首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A transgenic corn (amylase corn) has been developed that produces an endogenous α‐amylase that is activated in the presence of water and elevated temperature (>70°C). Wet‐ and dry‐milling characteristics of amylase corn were evaluated using laboratory wet‐ and dry‐milling procedures. Different amounts of amylase corn (0.1–10%) were added to dent corn (with the same genetic background as the amylase corn) as treatments. Samples were evaluated for wet‐ and dry‐milling fraction yields using 1‐kg laboratory procedures. Milling yields for all amylase corn treatments were compared with the control treatment (0% amylase corn or 100% dent corn). No significant differences were observed in wet‐ and dry‐milling yields between the control and the 0.1, 1, and 10% amylase corn treatments. Most of the amylase activity (77%) in wet‐milling fractions was detected in the protein fraction. In dry‐milling, amylase activity (68.8%) was detected in endosperm fractions (fines, small grits, and large grits).  相似文献   

2.
The efficiency of fractionating cereal grains (e.g., dry corn milling) can be evaluated and monitored by quantifying the proportions of seed tissues in each of the recovered fractions. The quantities of individual tissues are typically estimated using indirect methods such as quantifying fiber or ash to indicate pericarp and tip cap contents, and oil to indicate germ content. More direct and reliable methods are possible with tissue‐specific markers. We used two transgenic maize lines, one containing the fluorescent protein green fluorescent protein (GFP) variant S65T expressed in endosperm, and the other containing GFP expressed in germ to determine the fate of each tissue in the dry‐milling fractionation process. The two lines were dry‐milled to produce three fractions (bran‐, endosperm‐, and germ‐rich fractions) and GFP fluorescence was quantified in each fraction to estimate the tissue composition. Using a simplified laboratory dry‐milling procedure and our GFP‐containing grain, we determined that the endosperm‐rich fraction contained 4% germ tissue, the germ‐rich fraction contained 28% germ, 20% endosperm, and 52% nonendosperm and nonembryo tissues, and the bran‐rich fraction contained 44% endosperm, 13% germ, and 43% nonendosperm and nonembryo tissues. GFP‐containing grain can be used to optimize existing fractionation methods and to develop improved processing strategies.  相似文献   

3.
New corn fractionation technologies that produce higher value coproducts from dry‐grind processing have been developed. Wet fractionation technologies involve a short soaking of corn followed by milling to recover germ and pericarp fiber in an aqueous medium before fermentation of degermed defibered slurry. In dry fractionation technologies, a dry degerm defiber (3D) process (similar to conventional corn dry‐milling) is used to separate germ and pericarp fiber before fermentation of the endosperm fraction. The effect of dry and wet fractionation technologies on the fermentation rates and ethanol yields were studied and compared with the conventional dry‐grind process. The wet process had the highest fermentation rate. The endosperm fraction obtained from 3D process had lowest fermentation rate and highest residual sugars at the end of fermentation. Strategies to improve the fermentation characteristics of endosperm fraction from 3D process were evaluated using two saccharification and fermentation processes. The endosperm fraction obtained from 3D process was liquefied by enzymatic hydrolysis and fermented using either separate saccharification (SS) and fermentation or simultaneous saccharification and fermentation (SSF). Corn germ soak water and B‐vitamins were added during fermentation to study the effect of micronutrient addition. Ethanol and sugar profiles were measured using HPLC. The endosperm fraction fermented using SSF produced higher ethanol yields than SS. Addition of B‐vitamins and germ soak water during SSF improved fermentation of 3D process and resulted in 2.6 and 2.3% (v/v) higher ethanol concentrations and fermentation rates compared with 3D process treatment with no addition of micronutrients.  相似文献   

4.
A very small scale laboratory procedure (≈10 g) is needed to test wet‐milling characteristics of corn when amounts of corn available for testing are quite limited. The objective of this study was to downscale 100‐g laboratory wet‐milling methods already widely used to measure wet‐milling properties of 10 g of corn. A Standard 100‐g procedure, a Modified 100‐g procedure, and an Experimental 10‐g procedure were compared using three corn hybrids with known differences in wet‐milling properties. All three procedures ranked most fraction yields (all except for germ) of the three hybrids the same. Germ separation was conducted differently for each procedure and probably accounts for these differences. Flotation and screening methods were likely affected by germ density and germ size, and hand‐picking the germ was efficient in recovering a pure germ fraction. The two 100‐g procedures were performed very similarly except for fiber recovery. The Modified 100‐g procedure was more efficient in recovering fiber because of intensive washing. Hybrid effects on the starch/gluten separation were more pronounced when the Experimental 10‐g procedure was used, which may allow for more discrimination among hybrids. Although most fraction yields are too small to run replicates for analytical tests, the Experimental 10‐g procedure will be useful in measuring milling efficiency of early generations of corn hybrids where limited samples are available, such as when valuable recombinant proteins are expressed for therapeutics and industrial enzymes.  相似文献   

5.
Three sorghum hybrids were tempered and decorticated with an abrasive‐type mill (scarifier) to produce low‐ash and low‐fat grits. The effects of tempering time and temperature were investigated, and the optimum tempering conditions for obtaining low‐ash and low‐fat grits were found for each sorghum hybrid. The conditions were 3 min at 30°C for bronze sorghum with heteroyellow endosperm, 40 min at 40°C for white sorghum with white endosperm, and 10 min at 20°C for red sorghum with white endosperm. The grits yields were low using the scarifier, hence, another abrasive‐type mill was investigated for improving grits yields. A modified experimental corn decorticator‐degerminator was used to dry‐mill the three sorghum hybrids tempered to the optimum conditions found with the scarifier. The yields were 45.3% grits with 0.23% ash and 0.18% fat for the bronze/heteroyellow hybrid, 49.1% grits with 0.22% ash and 0.36% fat for white/white hybrid, and 44.2% grits with 0.20% ash and 0.22% fat for red/white hybrid. This study showed that grits yields were higher and ash and fat contents were lower when sorghum was processed with the decorticator‐degerminator than with the scarifier under the same optimum conditioning.  相似文献   

6.
The phenolic acid composition and concentration of four manually separated fractions (pericarp, aleurone layer, germ, and endosperm fractions) as well as whole grains of yellow corn, wheat, barley, and oats were analyzed by HPLC‐MS/MS following microwave‐assisted alkaline aqueous extraction. Phenolic acid compositions in whole grains and their fractions were similar, with minor differences among the grain fractions. Significant differences (P < 0.05), however, were observed in phenolic acid concentrations among cereal types, within cereal varieties, and among grain fractions, with yellow corn exhibiting the highest values. The concentrations of p‐coumaric and syringic acid in the pericarp were 10‐ to 15‐fold and 6‐ to 10‐fold higher, respectively, in yellow corn than in wheat, barley, and oats. In the aleurone layer, sinapic and vanillic acids in yellow corn were about 8‐ and 30‐fold more than in wheat. The germ fraction of wheat had 1.8 times more syringic acid than yellow corn germ. Grain fractions, excluding endosperm, had enhanced levels of phenolic acids compared with whole grain. Sinapic acid was more concentrated in the pericarp and germ of wheat, whereas isoferulic acid was concentrated in the germ of purple barley. Syringic and vanillic acids were concentrated in the pericarp and sinapic acid in the aleurone layer of yellow corn. These findings are important in understanding the composition and distribution of phenolic acids, and they act as a guide in identification of grain fractions for use as food ingredients. In addition, yellow corn fractions (aleurone and pericarp) may be potential alternative phenolic‐rich functional food ingredients in grain‐based food products.  相似文献   

7.
Ethanol fermentation of dry‐fractionated grits (corn endosperm pieces) containing different levels of germ was studied with the dry‐grind process. Partial removal of the germ fraction allows for marketing the germ fraction and potentially more efficient fermentation. Grits obtained from a dry‐milling plant were mixed with different amounts of germ (2, 5, 7, and 10% germ of the total sample) and compared with control grits (0% germ). Fermentation rates of germ‐supplemented grits (2, 5, 7, and 10% germ) were faster than control grits (0% germ). Addition of 2% germ was sufficient to achieve a high ethanol concentration (19.06% v/v) compared with control grits (18.18% v/v). Fermentation of dry‐fractionated grits (92, 95, and 97% grits) obtained from a commercial facility was also compared with ground whole corn (control). Fermentation rates were slower and final ethanol concentrations were lower for commercial grits than the control sample. However, in a final experiment, commercial grits were subjected to raw starch hydrolyzing (RSH) enzyme, resulting in higher ethanol concentrations (20.22, 19.90, and 19.49% v/v for 92, 95, and 97% grits, respectively) compared with the whole corn control (18.64% v/v). Therefore, high ethanol concentrations can be achieved with dry‐fractionated grits provided the inclusion of a certain amount of germ and the use of RSH enzyme for controlled starch hydrolysis.  相似文献   

8.
A modified dry‐grind corn process has been developed that allows recovery of both pericarp and endosperm fibers as coproducts at the front end of the process before fermentation. The modified process is called enzymatic milling (E‐Mill) dry‐grind process. In a conventional dry‐grind corn process, only the starch component of the corn kernel is converted into ethanol. Additional ethanol can be produced from corn if the fiber component can also be converted into ethanol. In this study, pericarp and endosperm fibers recovered in the E‐Mill dry‐grind process were evaluated as a potential ethanol feedstock. Both fractions were tested for fermentability and potential ethanol yield. Total ethanol yield recovered from corn by fermenting starch, pericarp, and endosperm fibers was also determined. Results show that endosperm fiber produced 20.5% more ethanol than pericarp fiber on a g/100 g of fiber basis. Total ethanol yield obtained by fermenting starch and both fiber fractions was 0.370 L/kg compared with ethanol yield of 0.334 L/kg obtained by fermenting starch alone.  相似文献   

9.
Pilot-scale dry-milling runs were conducted to study the feasibility of using a short-duration single-stage tempering procedure for the tempering-degerminating system, instead of the 17.8–21.5 hr of conventional three-stage tempering procedures reported in the scientific literature. Using a Beall degerminator No. 0, pilot-scale dry-milling experiments were conducted at 10 tempering levels: 0, 5, 10, 15, 30, 45, 60, 120, 180, and 240 min. Variation in moisture content of through- and tail-stock fractions, degerminator throughput, ratio of tail- to through-stock, yields of different sized grits from tail- and through-stock fractions, and the recovery of germ and pericarp were used to compare tempering periods. A decrease in the milling action was observed for tempering durations >30 min. A tempering period of 15 min gave the highest grit recovery and a 30-min tempering period resulted in the highest germ and pericarp recovery. Based on these results, it was concluded that short tempering periods of 10–30 min as compared to 17.8–21.5 hr could be used for the tempering-degerminator system.  相似文献   

10.
A new low temperature liquefaction and saccharification enzyme STARGEN 001 (Genencor International, Palo Alto, CA) with high granular starch hydrolyzing activity was used in enzymatic dry‐grind corn process to improve recovery of germ and pericarp fiber before fermentation. Enzymatic dry‐grind corn process was compared with conventional dry‐grind corn process using STARGEN 001 with same process parameters of dry solid content, pH, temperature, enzyme and yeast usage, and time. Sugar, ethanol, glycerol and organic acid profiles, fermentation rate, ethanol and coproducts yields were investigated. Final ethanol concentration of enzymatic dry‐grind corn process was 15.5 ± 0.2% (v/v), which was 9.2% higher than conventional process. Fermentation rate was also higher for enzymatic dry‐grind corn process. Ethanol yields of enzymatic and conventional dry‐grind corn processes were 0.395 ± 0.006 and 0.417 ± 0.002 L/kg (2.65 ± 0.04 and 2.80 ± 0.01 gal/bu), respectively. Three additional coproducts, germ 8.0 ± 0.4% (db), pericarp fiber 7.7 ± 0.4% (db), and endosperm fiber 5.2 ± 0.6% (db) were produced in addition to DDGS with enzymatic dry‐grind corn process. DDGS generated from enzymatic dry‐grind corn process was 66% less than conventional process.  相似文献   

11.
Different corn types were used to compare ethanol production from the conventional dry‐grind process to wet or dry fractionation processes. High oil, dent corn with high starch extractability, dent corn with low starch extractability and waxy corn were selected. In the conventional process, corn was ground using a hammer mill; water was added to produce slurry which was fermented. In the wet fractionation process, corn was soaked in water; germ and pericarp fiber were removed before fermentation. In the dry fractionation process, corn was tempered, degerminated, and passed through a roller mill. Germ and pericarp fiber were separated from the endosperm. Due to removal of germ and pericarp fiber in the fractionation methods, more corn was used in the wet (10%) and dry (15%) fractionation processes than in the conventional process. Water was added to endosperm and the resulting slurry was fermented. Oil, protein, and residual starch in germ were analyzed. Pericarp fiber was analyzed for residual starch and neutral detergent fiber (NDF) content. Analysis of variance and Fisher's least significant difference test were used to compare means of final ethanol concentrations as well as germ and pericarp fiber yields. The wet fractionation process had the highest final ethanol concentrations (15.7% v/v) compared with dry fractionation (15.0% v/v) and conventional process (14.1% v/v). Higher ethanol concentrations were observed in fractionation processes compared to the conventional process due to higher fermentable substrate per batch available as a result of germ and pericarp fiber removal. Germ and pericarp yields were 7.47 and 6.03% for the wet fractionation process and 7.19 and 6.22% for the dry fractionation process, respectively. Germ obtained from the wet fractionation process had higher oil content (34% db) compared with the dry fractionation method (11% db). Residual starch content in the germ fraction was 16% for wet fractionation and 44% for dry fractionation. Residual starch in the pericarp fiber fraction was lower for the wet fractionation process (19.9%) compared with dry fractionation (23.7%).  相似文献   

12.
The use of corn (Zea mays L.) hybrids with high grain yield and starch extractability has steadily increased in the processing industry. In light of widespread corn seed industry participation in the Germplasm Enhancement of Maize Project (GEM), which seeks to enhance exotic germplasm, future hybrids may contain more exotic sources in genetic backgrounds. It is necessary to establish and monitor physical, compositional, and milling characteristics of the new exotic breeding materials to determine the processing value. The present study was conducted to determine the wet‐milling characteristics of a set of GEM lines compared with typical Corn Belt lines. Ten GEM lines introgressed with exotic materials from Argentina, Chile, Cuba, Florida, and Uruguay and previously identified as having different starch yields, three commercial inbred lines, and two public inbred lines (B73 and Mo17) were analyzed using both near‐infrared transmittance (NIT) and a 100‐g wet‐milling procedure. There were statistical differences (P < 0.05) in the yield of wet‐milled fractions (starch, fiber, gluten, and germ). The GEM lines AR16035:S19‐227‐1‐B and CUBA117:S1520‐562‐1‐B had similar or better starch yield and starch recovery than B73 and the other adapted inbred lines, indicating that they may be useful in improving the proportion of extractable starch present in kernels of hybrids. Residual protein levels in the starch and gluten fractions were 0.26–0.32% and 38–45%, respectively. The starch yield of GEM lines from wet milling correlated positively with starch content from NIT and was negatively correlated with protein content of the corn kernels. Oil content in the germ varied from 50 to 60%. Our results indicate that incorporating GEM lines in a breeding program can maintain or even improve wet‐milling characteristics of Corn Belt materials if lines with appropriate traits are used.  相似文献   

13.
Corn samples and different commercial dry‐milled fractions collected from an industrial mill in Argentina were surveyed for fungal contamination. The percentage of Fusarium isolates in whole corn kernels among all fungi recovered was 2.0–97.0%; in corn grits, it was 2.6–50.0%. Maximum levels in the other fractions were 5.2 × 105 colony forming units per gram (CFU/g) in germ and bran, 5.0 × 103 CFU/g in C flour, and 2.7 × 103 CFU/g in corn meal. The high initial contamination from whole corn is reflected in germ and bran, which is destined for animal consumption, but not in corn meal. F. verticillioides and Aspergillus flavus were the most frequent species in the whole corn kernel, but F. verticillioides was prevalent in all the other industrial fractions. Other potentially toxigenic fungi that were isolated included Aspergillus parasiticus, Alternaria alternata, Penicillium citrinum, and P. funiculosum. In this first report about mold contamination in corn industrial dry‐milled fractions in Argentina, the high fungal contamination level observed in the stored corn could indicate the necessity to improve the hybrid quality and the storage conditions to diminish the risk of mycotoxin occurrence.  相似文献   

14.
Initial uniform distribution of moisture in the corn kernel is transformed into nonuniform distribution through tempering to facilitate easy fractionation of corn components. Proper temper duration is essential for effectiveness of the tempering process: a short temper time is insufficient to cause necessary nonuniformity; a long temper duration may allow moisture to redistribute uniformly. Untempered corn suffers from lack of beneficial swelling stress and therefore produces lower yields of flaking grits, coarse grits, and germ. For tempered corn, the system throughput exponentially decreases with temper duration and then stabilizes; the period of stabilization is dependent on weight distance. Throughput values are lower at longer weight distances. At a temper duration of 0.066 m, throughput was ≈33–50% at 0.053 m weight distance. Tail stock fraction rapidly and nonlinearly decreases with increase in temper duration; the rate of decrease is higher at longer weight distance. The peak values of flaking grits can exceed 50% at some combinations of weight distance and temper duration. Coarse grit yields were 9–19% and 16–24% for the shorter and longer weight distances, respectively. Germ recovery improved due to tempering, and differed only by ≈0.5% at the two weight distances. Tempering lowered the oil content of flaking grit, but the temper duration did not have much influence on moisture content of various fractions.  相似文献   

15.
To better understand the role of lactic acid (LA) in corn wet‐milling, steeping studies were performed on different yellow dent corn hybrids using four different solutions containing LA, sulfur dioxide (SO2), a combination of LA and SO2, or no added chemicals. Although there was variation in protein solubilization among the hybrids, protein release was consistently higher when LA was included in the steepwater than when it was excluded (both with and without SO2). Several groups have reported that starch recoveries are improved when steepwater contains LA. To explore the relationship between protein solubilization and starch yield as effected by LA, several yellow dent hybrids were steeped in 0.20% SO2 and 0.50% LA‐0.20% SO2 solutions and milled to recover starch by a 100‐g laboratory corn wet‐milling procedure. In all instances, both starch yields and protein solubilization were enhanced in solutions containing LA. These results support the hypothesis that direct dissolution of the endosperm protein matrix by LA contributes to the improved starch recoveries.  相似文献   

16.
Scientifically researched 2‐ and 3‐stage tempering procedures and the commercially practiced 1‐stage procedure were compared for throughput and corn dry‐milling product yields at pilot‐scale (30‐kg lots) operation. The throughput and product yields were influenced by the temper procedure and the tailgate weight distance. For most corn dry‐milling products, yields corresponding to 2‐ or 3‐stage tempering procedures could be equaled or surpassed using the 1‐stage tempering procedure at specific temper durations. In general, yields from the 2‐stage and 3‐stage procedures were comparable to the yields from the 1‐stage procedure at temper durations of 30–40 and 50–60 min, respectively. An increase in the tailgate weight distance improved the product yields for temper durations <30 min but reduced the yields for longer temper durations. An increase in temper duration ≤50 min resulted in a reduction in throughput but an improvement in flaking grit yield. The temper duration and tailgate weight distance could be suitably adjusted for obtaining the desired output.  相似文献   

17.
The effects of alternative corn wet‐milling (intermittent milling and dynamic steeping (IMDS), gaseous SO2 and alkali wet‐milling) and dry grind ethanol (quick germ and quick fiber with chemicals) production technologies were evaluated on the yield and phytosterol composition (ferulate phytosterol esters, free phytosterols, and fatty acyl phytosterol esters) of corn germ and fiber oil and compared with the conventional wet‐milling process. Small but statistically significant effects were observed on the yield and composition of corn germ and fiber oil with these alternative milling technologies. The results showed that the germ and fiber fractions from two of the alternative wet‐milling technologies (the gaseous SO2 and the IMDS) had, for almost all of the individual phytosterol compounds, either comparable or signficantly higher yields compared with the conventional wet‐milling process. Also, both of the modified dry grind ethanol processes (the quick germ and quick fiber) with chemicals (SO2 and lactic acid) can be used as a new source of corn germ and fiber and can produce oils with high yields of phytosterols. The alkali wet‐milling process showed significantly lower yields of phytosterols compounds in germ but showed significantly higher yield of free phytosterols, fatty acyl phytosterol esters and total phytosterols in the fiber fraction.  相似文献   

18.
Coarse and fine fiber fractions obtained from the corn wet‐milling processes, with and without steeping chemicals (SO2 and lactic acid), were evaluated microscopically for structure and analytically for recovery of phytosterol compounds from the fiber oil. Microscopic results showed that wet milling, with and without chemicals during steeping, changed the line of fracture between pericarp and endosperm and therefore affected the recovery of the aleurone layer in coarse (pericarp) and fine (endosperm cellular structure) fiber. Analytical results showed that most of the phytosterols and mainly phytostanols in corn fiber are contributed by the aleurone layer. Hand‐dissection studies were performed to separate the two layers that comprise the wet‐milled coarse fiber, the aleurone, and pericarp layer. Analyses revealed that the aleurone contained 8× more phytosterols than the pericarp.  相似文献   

19.
Starch yield was significantly affected by all three main unit operations in alkali wet‐milling (debranning, roller milling, and steeping). The conditions for the three unit operations were studied using a single hybrid. Studies on debranning showed that optimal separation between pericarp and corn endosperm was obtained when corn was soaked in a 1.5–2% NaOH solution at 85°C for 5 min. Passing debranned corn through smooth roller mill once or twice did not affect the product yields, but passing the corn through the roller mill three times decreased the germ yield because of a large amount of broken germ. A 62% higher processing rate could be achieved when passing corn through the mill twice than by passing it through the mill once. The gap should be set at 2.0 mm when passing corn through the mill once, and it should be set at 3.5 mm for the first pass and 2.0 mm for the second pass when passing corn through the mill twice. Starch yield was more sensitive to NaOH concentration and steep temperature than to steep time. The highest starch yield was obtained when steeping corn in 0.5% NaOH for 1 hr at 45°C.  相似文献   

20.
Several coproducts result from fractionating corn in the wet‐milling process. Because small changes in product composition and milling characteristics can have a major impact on coproduct yields and values, testing is done to anticipate final product yields. Using small sample size and controlled conditions, a laboratory wet‐milling method proved to be a useful tool for wet milling and genetics industries. A wet‐milling process (100‐g batches) was used for data collection. Data collected during 11 years (1994–2004) were observed for samples used as benchmarks to verify process precision and accuracy and determine correlations among wet‐milling yields. More than 400 milling tests were performed on benchmark samples. Data from benchmark samples also were pooled. Coefficients of variation were low (<6%) for mean yields; year‐to‐year standard deviations of benchmark sample yield means were homogenous and implied precision of the procedure. Some differences were detected in mean yields among years (P ≤ 0.05) for benchmark data due to combined effects of hybrid and environment. A negative correlation (r = –0.58) was observed between starch and gluten yield for pooled benchmark data. Four years (2002–2005) of milling data from commercially available hybrids were analyzed using the milling procedure. For pooled commercial data, the correlation between starch and fiber yield was (r = –0.80); correlation between starch and gluten was (r = –0.76).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号