共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to investigate the quantitative variation of HMW glutenin subunits in relation to glutenin polymers and hence breadmaking quality across different environments. Six genotypes of hard red spring (HRS) wheat were grown at seven locations in North Dakota in 1998 in a randomized complete‐block experimental design with three replicates at each location. Unreduced SDS‐soluble glutenins of flour were fractionated by multistacking SDS‐PAGE into different sized glutenin polymers, followed by SDS‐PAGE and imaging densitometry to determine the quantitative variation of HMW glutenin subunits. SDS‐insoluble glutenin polymers also were examined for their quantitative composition of HMW glutenin subunits. The results showed that the percentage of HMW glutenin subunits was significantly affected by growing locations. The quantity of HMW glutenin subunits in SDS‐insoluble glutenins was significantly and positively correlated with loaf volume. SDS‐insoluble glutenin polymers had a higher percentage of HMW glutenin subunits than did SDS‐soluble glutenins. SDS‐insoluble glutenin polymers in flour were positively and significantly correlated in proportions of both total and individual HMW glutenin subunits in total SDS glutenins. SDS‐insoluble glutenin polymers also were positively and significantly correlated with the combined proportion of HMW glutenin subunits 2* + 5. The results of this study indicated that either subunit 2* or 5 might be more important in forming a greater quantity of larger SDS‐insoluble glutenin polymers than other subunits. SDS‐insoluble glutenin polymers from different cultivars or locations could have different quantities of HMW glutenin subunits in their composition. SDS‐insoluble glutenin polymers with more HMW glutenin subunits might be larger sized than those with less HMW glutenin subunits. Environment significantly influenced the quantitative variation of HMW glutenin subunits, which in turn affected the size distribution of glutenin polymers, and hence breadmaking quality. 相似文献
2.
Based on examination of 192 club and soft white winter (SWW) wheat samples, club and SWW wheat flours showed comparable levels of starch damage and flour peak viscosity, while differing significantly in starch content. Varietal differences and growing conditions had strong influence on the characteristics of both classes of wheat flour. Club wheat flour exhibited better stability in starch content and starch damage than did SWW wheat flour. A significant correlation between starch damage and cookie diameter in both club and SWW wheat was observed (r = -0.480, P < 0.0001 for club wheat and r = -0.430, P < 0.0001 for SWW wheat). Sponge cake volume was positively correlated with starch content in both classes of wheat (r = 0.362, P < 0.01 for club wheat and r = 0.181, P < 0.05 for SWW wheat). When wheat samples were grown in one location over three years, club and SWW wheat flours had comparable starch content. However, flour and prime starch peak viscosities were significantly different in club than in SWW wheat. Club wheat flour had lower starch damage and amylose content, as measured by high-performance size-exclusion chromatography (HPSEC), than did SWW wheat flour. Crop year and varietal differences had significant effect on amylose content, starch damage, and flour and starch peak viscosities, but not on starch content, in both classes of wheat flour. When wheat samples were grown in one year over seven locations, club wheat flour was higher in starch content, lower in starch damage, and comparable in amylose to SWW wheat flour. Both flour and prime starch viscosities were significantly higher in club wheat than in SWW wheat. Varietal differences and growing location had strong influence on starch properties in both classes of wheat. Peak viscosity of the isolated starch did not correlate well with the corresponding flour, indicating that flour pasting property does not reflect the pasting property of starch. The fine structure of isoamylase-debranched amylopectins from club and SWW wheats had a similar tri-modal pattern, with maximum at ≈DP 15 and two valleys at ≈DP 20 and 45, respectively. Although wheat flour samples differed widely in their prime starch peak viscosity, no significant difference between debranching patterns was obtained. These results indicate that the fine structure of amylopectin might not be responsible for the large differences in prime starch pasting property. 相似文献
3.
Mingwei Wang Harry D. Sapirstein Anne‐Sophie Machet James E. Dexter 《Cereal Chemistry》2006,83(2):161-168
Six commercially grown samples of hard spring wheat were milled using a tandem Buhler laboratory mill. Individual flour streams and branny by‐products, as well as whole‐grain wheat and straight‐grade flour, were characterized in terms of total (TP), water‐extractable (WEP), and water‐unextractable (WUP) pentosans. One representative cultivar sample was analyzed for its ratio of arabinose to xylose (A/X). TP and WEP of whole grain wheat of the six samples had ranges of 5.45–7.32% and 0.62–0.90% (dm), respectively. Neither TP nor WEP of whole grain was related to ash content variation. There was significant variation in the distribution and composition of pentosans in 16 millstreams of all the wheat samples, including bran and shorts fractions; TP and WEP contents had ranges of 1.69–32.4% and 0.42–1.76% (dm), respectively. When ash contents exceeded ≈0.6% (dm), strong positive correlations were obtained between ash and TP contents, and between ash and WUP contents for all the millstreams. Among bran and shorts fractions, TP and WUP content increased in the order of coarse bran > fine bran > shorts; while WEP, WEP/WUP and A/X showed the opposite pattern of variation of shorts > fine bran > coarse bran. Bran and shorts fractions had pentosan contents several times higher than would be predicted from the relationship between pentosan and ash contents of the flour streams. Pentosans therefore represented a much more sensitive marker of flour refinement compared with ash content. Pentosans of endosperm were substantially different in their extractability and composition from those of bran. On this basis, different functionalities of pentosans of bran and endosperm would be expected. Results demonstrated the importance of milling extraction and millstream blending in the functionality and quality of wheat flour for breadmaking. 相似文献
4.
The relative effects of environment, genotype, and their interactions on the modification of Asian noodle quality attributes were assessed using 38 winter wheat (Triticum aestivum L.) cultivars and breeding lines grown in replicated trials at three Nebraska locations in harvest year 2000. Noodle color was determined in both white salted and yellow alkaline procedures, and noodle textural features were investigated by producing white salted noodles. Significant environmental, genotypic, and genotype‐by‐environment variation was observed for nearly all initial and 24‐hr noodle color traits in both types of noodles. Significant genotypic effects were observed for several textural traits, while significant environmental effects were observed only for noodle hardness and water uptake. However, among the noodle textural traits, the genotype‐by‐environment interaction was significant only for noodle firmness. High and significant phenotypic correlations were observed between color traits in the two noodle applications. Genetic correlations were of lower magnitude, indicating the possibility of breeding wheats specifically for various noodle color types. Strong negative phenotypic and genetic correlations were observed between flour protein content and noodle brightness (L*) values in both yellow alkaline and white‐salted applications. Textural traits largely were independent of noodle color traits. When significant phenotypic or genetic correlations were observed between variable pairs, invariably similar correlations were observed with flour protein content. Noodle cutting force, cutting area, and final thickness showed strong phenotypic and genetic correlations with each other and with protein content. These variables largely were independent of noodle firmness and hardness, which were, in turn, more dependent on alleles at the wheat wx‐A1 and wx‐B1 (waxy) loci. Noodle firmness was greatest in flours from wild‐type wheats; lines with a null allele only at the wx‐A1 locus did not differ from wild‐type. Softest noodles were produced from lines carrying null alleles at both wx‐A1 and wx‐B1, while lines with a null only at wx‐B1 were intermediate in softness. 相似文献
5.
To investigate relationships of wheat single kernel (SK) characteristics with end-use properties, we used 12 hard winter wheat cultivars harvested at six regions in Kansas in 1993. Significant positive correlations occurred among wheat hardness parameters including near-infrared reflectance hardness score, SK hardness index (SK-HI), and SK peak force (SK-PF) obtained by the Single Kernel Characterization System (SKCS). The SKCS characteristics also were significantly correlated to conventional wheat quality parameters such as test weight, kernel density, and kernel sizing. Flour yields were significantly correlated with SK-PF, SK-HI, and SK weight (SK-WT), suggesting the usefulness of SKCS in evaluating milling quality. The negative correlation of milling score with the standard deviation of SK-HI and SK-PF indicated that uniformity of SK hardness is desirable for good milling performance. However, bread loaf volumes had significant negative correlations with SK diameter and SK-WT, mainly due to the inverse relationship between wheat protein contents and kernel weights or sizes. Loaf volume regression values, the changes in loaf volumes per one percentage point of flour protein, also had significant negative correlations with SK-HI, SK-PF, and SK-WT. 相似文献
6.
7.
In this paper we examine the influence of precipitation and temperature deviations on regional volume growth rates in even-aged, unmanaged second-growth Douglas fir (Pseudotsuga menziesii [Mirb.] Franco) stands. Between 1969 and 1986, average volume growth rates in natural stands of coast Douglas fir in western Washington and Oregon were negatively correlated with high summer temperatures and positively correlated with higher temperatures during the non-growing season. Results support the hypothesis that cool wet summers and mild winters contribute to high productivity of conifers in the Pacific Northwest. 相似文献
8.
R. A. Graybosch C. J. Peterson L. E. Hansen S. Rahman A. Hill J. H. Skerritt 《Cereal Chemistry》1998,75(1):162-165
Granule-bound starch synthase (GBSS) is the primary enzyme responsible for the synthesis of amylose in amyloplasts of cereal endosperm cells. Bread wheats, due to their hexaploid genetic system, carry three genes (wx loci) encoding GBSS. Purification and separation of GBSS from more than 200 North American hexaploid wheats allowed the identification of genotypes that carry null alleles at either the wx-A1 and wx-B1 loci. In addition, the cultivar Ike carried both wx-A1 and wx-B1 null alleles. No wx-D1 nulls were detected. Null alleles were found in 10% of the hard winter wheats tested, but in only 2% of the sampled soft winter wheats. Amylose contents of wheats carrying single null alleles at either the wx-A1 or wx-B1 loci often were lower than those of wild type wheats, but greater reduction in amylose content was observed in Ike. Monoclonal antibodies were used to quantify water-extractable GBSS in both wild-type and null genotypes. Gene dosage compensation was evident, although GBSS content, as measured by ELISA, was significantly lower in Ike than in all other wheats. The identification of null alleles in adapted genotypes suggests the development of wheats with a wide range of amylose contents will be possible by simple genetic crossing and selection. 相似文献
9.
Arabinoxylans (AX) are the main nonstarch polysaccharides found in wheat flour. Structural changes of AX in refrigerated dough are linked to deleterious effects on refrigerated dough quality during storage. The purpose of this research was to evaluate the effect of cultivar and growing environment on dough syruping during refrigerated storage in relation to apparent xylanase activity and AX chemistry in hard red spring (HRS) wheat. Eight HRS cultivars that were grown at six locations over two years in North Dakota were evaluated for dough syruping during 15 days of refrigerated storage. When compared with genotypic effect, growing environment had a greater impact on apparent xylanase activity and dough syruping; they were found to have significant associations by log‐linear regression analysis. Specifically, wheat samples produced in a dry environment had lower apparent xylanase activity and degree of dough syruping than those from a wet environment. Some HRS cultivars were identified to be consistently lower in apparent xylanase activity and dough syruping across all growing environments, indicating that those cultivars had more stability over growing environment than other cultivars. These results indicate that certain cultivars that are grown in relatively dry environments in North Dakota are more suitable for use in refrigerated dough formulations. 相似文献
10.
E. B. Maghirang G. L. Lookhart S. R. Bean R. O. Pierce F. Xie M. S. Caley J. D. Wilson B. W. Seabourn M. S. Ram S. H. Park O. K. Chung F. E. Dowell 《Cereal Chemistry》2006,83(5):520-528
Various whole‐kernel, milling, flour, dough, and breadmaking quality parameters were compared between hard red winter (HRW) and hard red spring (HRS) wheat. From the 50 quality parameters evaluated, values of only nine quality characteristics were found to be similar for both classes. These were test weight, grain moisture content, kernel size, polyphenol oxidase content, average gluten index, insoluble polymeric protein (%), free nonpolar lipids, loaf volume potential, and mixograph tolerance. Some of the quality characteristics that had significantly higher levels in HRS than in HRW wheat samples included grain protein content, grain hardness, most milling and flour quality measurements, most dough physicochemical properties, and most baking characteristics. When HRW and HRS wheat samples were grouped to be within the same wheat protein content range (11.4–15.8%), the average value of many grain and breadmaking quality characteristics were similar for both wheat classes but significant differences still existed. Values that were higher for HRW wheat flour were color b*, free polar lipids content, falling number, and farinograph tolerance. Values that were higher for HRS wheat flour were geometric mean diameter, quantity of insoluble polymeric proteins and gliadins, mixograph mix time, alveograph configuration ratio, dough weight, crumb grain score, and SDS sedimentation volume. This research showed that the grain and flour quality of HRS wheat generally exceeds that of HRW wheat whether or not samples are grouped to include a similar protein content range. 相似文献
11.
A transmission electron microscopic study was conducted on air- and freeze-dried developing wheat to determine the effects of drying on the structure of the starchy endosperm. Field-grown hard red winter wheat (Karl) and soft red winter wheat (Clark) were harvested at 15, 18, 21, 23, 25, 28, and 35 days after flowering (DAF). Wheat was dried by either air-drying in the spike at 28°C or freeze-drying following freezing in liquid nitrogen. Dried wheat was prepared for microscopy. Fresh samples of Karl and Clark were also harvested on the same days and prepared immediately for microscopy. The method of drying greatly affected cellular ultrastructure. The most pronounced change upon air-drying of developing samples was disappearance of individual protein bodies and conversion of the cytoplasm into a matrix-like material similar in appearance to storage protein matrix found in mature wheat endosperm. Freeze-dried wheats maintained nearly natural ultrastructure but exhibited various amounts of freeze damage. Conversion of protein bodies to a matrix was not observed in freeze-dried samples. The results suggest that hardness develops as a result of endosperm senescence rather than accumulation of particular grain components. Senescence may cause changes in the starch granule surface such that surrounding components bind tightly in hard wheats, whereas the binding is weaker in soft wheats. Therefore, the surface of starch granules might be more important than components the starch granules bind to in determining hardness. 相似文献
12.
W. J. Park D. R. Shelton C. J. Peterson T. J. Martin S. D. Kachman R. L. Wehling 《Cereal Chemistry》1997,74(1):7-11
Polyphenol oxidase (PPO) has been related to an undesirable brown discoloration of wheat-based end products. Consumer acceptance and product quality are generally decreased by the darkening phenomena. Two sets of wheat samples (Triticum aestivum L.) were investigated for variation in grain and flour PPO levels. Samples included 40 advanced experimental hard white winter wheat lines grown at two Kansas locations and 10 hard red winter wheat genotypes grown at three Nebraska locations. The variability in grain and flour PPO activities was influenced by growing location and population for the hard white wheat samples. There also was a significant influence of population by growing location interactions on PPO activity in both grain and flour. Genotype and growing location both contributed to variability in flour PPO activity among the hard red wheat samples. The variation in flour PPO activities among growing locations appeared larger than variation produced by genotypes tested for the hard red wheat samples. Quality parameters, such as wheat physical properties, flour protein and ash contents, grain color, and milling yield significantly correlated with grain and flour PPO activities. Among red wheat samples, flour PPO activity was related to 100 kernel weight, first reduction flour yield, and flour ash content. Grain PPO activity was related to variation in grain color observed among hard white samples. The relationship of quality characteristics with grain and flour PPO activities varied among white and red wheat samples. 相似文献
13.
在正常生产管理条件下,利用温室智能监控系统,自动监测记录冬、春两季日光温室内外空气温度、光照强度,温室内空气湿度、土壤温度,研究冬、春两季日光温室环境因子日变化差异及环境因子间的相互关系差异。结果表明,土壤温度与温室内外光照及温室内湿度的相关性,春季显著大于冬季;温室内湿度与温室内、外光照强度、温室内外温度以及温室外温度与温室的相关性,春季显著小于冬季。土壤温度与温室内、外温度的关联程度,春季温室内温度强于温室外温度,冬季温室外温度强于温室内温度。温室外温度与温室内、外光照、土壤温度的关联程度,春季温室内、外光照强于土壤温度,而冬季土壤温度强于温室内、外光照。冬季温室内湿度显著高于春季,日变化幅度显著小于春季。春季最低温室内要高于冬季最低温度10 ℃以上,日变化幅度明显小于冬季;春季温室内、外最大光照强度是冬季的2倍,且春季光照时间长。春季室外温度平均高于冬季12 ℃以上,春季温室内土壤温度始终要高于冬季10 ℃以上。 相似文献
14.
S. Nair S. E. Ullrich T. K. Blake B. Cooper C. A. Griffey P. M. Hayes D. J. Hole R. D. Horsley D. E. Obert K. P. Smith G. J. Muehlbauer B.‐K. Baik 《Cereal Chemistry》2010,87(5):461-466
Kernel hardness is an important trait influencing postharvest handling, processing, and food product quality in cereal grains. Though well‐characterized in wheat, the basis of kernel hardness is still not completely understood in barley. Kernels of 959 barley breeding lines were evaluated for hardness using the Single Kernel Characterization System (SKCS). Barley lines exhibited a broad range of hardness index (HI) values at 30.1–91.9. Distribution of kernel diameter and weight were 1.7–2.9 mm and 24.9–53.7 mg, respectively. The proportion of hull was 10.2–20.7%. From the 959 breeding lines, 10 hulled spring barley lines differing in HI values (30.1–91.2) were selected to study the associations of HI with proportion of hull, kernel weight, diameter, vitreousness, protein, β‐glucan, and amylose content. Vitreousness, evaluated visually using a light box, showed a clear distinction between hard and soft kernels. Hard kernels appeared translucent, while soft kernels appeared opaque when illuminated from below on the light box. Kernel brightness (L*), determined as an indicator of kernel vitreousness, showed a significant negative correlation (r = –0.83, P < 0.01) with HI. Protein, β‐glucan, amylose content, proportion of hull, kernel weight, and diameter did not show any significant association with HI. 相似文献
15.
Rice bran contains phytochemicals such as E vitamers (i.e., tocopherols and tocotrienols) and the γoryzanol fraction that reportedly may have positive effects on human health. Brown rice, rice bran, and rice bran extracts are therefore attractive candidates for use in the development of functional foods. The objectives of this project were to quantify the effects of genetics versus environment on the tocopherol, tocotrienol, and γ‐oryzanol contents of Southern U.S. rice and to determine associations between the levels of these phytochemicals. Seven rice cultivars grown in four states during two years were studied. Averaged across all samples, the content of α‐tocotrienol > γ‐tocotrienol > α‐tocopherol > gamma;‐tocopherol, and the tocopherols and tocotrienols were 27.5 and 72.5% of the total E vitamer content, respectively. Total E vitamer content ranged from 179 to 389 mg/kg and γ‐oryzanol from 2,510 to 6,864 mg/kg. A low correlation between total E vitamer and γ‐oryzanol contents suggests that to obtain rice bran with high levels of both of these fractions, new cultivars would need to be produced using hybridization and selection. In general, growing environment had a greater effect on E vitamer and γ‐oryzanol levels than did genotype. Therefore, rice breeders selecting genotypes with optimized levels of E vitamers and γ‐oryzanol will need to grow their breeding material in multiple years and locations. 相似文献
16.
Three cultivars of hard red spring (HRS) wheats with identical high molecular weight (HMW) glutenin subunit composition (5+10 type, Glu-D1d) but different dough properties and breadmaking quality were used in this study. The synthesis and accumulation characteristics of different protein fractions during grain development were examined. Samples were collected at three-day intervals from anthesis to maturity between day 10 to day 37. The nonreduced SDS-extractable glutenin aggregates of developing grains were characterized by a multistacking SDS-PAGE procedure to obtain information on the size distribution and polymerization of glutenin aggregates. The HMW to low molecular weight (LMW) glutenin subunit ratio was determined for its relationship to polymerization of the various glutenin aggregates of different molecular sizes. Glutenin proteins were quantified using an imaging densitometer. In addition, albumins and globulins, α- and β-gliadins, γ-gliadins, and ω-gliadins were separated by capillary zone electrophoresis. The results indicated that albumins-globulins, gliadins, and glutenins in developing grains were present at 10 days after anthesis or earlier. Albumin-globulins decreased in proportion, while gliadins increased in proportion during grain development. Polymerization of glutenin aggregates occurred 10 days after anthesis or earlier and increased significantly throughout the grain-filling period until maturity. Larger aggregates of glutenin increased in proportion, while smaller ones decreased in proportion during grain development. Ratio of polymers to monomers increased significantly from day 10 to day 22 of grain development and then remained constant until grain maturity. Glutenin polymers arrived at their maximum in proportion to total SDS-extractable proteins or monomers at day 22 after anthesis while the molecular size of these polymers continued to increase, as indicated by a rapid increase in proportion of HMW to LMW glutenin subunits. Significant differences were found in accumulation rates of glutenin polymers among the three cultivars. Cultivars Kulm and Grandin, with better breadmaking quality, appeared to have greater rates of accumulation and HMW subunit synthesis or formation of larger polymers than did Sharp, a cultivar with poorer quality. Significant differences were found among the three cultivars in the proportion of albumins-globulins and gliadins during grain development. However, no significant differences were found among the cultivars in the proportion of albumins-globulins, α-, β-, γ-, and ω-gliadins at grain maturity. Varietal differences in breadmaking quality were due mainly to the differences in glutenin polymers such as ratio of polymeric to monomeric proteins, molecular size distribution, and ratio of HMW to LMW glutenin subunits among wheat cultivars of 2*, 7+9, and 5+10 subunit types. The better breadmaking cultivars might be characterized with higher proportions of glutenins and greater proportion of HMW subunits in total SDS-extractable proteins than the poorer quality cultivar. However, more genotypes need to be examined. 相似文献
17.
《Cereal Chemistry》2017,94(4):712-716
Free asparagine in wheat is known to be a precursor for the formation of acrylamide, which is unacceptable to consumers owing to its potential risks to human health. This research was performed to determine variation of free asparagine concentration (FAC) in hard red spring (HRS) wheat grown in North Dakota. Quality traits and FAC were analyzed for 75 HRS wheat genotypes grown at three locations. The ANOVA indicated that growing location had a strong effect on FAC. The main effect of genotype and interaction of genotype × location were also highly significant (P < 0.001). The genotype × location interaction was also explored graphically using a biplot of principal components calculated from the genotype and genotype × environment interaction model. The biplot analysis revealed that the pattern of interaction of genotype × location might be a noncrossover type. Certain HRS genotypes were identified to have consistently low FAC across growing locations. The FAC showed low genotypic correlations with quality traits, indicating low level of linkage between FAC and quality traits for HRS wheat genotypes. 相似文献
18.
C. J. Bergman D. G. Gualberto K. G. Campbell M. E. Sorrells P. L. Finney 《Cereal Chemistry》1998,75(5):729-737
Advances in understanding the biochemistry and genetics underlying wheat end-use quality require that cereal chemistry research utilize lines grown in the same environments. It also requires that effects of linkage disequilibrium and small ranges in trait variation be avoided. Our objectives were to: 1) ascertain the effects of genotype and environment and their interactions on hard and soft wheat end-use quality traits, and 2) examine relationships between traits and heritability, using recombinant inbred lines derived from a soft by hard wheat cross. All traits showed transgressive segregation. Kernel texture (KT) was not genetically correlated with mixograph traits, indicating the feasibility of producing soft-textured genotypes with stronger mixing properties. KT was highly genetically correlated with alkaline water retention capacity (AWRC) and moderately genetically correlated with flour yield (FY). Protein content (PRO) was not genetically correlated with dough mixing time across lines, but was with dough mixing strength. KT, FY, and mixograph traits demonstrated higher heritabilities than did AWRC and PRO. Genotype and environment and their interactions affected all traits. Year caused the greatest environment effects, affecting primarily AWRC and PRO. Genotype affected mainly KT, FY, and peak time. The effect of environment on those traits supports the need to develop screening methods using genotype rather than phenotype. 相似文献
19.
Grain hardness (kernel texture) is of central importance in the quality and utilization of wheat (Triticum aestivum L.) grain. Two major classes, soft and hard, are delineated in commerce and in the Official U.S. Standards for Grain. However, measures of grain hardness are empirical and require reference materials for instrument standardization. For AACC Approved Methods employing near‐infrared reflectance (NIR) and the Single Kernel Characterization System (39‐70A and 55‐31, respectively), such reference materials were prepared by the U.S. Dept. of Agriculture Federal Grain Inspection Service. The material was comprised of genetically pure commercial grain lots of five soft and five hard wheat cultivars and was made available through the National Institute of Standards and Technology (SRM 8441, Wheat Hardness). However, since their establishment, the molecular‐genetic basis of wheat grain hardness has been shown to result from puroindoline a and b. Consequently, we sought to define the puroindoline genotype of these 10 wheat cultivars and more fully characterize their kernel texture through Particle Size Index (PSI, Method 55‐30) and Quadrumat flour milling. NIR, SKCS, and Quadrumat break flour yield grouped the hard and soft cultivars into discrete texture classes; PSI did not separate completely the two classes. Although all four of these methods of texture measurement were highly intercorrelated, each was variably influenced by some minor, secondary factors. Among the hard wheats, the two hard red spring wheat cultivars that possess the Pina‐D1b (a‐null) hardness allele were harder than the hard red winter wheat cultivars that possess the Pinb‐D1b allele based on NIR, PSI, and break flour yield. Among the soft wheat samples, SKCS grouped the Eastern soft red winter cultivars separate from the Western soft white. A more complete understanding of texture‐related properties of these and future wheat samples is vital to the use and calibration of kernel texture‐measuring instruments. 相似文献
20.
J. M. Martin J. D. Sherman S. P. Lanning L. E. Talbert M. J. Giroux 《Cereal Chemistry》2008,85(2):266-269
Milling and breadbaking quality of hard‐textured wheat may be influenced by alternative alleles at the Wx loci controlling percent amylose in the endosperm, and the puroindoline (pin) loci controlling grain hardness. For this experiment, we developed recombinant inbred lines (RIL) from a cross between Choteau spring wheat cultivar and experimental line MTHW9904. Choteau has the PinB‐D1b mutation conferring grain hardness and the Wx‐B1a allele at the Wx‐B1 locus conferring wild‐type amylose content. MTHW9904 has the PinA‐D1b allele conferring grain hardness and the Wx‐B1b allele conferring lower amylose content, causing a partial waxy phenotype. RIL with the PinB‐D1b mutation (n = 49) had significantly softer kernels, higher break flour yield, and higher loaf volume than lines with the PinA‐D1b mutation (n = 38). Lines with partial waxy phenotype due to Wx‐B1b (n = 43) had significantly lower kernel weight, lower amylose content, and higher flour swelling power than lines with wild‐type starch due to Wx‐B1a (n = 51). These results provide additional evidence for the positive effect of PinB‐D1b on bread quality in hard wheats, while genotype at Wx‐B1 was generally neutral for bread quality in this population. Interactions between the Pin and Wx loci were minimal. 相似文献