首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microencapsulating properties of sodium caseinate   总被引:5,自引:0,他引:5  
Emulsions were prepared with 5% (w/v) solutions of sodium caseinate (Na Cas) and soy oil at oil/protein ratios of 0.25-3.0 by homogenization at 10--50 MPa. Emulsions were spray-dried to yield powders with 20--75% oil (w/w). Emulsion oil droplet size and interfacial protein load were determined. Microencapsulation efficiency (ME), redispersion properties, and structure of the powders were analyzed. The size of emulsion oil droplets decreased with increasing homogenization pressure but was not influenced by oil/protein ratio. Emulsion protein load values were highest at low oil/protein ratios. ME of the dried emulsions was not affected by homogenization pressure but decreased from 89.2 to 18.8% when the oil/protein ratio was increased from 0.25 to 3.0, respectively. Mean particle sizes of reconstituted dried emulsions were greater than those of the original emulsions, particularly at high oil/protein ratios (>1.0), suggesting destabilization of high-oil emulsions during the spray-drying process.  相似文献   

2.
The effects of molecular weight and concentration of plasticizer on physicochemical properties and stability of shellac films were investigated. Type of plasticizer was previously reported to have some effects on the stability of shellac films, and polyethylene glycol (PEG) was the plasticizer of choice for plasticizing shellac films. In this study, different molecular weights of PEG (200, 400 and 4000) were chosen at a concentration of 10% w/w of shellac films. Shellac in alcohol was prepared in a free film. The stability of shellac film was then performed at 75% RH, 40 °C for 3 months. The comparison was made between the film with and without plasticizer. Shellac films were then determined for acid value, insoluble solid, mechanical properties and water vapor permeability coefficient. It was reported that different molecular weights of PEG had some influence on physicochemical properties of the shellac films. Among different molecular weights of PEG, PEG 400 showed a suitable molecular weight that could protect the shellac chain at the carboxylic and hydroxyl groups. Therefore, the molecular weight of plasticizer played a crucial role for the protective ability at active sites. Further study was performed to investigate the effect of concentrations of PEG 400 on the stability. The results demonstrated that PEG 400 at a concentration of 10% (w/w) could prevent the polymerization process for only 4 months and a significant change of all parameters was then reported. However, a higher concentration, 20% (w/w) of PEG 400, could prolong the stability of shellac for 6 months of study. Therefore, the drawback of shellac as a natural polymer in pharmaceutical and food industries could be tackled by the appropriate size and concentration of plasticizer.  相似文献   

3.
The physicochemical and functional properties of ultraviolet (UV)-treated egg white protein (EW) and sodium caseinate (SC) were investigated. UV irradiation of the proteins was carried out for 30, 60, 90, and 120 min. However, the SC samples were subjected to extended UV irradiation for 4 and 6 h as no difference was found on the initial UV exposure time. Formol titration, SDS-PAGE, and FTIR analyses indicated that UV irradiation could induce cross-linking on proteins and led to improved emulsifying and foaming properties (P < 0.05). These results indicated that the UV-irradiated EW and SC could be used as novel emulsifier and foaming agents in broad food systems for stabilizing and foaming purposes.  相似文献   

4.
Ruminal fermentation of propylene glycol and glycerol   总被引:1,自引:0,他引:1  
Bovine rumen fluid was fermented anaerobically with 25 mM R-propylene glycol, S-propylene glycol, or glycerol added. After 24 h, all of the propylene glycol enantiomers and approximately 80% of the glycerol were metabolized. Acetate, propionate, butyrate, valerate, and caproate concentrations, in decreasing order, all increased with incubation time. Addition of any of the three substrates somewhat decreased acetate formation, while addition of either propylene glycol increased propionate formation but decreased that of butyrate. R- and S-propylene glycol did not differ significantly in either their rates of disappearance or the products formed when they were added to the fermentation medium. Fermentations of rumen fluid containing propylene glycol emitted the sulfur-containing gases 1-propanethiol, 1-(methylthio)propane, methylthiirane, 2,4-dimethylthiophene, 1-(methylthio)-1-propanethiol, dipropyl disulfide, 1-(propylthio)-1-propanethiol, dipropyl trisulfide, 3,5-diethyl-1,2,4-trithiolane, 2-ethyl-1,3-dithiane, and 2,4,6-triethyl-1,3,5-trithiane. Metabolic pathways that yield each of these gases are proposed. The sulfur-containing gases produced during propylene glycol fermentation in the rumen may contribute to the toxic effects seen in cattle when high doses are administered for therapeutic purposes.  相似文献   

5.
This work is a contribution to better knowledge of the influence of the structure of films obtained from emulsions based on arabinoxylans, hydrogenated palm kernel oil, and emulsifiers on their functional properties. The sucrose esters (emulsifiers) have a great effect on the stabilization of the emulsified film structure containing arabinoxylans and hydrogenated palm kernel oil. The structure and stability of the emulsion during drying strongly affect barrier and mechanical properties of films. The higher are creaming and coalescence phenomena in films, the lower is the water vapor permeability. Emulsion destabilization is favored by high drying temperature and tends to give films having a "bilayer-like" structure, which tends to improve the functional properties of arabinoxylans-based edible films.  相似文献   

6.
Volterra  L.  Musmeci  L.  Gucci  P.M.B.  Coccia  A.M.  Esposito  S. 《Water, air, and soil pollution》1996,91(1-2):109-124
Effective minesoil recovery requires spoils to be converted to soils of similar quality to those previously existing on that site. The developing minesoil should thus acquire three critical capacities, namely the capacities to a) support plant production, b) degrade organic matter and c) remove contaminants from water. The degree of development of these capacities provides a useful measure of soil quality and thus of the success of a given soil recovery technique. At the Meirama lignite mine in Galicia (northwest Spain), the possibility of using cattle slurry instead of the inorganic fertilizers currently used is being investigated. The results of a number of experiments suggest that cattle slurry is more effective (in terms of the above three critical capacities) than inorganic fertilizer. In slurry-fertilized spoils, rapid increases are observed in vegetation cover, in the relative abundance of self-seeded native plant species, in soil microbial activity and in those physical and chemical properties which affect infiltration and the capacity to remove contaminants from percolating water.  相似文献   

7.
This work is a contribution to better knowledge of the influence of the structure of films on their functional properties obtained from emulsions based on arabinoxylans, hydrogenated palm kernel oil (HPKO), and emulsifiers. The sucroesters (emulsifiers) have a great effect on the stabilization of the emulsified film structure containing arabinoxylans and hydrogenated palm kernel oil. They improve the moisture barrier properties. Several sucroesters having different esterification degrees were tested. Both lipophilic (90% of di and tri-ester) and hydrophilic (70% of mono-ester) sucrose esters can ensure the stability of the emulsion used to form the film, especially during preparation and drying. These emulsifiers confer good moisture barrier properties to emulsified films.  相似文献   

8.
Conjugation of the milk protein sodium caseinate and a protein-containing polysaccharide, gum arabic, was achieved through the use of the cross-linking enzyme transglutaminase. The extent of conjugation was monitored by size exclusion separation coupled with a multiangle laser light scattering detector. The elution times of gum arabic solutions incubated with transglutaminase were unchanged over time, whereas incubation of sodium caseinate with transglutaminase resulted in shorter elution times as reaction time increased, indicating the formation of cross-linked caseinate polymers. However, when mixtures of caseinate and gum arabic were incubated with transglutaminase, the elution times were decreased markedly, indicating conjugation between the protein and polysaccharide. The molecular masses of the conjugates increased from approximately 950 to 1600 kDa. This method of protein-polysaccharide conjugation offers noticeable advantages over previously used methods, and the conjugates produced may exhibit unique functional properties.  相似文献   

9.
Sodium caseinate (NaCN), hydrolyzed with Protamex, a Bacillus proteinase preparation, to 0.5, 1.3, and 17.5% degrees of hydrolysis, was incubated with transglutaminase (TGase) for 3, 42, and 290 min at enzyme/substrate ratios of 1, 1, and 10% (w/w), respectively, pre- and post-hydrolysis. The electrophoretic, reversed-phase high-performance liquid chromatography (RP-HPLC) and nitrogen solubility profiles of the modified products were investigated. Combinations of hydrolysis and incubation with TGase generated products displaying novel physicochemical and nitrogen solubility properties. Significant changes in sodium dodecyl sulfate (SDS) and urea polyacrylamide gel electrophoresis profiles were apparent in the modified caseinate samples. Extensive TGase cross-linking resulted in polymers that were unable to enter the resolving gel during SDS polyacrylamide gradient gel electrophoresis. Extensive combined enzymatic modification resulted in peptides eluting earlier on RP-HPLC than limited combined enzymatic modification or limited hydrolysis. Combination of enzymatic treatments resulted in significantly (P < 0.005) improved solubility around pH 4.6, compared to incubation with TGase or hydrolysis of NaCN alone.  相似文献   

10.
The contribution of thermal and radiative treatments as well as the presence of some excipients, namely glycerol, carboxymethylcellulose (CMC), pectin, and agar, on the formation of protein-protein interactions as well as the formation and loss of protein-water interactions was investigated by means of differential scanning calorimetry in an isothermal mode. Protein-water interactions were assessed through measurement of the heat of the wetting parameter. Isothermal calorimetry measurements pointed out that gamma-irradiation does not favor protein-water interactions, as reflected by its endothermic contribution (P < or = 0.05) to the heat of wetting values. Although significant (P < or = 0.05), the effect of the thermal treatment on endothermic responses using isothermal calorimetry was found to be somewhat lower. Among excipients added to biofilm formulations, glycerol generated the most important losses of protein-water interactions, as inferred by its significant (P < or = 0.05) endothermic impact on the heat of wetting values.  相似文献   

11.
The objective of this work was to investigate the effect of fatty acid (FA) type and content on mechanical properties, water vapor permeability and oxygen permeability of hydroxypropyl methycellulose (HPMC)-beeswax (BW) stand-alone edible films. The effect of these films formed as coatings on the postharvest quality of 'Ortanique' mandarins was also studied. Selected FAs were stearic acid (SA), palmitic acid (PA), and oleic acid (OA), using BW/FA ratios of 1:0.5 and 1:0.2 (w/w). HPMCBW coatings reduced weight and firmness loss of 'Ortanique' mandarins, without compromising flavor quality compared to uncoated mandarins. Coatings containing OA provided the best weight loss control at both concentrations tested; however, when the BW/OA ratio was 1:0.5, the coatings increased fruit internal CO2, ethanol, and acetaldehyde contents of 'Ortanique' mandarins, therefore reducing flavor compared to the rest of the coatings studied. Although barrier and mechanical properties might be used to understand coating performance, differences observed between film oxygen permeability and coating permeability indicate that permeance should be measured on the coated fruit.  相似文献   

12.
Meat and bone meal (MBM) is a high protein agricultural commodity that currently has few applications other than as an animal feed. Unmodified MBM has poor functional properties, due to its low solubility. Our results from pilot plant trials demonstrate that MBM can be extrusion-processed along with sodium caseinate to produce a useful plastic material. We developed this material for use as a dog chew toy. For this application, elastic modulus (stiffness) is a key characteristic. Our results detail the relationship between ambient relative humidity and equilibrium moisture content (MC) in the material. The influence of MC on the glass transition temperature and elastic modulus reflects the plasticization of this material by water. On the basis of a comparison to a commercially available dog chew, the range of stiffness achievable with our material, 0.25-2.50 GPa, encompasses the values appropriate for a dog chew. Our results show that a particular desired stiffness can be maintained by applying an edible moisture barrier to the surface of the material.  相似文献   

13.
The effect of the composition of hydroxypropyl methylcellulose (HPMC)-beeswax (BW) edible coatings on stand-alone film properties and on postharvest quality of coated 'Angeleno' plums was studied. Glycerol (G) and mannitol (M) were tested as plasticizers at two different plasticizer/HPMC ratios (100:1 and 300:1 molar basis). BW content was 20 or 40% (dry basis). An increase in G content increased film flexibility and vapor permeability (WVP), whereas an increase in M content enhanced film brittleness without affecting WVP. An increase in BW content reduced film flexibility and reduced WVP of only G-plasticized films. Coatings reduced plum softening and bleeding, but were not effective in reducing plum weight loss. At low plasticizer content, coatings reduced texture loss effectively. Low BW also lowered plum bleeding. Plasticizer type affected only ethanol and acetaldehyde contents without affecting the remaining quality parameters. Therefore, HPMC-BW coatings have the potential to extend the shelf life of plums. However, this effect depends on coating composition. Differences between coating and film performance indicate that data from stand-alone films may be used as a preliminary screening, but coating performance should be analyzed on coated fruit.  相似文献   

14.
This work contributes to the study of aroma transfers through edible and plastic packaging films. Permeability, sorption, and diffusivity of three methyl ketones (2-heptanone, 2-octanone, and 2-nonanone) in and through low-density polyethylene and methylcellulose-based edible films have been determined. Permeability was measured using a dynamic method coupled with a gas chromatograph. The methyl ketone permeability of polyethylene films mainly depends on diffusivity of the penetrant in the polymer. In the case of 2-heptanone, a saturation of the polymer network is observed at high vapor concentrations. The formation of clusters could take place when concentrations are higher in the vapor phase. Physicochemical interactions between aroma compounds and components of the methylcellulose-based film induce structural changes such as plasticization. Therefore, the diffusion step depends on the aroma concentration differential, and permeability is essentially driven by the sorption.  相似文献   

15.
肉桂油/海藻酸钠薄膜物理特性和抗菌性能分析   总被引:3,自引:3,他引:3  
为了研究开发新型可降解抗菌包装材料,该文以添加不同体积肉桂油到海藻酸钠膜液中制成的肉桂油/海藻酸钠抗菌薄膜为研究对象,比较分析肉桂油添加量对肉桂油/海藻酸钠薄膜厚度、透光率、色泽和水蒸气透过率等物理特性的影响,同时,考察其对薄膜的抗菌性能的影响。膜液中肉桂油体积分数在0~1.0%时,薄膜厚度无明显变化,体积分数为1.2%时,薄膜厚度显著增加。随着肉桂油体积分数的增加,薄膜的透光率显著降低,薄膜水蒸气透过系数增大。肉桂油对薄膜色泽影响显著,随着肉桂油添加量的增加,薄膜色泽值a和b呈显著增加趋势。膜液中肉桂油体积分数为0.8%时,薄膜抗菌能力显著增强。研究结果表明,当膜液中肉桂油体积分数为0.8%时,薄膜具有较好的抗菌效果和物理性能。该研究可为肉桂油/海藻酸钠可降解抗菌薄膜生产工艺参数的进一步优化提供参考。  相似文献   

16.
A method for the quantitative determination of monoethylene glycol (MEG) and diethylene glycol (DEG) in chocolate is described. The procedure involves dissolving the chocolate in hot water, defatting with hexane, removing sugars by precipitation, and analyzing as trimethylsilyl (TMS) ether derivatives by capillary gas chromatography. The use of butan-1,4-diol as an internal standard corrects for recovery, which is between 50 and 60%, to give a relative standard deviation of 10-11% for the determination of both glycols at the level of 50 mg/kg. The presence of MEG and DEG in chocolate is confirmed by full scanning gas chromatography/mass spectrometry of the TMS derivatives.  相似文献   

17.
酸溶剂对葛根淀粉/壳聚糖复合可食膜性能的影响   总被引:5,自引:4,他引:1  
钟宇  李云飞 《农业工程学报》2012,28(13):263-268
为了考察壳聚糖酸溶剂对葛根淀粉/壳聚糖复合可食膜抗菌、物理和机械性能的影响,该文选择质量分数为1%的乙酸、乳酸、苹果酸为溶剂,配制质量体积比2g/L的葛根淀粉-壳聚糖复合膜液,以0.5g/L的抗坏血酸为活性添加剂,0.6g/L的丙三醇为增塑剂,0.1g/L的吐温20为表面活性剂,采用流延法制备可食性复合膜。结果表明:复合膜液具有一定的表面活性;酸溶剂未对膜液表面张力产生显著影响。有机酸溶剂种类对复合膜性能影响显著,其中乙酸复合膜的机械强度最大,平均抗拉强度和穿透力分别为5.73MPa和8.63N,水溶性最小,约34%,对抗坏血酸缓释效果最明显;乳酸复合膜的延展性最优,平均断裂伸长率和穿透距离分别为71.5%和6.05mm;苹果酸复合膜的抑菌效果最佳,对大肠杆菌和金黄色葡萄球菌的抑制率分别达到98.9%和81.2%,阻水性最强,透湿系数为4.824.82×10-11g/(m·s·Pa),故可根据不同使用目的选择相应复合膜。研究结果为该类复合包装膜在实际食品上的应用提供理论依据。  相似文献   

18.
聚乙烯包膜肥料控释膜层结构特征研究   总被引:1,自引:0,他引:1  
【目的】包膜肥料控释膜层结构和孔隙性质直接影响其养分释放速率。研究包膜肥料膜层结构特征,可以明确膜层结构参数与养分释放速率的关系,揭示包膜肥料控释机制,为建立养分释放数理模型提供理论依据。【方法】以聚乙烯包膜肥料控释膜层作为研究对象,量化研究了聚乙烯喷涂控释膜层的结构特征参数。利用扫描电镜,观测了在不同放大倍数下,采用喷涂工艺制备的聚乙烯包膜肥料膜层的外表层、横断面和内表层特征;以压汞仪测定了膜上孔隙的大小和分布;采用泡点法研究了大孔隙的最大孔径。【结果】不同放大倍数下的扫描电镜观测结果表明,喷涂法制备的包膜肥料控释膜层外表面整体上光滑、平整、均匀、疏松,但局部存在少量孔隙,孔径主要分布在1000~50 nm的范围内;在放大倍数很高的情况下,整体上膜层无细微孔隙结构。控释膜层厚度约为60~100 μm,断面形貌疏松无孔。膜层内表面粗糙,高低起伏不平、犬牙交错。膜壳材料堆密度为0.4~0.8 g/mL,低于聚乙烯密度,属于疏松结构。孔隙结构分析结果表明,聚乙烯控释膜层的中值孔径为4.5~5.3 nm,与对比的聚乙烯薄膜基本一致,说明两种膜分子链间的细微结构没有差异;但是聚乙烯控释膜层中存在占比18%的直径约为1000~50 nm的较大孔,孔径小于10 nm的间隙占82%,进一步说明占比少的大孔影响控释膜层释放性能。喷涂控释膜层总孔体积在0.4686~1.2260 mL/g,平均孔径在25.1~86.8 nm范围内,孔隙率为33.0%~50.6%,显著高于拉伸工艺制备的聚乙烯薄膜。释放期在1~6个月的包膜控释肥料,最大孔径在990~480 nm的范围,随包膜肥料释放期的增加,膜孔直径逐步减小,说明包膜控释肥料养分释放速率与其最大孔径存在内在联系。【结论】综合3种方法的测定结果,聚乙烯控释膜层可以看作是膜层均匀致密且局部有孔隙,膜壳直径3 mm,膜层厚度约为50 μm,最大孔径为1 μm,平均孔径为50 nm的密闭球形壳体。最大孔是水分和养分进出膜层的主要通道,决定了包膜肥料养分释放速率的快慢。  相似文献   

19.
The effect of chitosan with different molecular weights as coatings for shelf-life extension of fresh fillets of Atlantic cod (Gadus morhua) and herring (Clupea harengus) was evaluated over a 12-day storage at refrigerated temperature (4 +/- 1 degrees C). Three chitosan preparations from snow crab (Chinoecetes opilio) processing wastes, differing in viscosities and molecular weights, were prepared; their apparent viscosities (360, 57, and 14 cP) depended on the deacetylation time (4, 10, and 20 h, respectively) of the chitin precursor. Upon coating with chitosans, a significant (p < or = 0.05) reduction in relative moisture losses of 37, 29, 29, 40, and 32% was observed for cod samples coated with 360 cP chitosan after 4, 6, 8, 10, and 12 days of storage, respectively. Chitosan coating significantly (p < or = 0.05) reduced lipid oxidation as displayed in peroxide value, conjugated dienes, 2-thiobarbituric acid reactive substances and headspace volatiles, chemical spoilage as reflected in total volatile basic nitrogen, trimethylamine, and hypoxanthine, and growth of microorganisms as reflected in total plate count in both fish model systems compared to uncoated samples. The preservative efficacy and the viscosity of chitosan were inter-related; the efficacy of chitosans with viscosities of 57 and 360 cP was superior to that of chitosan with a 14 cP viscosity. Thus, chitosan as edible coating would enhance the quality of seafoods during storage.  相似文献   

20.
Nanocomposites of starch, poly vinyl alcohol (PVOH), and sodium montmorillonite (Na(+)MMT) were produced by solution mixing and cast into films. Tensile strength (TS) and elongation at the break (E%) of the films ranged from 11.60 to 22.35 MPa and 28.93-211.40%, respectively, while water vapor permeability (WVP) ranged from 0.718 to 1.430 g·mm/kPa·h·m(2). In general, an increase in Na(+)MMT content (0-20%) enhanced TS and decreased E% and WVP. Use of higher molecular weight PVOH increased both TS and E% and also decreased WVP. Mechanical properties were negatively affected, but water vapor barrier properties improved with increasing starch content (0-80%). X-ray diffraction and transmission electron microscopy were used to analyze the nanostructure, and molecular conformations and interactions in the multicomponent nanocomposites were inferred from glass transition behavior. Interactions between starch and PVOH were strongest, followed by polymer/clay interactions. On the basis of this insight, a conceptual model was presented to explain the phenomena of intercalation and exfoliation in the starch/PVOH/Na(+)MMT nanocomposites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号