values of soil solution Mn generally gave the best correlations with subterranean clover and switchgrass Mn concentrations and Mn uptake. Root Mn concentrations were highly correlated with soil solution Mn measurements taken at harvest with r=0.97 and r=0.95 (p<0.01) for subterranean clover and switchgrass respectively. The Mn extracted by 0.01M CaCl was also significantly correlated (p<0.01) with plant Mn concentrations and Mn uptake and proved to be better than the other extractants in estimating plant available Mn. Although Mn concentrations as high as 1769 mg/kg (shoots) and 8489 rag/kg (roots) were found in subterranean clover, Mn did not appear to be the major factor limiting growth. Measures of soil and soil solution Mn were not strongly correlated with yield. Both Al toxicities and Ca deficiencies seemed to be more important than Mn toxicities in limiting growth of subterranean clover and switchgrass in these horizons.  相似文献   

17.
Abstract

Whether a tropical soil should be limed or not for a particular crop is strongly dependent on the levels of soil aluminum (Al) which can be determined with soil tests. Soil pH is used to predict whether lime is needed in less‐weathered soils, although some evidence indicates a soil Al test would be more accurate. The objectives of this study were to determine and to compare the accuracies of four soil tests to separate soils requiring lime from those that do not, and to determine the cause of acid‐soil injury to soybean [Glycine max (L.) Merr.]. Soybean was grown in the greenhouse on four surface soils representing the major land resource areas of Louisiana and were amended with eight rates of lime, yields determined, and soils analyzed for soil pH, extractable Al, CaCl2‐extractable Al, CaCl2‐extractable manganese (Mn), and Al saturation. Acid‐soil injury in soybean grown on the Litro clay and Stough fsl was probably caused by soil‐Al effects while low soil calcium (Ca) and high soil Mn was likely responsible for lower yields from the Mahan fsl. Leaf Ca from the limed Mahan‐soil treatment was 5‐fold greater and leaf‐Mn 7‐fold less than control levels. Regression analyses’ R2 values were similar for all soil tests except for CaCl2‐extractable Mn, which was lower. Soil tests were compared across soil type by selecting treatments that had the same 85% relative yield. Using this data subset, there was no difference in the soil pH among the four soils, while there were significant differences among soils for all other soil test measurements indicating the superiority of soil pH for identifying acid‐soil injury. Critical test values were 5.1 soil pH, 30 mg kg‐1 extractable Al, 7% Al saturation, 0.7 mg‐kg‐1 CaCl2‐extractable Al, and 9 mg‐kg‐1 CaCl2‐extractable Mn.  相似文献   

18.
Phosphorus (P) adsorbed by iron (Fe) oxyhydroxides in soil can be released when the Fe(III) minerals are reductively dissolved after soil flooding. However, this release is limited in tropical soils with large Fe contents and previous studies have suggested that P sorbs or precipitates with newly formed Fe(II) minerals. This hypothesis is tested here by scavenging Fe2+ in flooded soils by increasing the cation exchange capacity (CEC) of soil through resin application (30 cmolc kg?1; Na‐form). Three soils from rice paddies with contrasting properties were incubated in aerobic and anaerobic conditions with or without resin and with or without addition of organic matter (OM) to stimulate redox reactions. Dissolved Fe was 0.1–1.1 mm in unamended anaerobic soils and decreased to less than 0.07 mm with resin addition. Anaerobic soils without resin and aerobic soils with or without resin had marginal available P concentrations (<2 mg P kg?1; anion‐exchange membrane P). In contrast, available P increased 3‐ to 14‐fold in anaerobic soils treated with resins, reaching 16 mg P kg?1 in combination with extra OM. Application of Ca‐forms of resin did not stimulate P availability and dissolved Ca concentrations were larger than in unamended soils. Resin addition can increase P availability, probably by a combination of reducing solution Fe2+ (thereby limiting the formation of Fe(II) minerals) and increasing the OM solubility and availability through reducing dissolved Ca2+. The soil CEC is a factor controlling the net P release in submerged soils.  相似文献   

19.
Abstract

Salinity and sodicity effects on manganese (Mn) sorption in a mixed sodium‐calcium (Na‐Ca) soil system were studied. Soil samples were taken at 0–30 cm depth from Vertisols (El‐Hosh and El‐Suleimi) and Aridisols (El‐Laota) at three sites in Gezira scheme (Sudan). No Mn was applied to these soils. Prior to analysis the soils were equilibrated with NaCl‐CaCL2 mixed salt solutions to attain SAR values at different salt concentrations. The results indicated that saline soils sorbed less Mn and had higher equilibrium Mn concentrations. Sodic soils retained more Mn but had low equilibrium concentrations. Sodicity had a pronounced effect only on increasing Mn retention at higher SAR values. Salinity tended to alleviate sodicity effects on Mn retention, but soluble salts that increased soil pH decreased Mn concentration.  相似文献   

20.
Analysis and research on the nutrition of some Australian native plants as well as diagnostic analysis of failed native plant gardens reinforces the view that manganese (Mn) availability is a major factor in the edaphology and cultivation of Australian native species. Yellow Kandosol soils on sandstone show a unique endemic floral assemblage. These soils show low total soil Mn levels of only 20–30 mg/kg. Despite this, endemic species such as Eucalyptus haemastoma and Acacia suaveolens show greater foliar Mn levels (around 291 and 389 mg/kg, respectively) than iron (Fe) levels, with Fe/Mn ratios as low as 0.14 and 0.27. During pot trial work on artificial soils created from crushed sandstone and green waste compost that were designed to research phosphorus (P) and calcium (Ca) nutrition, some interesting data on Mn uptake were collected. Levels of foliar Mn as high as 1250 and 389 mg/kg, respectively, accumulated in E. haemastoma and A. suaveolens when soils were artificially acidified to pH 4.7 (CaCl2) using ferrous sulfate. These Mn levels were associated with visible toxicity symptoms in foliage of E. haemastoma but not in A. suaveolens. Foliar Mn in both species showed a strong inverse correlation (R2 > 0.93) with soil pH. Previous research has shown that eucalypts from this floral assemblage are prone to Mn toxicity when grown in conditions of high soil Mn availability. Diagnostic analysis of soils and foliage for a client with horticultural problems in a native plant landscape showed severe chlorosis in a wide range of native species due to Mn deficiency induced by neutral soil pH (around 7.0 in CaCl2). Such soil pHs are considerably greater than those of the plant’s natural distribution. Despite apparently elevated soil P and the appearance of what looked like P toxicity, foliar P levels were not sufficiently elevated to conclude acute P toxicity but rather simple and severe Mn deficiency. The work suggests that induced Mn deficiency and toxicity may be underdiagnosed problems in the cultivation of many Australian native plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号