首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 383 毫秒
1.
龙眼果皮发育解剖学观察   总被引:1,自引:0,他引:1  
以储良龙眼品种为试材,观察了果皮的解剖结构发育特点。果皮发育早期(花后10d前),细胞体积小,排列紧密,细胞分裂活跃,外果皮有凸起的皱褶结构,有大量的表皮毛分化。果皮发育中期(花后10~52d),细胞体积变大,表皮毛开始脱落,外果皮逐渐平滑,中果皮处有石细胞群和海绵状组织的分化。果实发育后期(花后52d后,假种皮快速膨大阶段),有木栓形成层出现,形成周皮代替表皮起保护作用,随着果实生长,木栓层出现局部破裂。龙眼果皮可划分为外、中、内3层。中外果皮在发生次生木栓化前,由外表皮细胞及其附属物和角质层组成;在形成木栓形成层产生次生结构后,外果皮则由周皮组成。内果皮来源于子房内壁的几层细胞,由一层内表皮细胞和与之紧密相连的几层薄壁细胞组成。中果皮根据其组织特点可进一步分为上中果皮和下中果皮,上中果皮包括石细胞群、外层维管束和外果皮之内的薄壁细胞;下中果皮则主要包括海绵组织和其中的维管束。  相似文献   

2.
采用组织化学方法,研究了不同发育时期灵武长枣的果实、茎和叶及其相关组织中多糖的积累分布特征及其相关性。结果表明:不同发育时期长枣多糖在不同器官中的分布特征不同。在果实发育早期,多糖分布较少,主要分布于靠近外果皮的数层中果皮薄壁细胞,从果实发育的膨果期开始多糖的分布范围和数量逐渐增加,在果实发育的成熟期达到最大,中果皮及其维管束内部和周围等部位的薄壁细胞中分布了大量的多糖物质,中果皮是果实多糖类物质的主要贮藏部位;茎中分布的多糖较少,主要分布在皮层、韧皮薄壁细胞和髓中,且随着果实的发育逐渐减少;叶柄中多糖主要分布在基本组织、韧皮部和木质部的薄壁细胞中,且随着果实的发育有一定程度的增加;叶片中多糖类物质主要分布在叶肉和叶脉的薄壁细胞中,且随着果实的发育有一定程度的减少。随着果实的生长发育,果实中多糖的积累分布逐渐增加,并且与叶中多糖的积累分布具有明显的相关性。  相似文献   

3.
CPPU对葡萄果实生长发育促进效应的解剖学观察   总被引:2,自引:0,他引:2  
对CPPU处理的全球红葡萄果实进行组织形态动态生长研究,结果表明:CPPU处理能促进早期子房膨大生长,子房壁的加厚生长和输导组织的生长.经CPPU处理比对照能提早使幼果进入迅速细胞分裂期,细胞层数增多.10 mg/L的CPPU处理不仅显著增加细胞层数,而且增大了细胞体积,刺激果实膨大的效果较好;15 mg/L的CPPU处理则抑制果实的细胞分裂和体积增大,其主要差异存在于中果皮,在外果皮上差异不明显.在幼果生长期,CPPU处理的细胞体积膨大幅度小于对照;在果实生长中、后期,其膨大幅度则大于对照.  相似文献   

4.
哈密瓜发育和成熟过程中过氧化物酶和过氧化氢酶活性不断提高,特别是过氧化物酶更为显著。成熟的果实比幼果高9倍多。乙醇和乙醛的含量亦均随着果实的发育成熟不断增加。瓜腔内氧分压在果实成熟过程中逐渐下降,CO_2分压则相反,即随着果实成熟衰老而不断升高。 随着果实发育成熟细胞膜透性相应的提高,成熟果实的电导率比幼果增加近1倍。  相似文献   

5.
以果梅品种‘细叶青’和‘莺宿’为材料,对果实生长发育规律及组织结构解剖进行了研究。结果表明:果梅果实生长呈双“S”型曲线,果核生长呈单“S”型曲线,两个品种的果实发育存在差异。‘细叶青’果实的硬核期短于‘莺宿’;果梅子房内有2个半倒生胚珠,而只有1个胚珠发育为成熟胚;外果皮是一种复合结构。由表皮毛、表皮细胞等组成:中果皮主要是由薄壁细胞和分布其中的维管束组成;内果皮组成成分是石细胞;合子细胞分裂经过球形胚和子叶形胚时期。  相似文献   

6.
疏花对大久保桃中果皮细胞分裂与膨大的影响   总被引:3,自引:0,他引:3  
 研究了大久保桃树〔Prunus persica (L. ) Batsch. ‘Okubo’〕疏花后果实生长发育期间果皮细胞分裂与膨大的变化。结果表明: 果皮细胞分裂一直持续到盛花后6周。疏花明显促进了花后3周内幼果中果皮的细胞分裂, 增加了果实中果皮细胞层数和果皮厚度, 这是导致成熟果实体积增大的主要原因。  相似文献   

7.
桃不同类型果实发育的解剖结构特性   总被引:1,自引:0,他引:1  
为探讨普通桃、油桃、蟠桃和油蟠桃果实发育期表皮、亚表皮和中果皮细胞的解剖结构差异,试验以同一杂交群体内的这4种类型(各2株)为试材,通过显微和超微观察果实表皮、亚表皮和中果皮细胞发育。结果表明,4种类型果实的横径发育皆呈双S曲线,果实亚表皮细胞前期变化较小,开始膨大期为盛花后42d。普通桃、油桃和油蟠桃中果皮细胞在整个果实发育期持续膨大,类型间变化趋势基本一致,而蟠桃中果皮细胞在盛花后70~84d存在膨大延缓期。盛花后42~98d,普通桃和蟠桃亚表皮与中果皮细胞膨大倍数之比大于油桃和油蟠桃。分析认为,果实有毛/无毛基因单独影响着表皮细胞形状和亚表皮与中果皮细胞膨大倍数之比,而无毛基因与扁平基因共同影响着亚表皮淀粉粒数目,并且这种作用有累加现象。  相似文献   

8.
【目的】为揭示‘库尔勒香梨’果实发育期质地变化机理。【方法】定期检测果实发育期细胞壁含量、细胞壁组成物质含量、果胶酶、纤维素酶和β-葡萄糖苷酶活性等指标。【结果】细胞壁含量、纤维素含量及半纤维素含量在果实发育过程中,呈幼果期上升,进入快速生长期后下降,成熟期较平缓的趋势;随着果实发育成熟,水溶性和离子型果胶含量呈上升趋势,共价结合型果胶含量呈下降趋势;水解酶活性呈现上升趋势,与相关细胞壁组分变化规律相符。【结论】随着‘库尔勒香梨’果实生长发育,在细胞壁水解酶的作用下,细胞壁含量及组分发生了变化。  相似文献   

9.
为揭示油梨果实不同组织在发育过程中的油体变化,采用尼罗红染色和激光共聚焦技术相结合的技术,观察果皮、果肉、种皮和种子发育不同时期油体的动态变化。结果表明,在油梨果实中的果皮、果肉、种皮和种子4个组织发育初期,油体仅在细胞壁周围分布,随着各组织发育,油体逐渐向细胞中间分布,且逐渐增多变大。在发育后期,果肉中的油体体积明显大于其他3个组织中的油体。研究结果有助于了解油梨果实发育过程中的油脂动态变化。  相似文献   

10.
黑穗醋栗果实成熟过程主要营养成分变化规律   总被引:10,自引:2,他引:10  
黑穗醋栗果实的各种营养物质,在整个发育成熟过程中,各阶段的变化不同。薄皮和厚皮两品种表现出相同的变化规律。果实内总糖含量随果实成熟逐渐增加,果实成熟后略有减少,总糖中以果糖和葡萄糖为主;有机酸含量随果实成熟逐渐减少。接近成熟时增长缓慢;维生素C、氨基酸的相对含量的幼果中最多,随着果实的成熟逐渐减少。氨基酸在果实成熟时相对含量最低,其后略有增加;而维生素C则一直下降,果实成熟时下降缓慢。相关分析表明  相似文献   

11.
荔枝果皮发育细胞学研究   总被引:8,自引:0,他引:8  
 以‘淮枝’荔枝为试材, 对花前子房和花后果皮发育的解剖学特点进行了观察。荔枝果皮可划分为内、中、外3 层, 外果皮由单层表皮细胞、龟裂片峰处表皮细胞上的角质、裂纹处表皮细胞上的薄壁细胞构成; 中果皮是构建果皮的主体, 由龟裂片峰下的厚壁组织、上中果皮和下中果皮构成; 内果皮由薄壁未木栓化的皮层细胞构成。果皮的细胞分裂主要发生在开花前, 花后不同部位的果皮细胞还有一定的分裂行为, 但分裂的旺盛程度和停止时间有所不同, 下中果皮停止早, 约在花后19 d , 上中果皮其次, 约在花后32 d , 内果皮和裂纹处外果皮最晚, 约在花后47 d。细胞膨大规律总体呈“慢- 快- 慢”的S 型。  相似文献   

12.
Summary

Fruit development and physiological traits were evaluated in ‘Andesu’ netted melon plants grown with and without calcium. Calcium exclusion accelerated softening, alcoholic fermentation and ethylene evolution of fruit compared with those supplied with calcium, but the opposite trend occurred with sucrose accumulation. A significant difference of calcium concentrations in the fruit between treatments was observed at the developing stage of the fruit (P<0.05), but the difference became smaller as fruit matured. In the mesocarp tissue from the basal hemisphere, calcium concentrations in the NaCl soluble fraction at ripe fruit stage differed significantly (P<0.05) between calcium treatments but no significant difference was detected in the inner mesocarp of the distal hemisphere. Calcium exclusion did not lead to the development of water-soaked symptoms in the mesocarp tissue of ripe fruit. Uronic acid concentrations in ionically bound pectin fraction did not differ between calcium treatments throughout fruit development. In covalently-bound pectin fraction, however, uronic acid concentration of ripe fruit was significantly lower in calcium-excluded plants than in calcium-supplied plants (P<0.05). Our results suggest that: first, accelerated fruit softening under calcium deficient conditions might result from promoted ethylene evolution rather than from the shortage of ionically-bound calcium in cell walls, second, calcium deficient condition does not necessarily lead to water-soaked symptoms in tissue of ‘Andesu’ melon fruit.  相似文献   

13.
Plums (Prunus salicina cv. Songold) were cold stored for 10 d at -0.5°C followed by 18 d at 7.2°C and 7 d at 10°C. On the day of harvest and after 15,30 and 35 d of storage, the physiology, anatomy and development of internal disorders in inner and outer mesocarp tissue were assessed. Soluble solids, juice pH, internal conductivity, viscosity of soluble pectin and membrane leakage were significantly higher in the inner tissue, while titratable malic acid levels were lower, indicating that fruit was riper on the inside than the outside. Changes as indicated by the same variates showed that the rate of ripening in inner tissue was more rapid than in the outer mesocarp tissue over storage time. Gel breakdown in inner tissue was associated with high viscosities of water soluble pectin, permeable membranes, and as a result, binding of cell fluids which led to low levels of extractable juice. In outer tissue where extractable juice levels were higher, overripeness developed. At the ultrastructural level, it was evident that cell walls of inner tissue were thicker and had a better developed middle lamella than outer tissue. Inner mesocarp tissue was composed of larger cells than outer tissue.  相似文献   

14.
黄皮耐贮性与果皮超微结构的研究   总被引:8,自引:1,他引:8  
以大鸡心、小鸡心、圆种3个黄皮品种为材料,探讨了常温(28~33℃)贮藏3个黄皮品种耐贮性与果皮超微结构的差异。结果表明,圆种黄皮最耐贮藏,小鸡心次之,大鸡心耐贮性最差。经扫描电镜观察,黄皮外表皮薄,只有2~3层细胞构成。外表皮结构疏松,外表面有小裂隙,外被一层均匀的蜡质,密布表皮毛和气孔,果实分泌物中有结晶状物。新鲜采收黄皮果皮中即有病原微生物潜伏,随贮藏时间延长,黄皮果外表皮病原物大量繁殖,表皮毛与蜡质层脱落,气孔也逐渐闭合。3个品种黄皮外表皮的其它特征,如表面皱折大小与数量、表皮毛和气孔的密度、形状和大小等有明显差异。  相似文献   

15.
In drupe fruits, in addition to fruit size, the proportions of mesocarp and endocarp tissues are critical objectives for fruit quality, crop production and management. The olive fruit is a typical drupe, with cultivars which show a wide range in both fruit size and the proportions of mesocarp and endocarp. Characterizing the roles of tissue and cellular processes in producing genetically based fruit size variability is necessary for crop improvement, as well as deepening our understanding of fruit developmental physiology. This study used microscope image analysis to evaluate cell number and size, the growth of mesocarp and endocarp tissues, and their developmental timing in producing fruit size among six olive cultivars with a large range of fruit size. We found that cultivar mesocarp and endocarp size increased linearly with fruit size, with larger sizes favoring an increasingly greater mesocarp/endocarp ratio. Within the mesocarp, cultivar-based fruit size related directly to cell number and was established soon after bloom by cell division rate. In spite of different cell division rates, all cultivars showed similar timing of cell division activity, with the majority of cells produced in the two months after bloom but, surprisingly, a substantial number of cells formed during the following 6 months. Cell expansion was high throughout fruit growth and an important factor in achieving final fruit size, but cell size did not differ among cultivars at any time. We can conclude that fruit size differences among olive cultivars are due at the tissue level to both mesocarp and endocarp sizes and at the cellular level to cell division throughout fruit growth. Furthermore, since cell size is consistent among cultivars in spite of variable cell division, it is likely that cultivar differences in cell expansion accompany those in cell division.  相似文献   

16.
温州蜜柑粗皮大果形成过程的解剖学研究   总被引:1,自引:0,他引:1  
【目的】为了明确温州蜜柑粗皮大果形成的原因和关键时期,【方法】试验以‘国庆一号’温州蜜柑为材料,比较果实发育过程中,粗皮大果与薄皮果果蒂处果皮的显微结构差异。【结果】结果表明,花后21 d粗皮大果中果皮细胞开始排列疏松,花后28 d其外果皮出现凹凸不平现象,这些均与薄皮果存在明显差异;花后7~21 d果皮细胞层数快速增长,导致果皮增厚,粗皮大果与薄皮果表现显著差异;果实成熟前,薄皮果果皮逐渐变薄,粗皮大果的果皮却不断增厚,成熟时其果皮厚度达到薄皮果的3.8倍。【结论】花后7~28 d是粗皮大果果皮增厚的关键时期。  相似文献   

17.
SUMMARY

We examined growth and development of the ‘Manzanilla’ olive fruit mesocarp in transverse equatorial sections during the first 12 weeks after full bloom (AFB). Sequential sampling and quantitative data provided an integrated view of the formation of this tissue. The mesocarp, or fruit flesh, was formed by relatively isodiametric parenchyma cells with a small number of isolated sclereids. By four weeks AFB a gradient in cell size characteristic of mature olive fruits began to appear. Biweekly measurements of cell size and number indicated that, as in other drupes, both cell division and expansion contribute to initial mesocarp growth. From six weeks AFB, further mesocarp growth was determined solely by cell expansion. Transverse areas of mesocarp and endocarp, also measured biweekly, revealed that both tissues expand in a similar manner until eight weeks AFB, after which mesocarp growth predominated.  相似文献   

18.
This study compared physiological and physico-chemical changes in shreds of green papaya (Carica papaya L. ‘Kaek Noul’), taken from inner and outer mesocarp tissues, during storage at 7ºC for up to 8 d. Reductions in the flesh firmness of shreds, microstructure, colouration, dry matter content (DMC), and fresh weight (FW) loss, and in the rates of respiration, ethylene production, and enzyme activities were measured. The rapid loss of firmness of green papaya ‘Kaek Noul’ shreds taken from the inner mesocarp was attributed to the larger and more loosely arranged cells of the inner mesocarp compared to the smaller and compact cells of the outer mesocarp. Shreds taken from the outer mesocarp had a higher DMC [6.21–6.77% (w/w)] than those from the inner mesocarp [5.83–6.34% (w/w)] during storage at 7ºC. FW loss was higher for shreds from the inner mesocarp than from the outer mesocarp (0.89–1.12% vs. 0.39–1.00%, respectively). Colour values (h°) were lower at the end of storage for shreds from the inner mesocarp than shreds from the outer mesocarp (104.38° and 111.94°, respectively). Moreover, scanning electron micrographs of shreds from inner mesocarp and outer mesocarp tissues showed that the slower loss of firmness in shreds from the outer mesocarp could be attributed to having smaller and more compact cells, as well as to lower ethylene production by the outer mesocarp. However, this was not related to cellulase activity. This study indicated why processors prefer to use shreds from the outer mesocarp of green papaya.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号