首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 484 毫秒
1.
利用改进的复合区间作图法和F1代群体进行杉木的QTL作图   总被引:2,自引:1,他引:2  
区间作图和复合区间作图最先是为近交群体而设计的QTL作图方法,现已得到了广泛的应用。本文将它们应用于林木的F1代群体的QTL作图,称为改进的区间作图和复合区间作图法。该方法考虑了林木F1代1:1分离位点的信息,不同于通常的“拟测交”作图法。采用该方法,本文利用两个杉木无性系句容0号杉和柔叶杉的AFLP分子标记遗传连锁图谱对杉木的13个数量性状进行了QTL定位。当似然比统计量的阀值取为13.82(对应于LOD为3.0)时,在两张杉木遗传连锁图谱上,共搜索到了25个QTL。在句容0号无性系遗传连锁图谱上,有5个QTL分布在4个连锁群上。在柔叶杉的遗传连锁图谱上,有20个QTL分布在3个连锁群上,其中第6连锁群上集中了高达13个QTL。这一新的QTL作图方法在作图精度上有了较大的提高。文中所有的计算都是使用Mathematica软件编程完成的。  相似文献   

2.
玉米光周期敏感相关性状发育动态QTL定位   总被引:2,自引:1,他引:1  
玉米是短日照作物,大多数热带种质对光周期非常敏感。光周期敏感性限制了温、热地区间的种质交流。研究玉米光周期敏感性的分子机理,有利于玉米种质的扩增、改良、创新,提高玉米品种对不同光周期变化的适应性。本研究以对光周期钝感的温带自交系黄早四和对光周期敏感的热带自交系CML288为亲本配置的组合衍生的一套207个重组自交系为材料,在长日照环境条件下对不同发育时期的叶片数、株(苗)高变化进行QTL分析。结果表明,双亲间的最终可见叶片数和株高差异很大;发育初期CML288的叶片数和苗高都低于黄早四,而发育后期CML288的叶片数和株高都明显高于黄早四;测定各时期F7重组自交系间也存在显著差异。利用包含237个SSR标记、图谱总长度1 753.6 cM、平均图距7.40 cM的遗传连锁图谱,采用复合区间作图法,分别检测到控制叶片数和株(苗)高发育的QTL 11个和20个。但是,没有一个条件QTL 能在测定的几个时期都有效应。在长日照条件下,控制叶片数与株(苗)高的非条件与条件QTL主要集中在第1、9和10染色体上,特别是在第10染色体的标记umc1873附近均检测到了影响这两个性状的QTL,且在不同的发育时期单个条件和非条件QTL所解释的表型变异分别为4.34%~25.74%和10.02%~22.57%,表明这一区域可能包含光周期敏感性关键基因。  相似文献   

3.
氮胁迫与非胁迫条件下玉米不同时期株高的动态QTL定位   总被引:4,自引:0,他引:4  
以玉米杂交种农大108的203个F2:3家系为材料,在施氮(N+)和不施氮(N-)2种条件下对拔节期到灌浆期的株高变化进行了动态QTL分析。结果表明,N胁迫条件对亲本许178影响较小,而对亲本黄C的影响较大,F2:3群体在不同时期的株高均值在2种施肥水平下没有显著差异,但变异范围存在一定的差异。利用包含199个SSR标记的遗传连锁图谱与复合区间作图法,在N-条件下,拔节期、小喇叭口期、大喇叭口期、灌浆期分别定位1、1、2和2个非条件QTL,可分别解释各时期株高表型变异的8.42%、13.86%、24.33%和22.66%;在N+条件下,相应时期分别定位1、1、2和4个非条件QTL,可分别解释各时期株高表型变异的8.10%、12.92%、21.30%和44.41%。在N-条件下,拔节期至喇叭口期、开花期至灌浆期分别定位了1和5个条件QTL,可分别解释该时期株高动态变异的9.14%和50.98%;在N+条件下,相应时期分别定位1和4个条件QTL,可分别解释该时期株高动态变异的13.33%和44.47%。这些非条件QTL和条件QTL多数表现以显性和部分显性为主。  相似文献   

4.
爆裂玉米3个膨爆特性的非条件和条件QTL分析   总被引:2,自引:0,他引:2  
膨化倍数(PF)、膨化体积(PV)和爆花率(PR)是爆裂玉米的主要品质指标。本研究以普通玉米自交系丹232和爆裂玉米自交系N04杂交构建的259个F2:3家系为定位群体,采用完全随机区组设计在郑州夏播条件下测定了3个膨爆特性指标。利用覆盖玉米10条染色体的183对多态性分子标记构建连锁图,采用复合区间作图(CIM)方法对各性状进行非条件QTL定位分析,采用条件遗传统计软件对PF进行条件QTL分析。3个膨爆特性指标非条件QTL定位共检测出31个QTL,单个QTL的贡献率为3.09% ̄12.46%,累计贡献率为51.90%、77.37%和61.45%。在8个标记区间(占42.11%)同时检测到控制2 ̄3个性状的QTL。加性和部分显性在膨爆特性的遗传中起主要作用,同时存在显性和超显性基因效应。条件QTL定位结果表明,PV和PR以不同方式显著影响PF的QTL表达,PV比PR更重要。  相似文献   

5.
基于SNP标记的玉米株高及穗位高QTL定位   总被引:8,自引:3,他引:8  
为进一步弄清玉米株高和穗位高的遗传机理,为育种生产提供服务,本研究以K22×CI7、K22×Dan3402个F2群体为作图群体,利用覆盖玉米10条染色体的SNP标记构建了2个连锁图谱。并将这2个F2群体衍生的分别含237和218个家系的F2:3群体用于田间性状的鉴定。用复合区间作图模型对2个群体的株高、穗位高表型进行QTL定位分析,结果显示,在武汉和南宁两种环境条件下共定位到21个株高QTL和27个穗位高QTL;单个QTL表型变异贡献率的变幅为4.9%~17.9%;株高和穗位高QTL的作用方式以加性和部分显性为主;第7染色体上可能存在控制株高和穗位高的主效QTL。  相似文献   

6.
【目的】定位棉花产量相关性状的数量性状基因座(Quantitative trait locus,QTL)。【方法】以中棉所70的F_2分离群体为遗传作图群体,利用从14 820对简单序列重复(Simple sequence repeat,SSR)引物中筛选出的267对两亲本间的多态性引物检测F_2群体250个单株的标记基因型,利用Joinmap 4.0进行连锁分析,并通过WinQTLCart 2.5复合区间作图法对F_(2:3)群体的株高、单株结铃数和单株果枝数性状进行QTL定位。【结果】在F_2群体中共获得342个SSR标记位点,并构建了包括312个标记、35个连锁群,总长1 929.9 cM的遗传连锁图谱(标记间平均距离为9.2 cM,覆盖棉花基因组的43.4%)。经QTL定位,共检测到19个QTL,其中涉及株高的7个、单株果枝数4个、单株结铃数8个,这些QTL分布在8条染色体上,解释0.25%~11.28%的表型变异。【结论】这些与农艺性状相关的QTL有助于棉花产量分子标记辅助选择。  相似文献   

7.
作物QTL分析的原理与方法   总被引:5,自引:0,他引:5  
作物的许多性状为数量性状,数量性状基因座(QTL)定位的理论依据是Morgan的连锁遗传规律;定位的群体有初级作图群体、次级作图群体和高级作图群体;分析的方法有零区间作图法、单区间作图法、复合区间作图法、混合线性模型;影响QTL定位精确性的因素有群体的大小、分析方法、QTL的分布及作用模式等。传统的作图群体和作图方法存在一些问题,因此有必要开发新的作图群体、研制新的作图方法,以缩短QTL分析与育种实际应用之间的距离。  相似文献   

8.
本试验以散穗高粱和红壳苏丹草为亲本,以其杂种F2代的170个分离单株为作图群体,利用SSR分子标记技术和Join Map 3.0作图软件构建高丹草遗传连锁图谱,并在此基础上对分蘖数、株高、氢氰酸含量等8个相关性状进行QTL定位。结果表明:从120对SSR引物中共筛选出50对多态性引物,利用这些引物对作图群体各单株进行PCR扩增,共获得226个多态性标记,平均扩增标记为4.5个/引物。构建出一张由10个连锁群组成的高丹草SSR分子遗传图谱,含181个SSR标记,图谱总长803.13 cM。各连锁群长度在5.8~152.3 cM之间,标记间平均距离4.38 cM,图谱密度较高。在构建图谱的基础上,对高丹草8个相关性状进行QTL定位,共获得17个QTLs,其中控制茎粗的QTL 4个,控制叶宽的QTL 3个,控制叶片数、叶长、分蘖数和穗长的QTL各2个;控制株高和氢氰酸含量的QTL各1个。这些QTL位点分布于高丹草SSR遗传连锁图谱的其中8个连锁群上,其遗传贡献率的范围为12.5%~25.6%。本研究可为进一步开展高丹草重要性状基因的精细定位、图位克隆、功能分析,以及分子标记辅助育种提供理论指导。  相似文献   

9.
不同统计遗传模型QTL定位方法应用效果的模拟比较   总被引:5,自引:0,他引:5  
苏成付  赵团结  盖钧镒 《作物学报》2010,36(7):1100-1107
分子遗传和数量遗传的结合,发展了QTL定位研究。随着定位方法与软件的建立和完善,QTL定位的研究越来越多。准确定位的QTL可用于分子标记辅助选择和图位克隆,而假阳性QTL将误导定位信息的应用。本文分析了迄今主要定位方法(软件)对于各种遗传模型数据的适用性。应用计算机模拟4类遗传模型不同的重组自交系群体(RIL),第一类只包含加性QTL;第二类包含加性和上位性互作QTL;第三类包含加性QTL和QTL与环境互作效应;第四类包含加性、上位性互作QTL和QTL与环境互作效应。每类按模拟QTL个数不同设两种情况,共分为8种数据模型(下称M-1~M-8)。选用WinQTLCart 2.5的复合区间作图(下称CIM)、多区间作图前进搜索(MIMF)、多区间作图回归前进选择(MIMR)、IciMapping 2.0的完备复合区间作图(ICIM)、MapQTL 5.0的多QTL模型(MQM)以及QTLnetwork 2.0的区间作图(MCIM)6种程序对8种不同遗传模型的RIL进行QTL检测。结果表明,不同程序适用的遗传模型范围不同。CIM和MQM只适于检测第一类模型;MIMR、MIMF和ICIM只适于检测第一类和第二类模型;只有MCIM适于检测所有4类遗传模型;因而不同遗传模型数据的最适合检测程序不同。由于未知实际数据的遗传模型,应采用在复杂模型程序,如QTLnetwork 2.0,扫描基础上的多模型QTL定位策略,对所获模型用相应模型软件进行验证。  相似文献   

10.
本研究应用金针菇(Flammulina filiformis)的两个菌株,黄色金针菇Y1701和白色金针菇W3082为作图亲本,采用分子标记以构建高密度的金针菇分子遗传连锁图谱。通过F1代产生的71个单孢为遗传连锁图谱作图群体,应用SRAP、ISSR和TRAP标记引物,利用PCR对得到的作图群体进行多态性分析,构建了一张拥有11个连锁群以及125个标记位点,总长度860.3 cM的遗传连锁图谱。连锁群平均长度为78.21 cM,最长的连锁群为132.9 c M,最短的连锁群为16.3 c M。多态性标记间最大遗传距离为38.4 cM,最小距离为0.5 cM,连锁图中出现了6个大于20 cM的间隙,标记密度6.88 cM,是迄今以来金针菇遗传连锁图谱相关研究中密度最高的。本研究所获得的高密度遗传连锁图谱有助于金针菇QTL定位,分子辅助育种和基因定位的研究。  相似文献   

11.
Most of quantitative trait loci (QTL) underlying soybean seed isoflavone contents were derived from the harvest stage of plant development, which uncover the genetic effects that were expressed in earlier seed developmental stages. The aim of this study was to detect conditional QTL associated with isoflavone accumulation during the entire seed development. A total of 112 recombinant inbred lines developed from the cross between ‘Zhongdou 27’ (higher seed isoflavone content) and ‘Jiunong 20’ (lower seed isoflavone content) were used for the conditional QTL analysis of daidzein (DZ), genistein (GT), glycitein (GC) and total isoflavone (TI) accumulations through composite interval mapping with mixed genetic model. The results indicated that the number and type of QTL and their additive effects for individual and total isoflavone accumulations were different among R3 to R8 developmental stages. Three unconditional QTL and six conditional QTL for DZ, four unconditional QTL and five conditional QTL for GT, six unconditional QTL and five conditional QTL for GC, six unconditional QTL and seven conditional QTL for TI were identified at different developmental stages, respectively. Unconditional and conditional QTL that affect individual and total isoflavone accumulations exhibited multiple expression patterns, implying that some QTL are active for long period and others are transient. Two genomic regions, Satt144‐Satt569 in linkage group F (LG F; chromosome 13, chr 13) for DZ, GC, GT and TI accumulations and Satt540‐Sat_240 in LG M (chr 07) for TI and GC accumulations, were found to significantly affect individual and total isoflavone accumulations in multiple developmental stages, suggesting that the accumulation of soybean seed isoflavones is governed by time‐dependent gene expression.  相似文献   

12.
大豆产量及主要农艺性状QTL的上位性互作和环境互作分析   总被引:2,自引:0,他引:2  
以栽培大豆晋豆23为母本,半野生大豆灰布支黑豆ZDD2315为父本杂交衍生的F2:15和F2:16的447个RIL家系为遗传群体,绘制SSR遗传图谱,采用混合线性模型方法,对2年大豆小区产量及主要农艺性状进行加性QTL、加性×加性上位互作及环境互作分析。结果检测到9个与小区产量、茎粗、有效分枝、主茎节数、株高、结荚高度相关的QTL,分别位于J_2、I、M连锁群上,其中小区产量、茎粗、株高、有效分枝和主茎节数QTL的加性效应为正值,说明增加这些性状的等位基因来源于母本晋豆23。同时,检测到7对影响小区产量、茎粗、株高和结荚高度的加性×加性上位互作效应及环境互作效应的QTL,共发现14个与环境存在互作的QTL。上位效应和QE互作效应对大豆小区产量及主要农艺性状的遗传影响较大。大豆分子标记辅助育种中,既要考虑起主要作用的QTL,又要注重上位性QTL,才有利于性状的稳定表达和遗传。  相似文献   

13.
The mass accumulation in the developing soybean seed has been shown to be a dynamic process with various rates at different filling stages. The objective of this study was to identify quantitative trait loci (QTL) underlying seed filling rate of soybean. 143 recombinant inbred lines derived from the cross of Charleston and Dongnong 594 were used to obtain field data in 2004 and 2005. In present study, one genetic linkage map including 164 SSR markers and 35 RAPD markers was constructed using 143 F5 derived RILs from the cross between Charleston and Dongnong 594 (data not shown). The order of most markers is consistent with Song et al. (Theor Appl Genet 109: 122?C128, 2004). The average number of markers on each linkage group was 9.7 with an average length of 153.36?cM. Twenty-nine unconditional QTL underlying seed filling rate at different developmental stages were mapped onto fourteen linkage groups. The phenotypic variation of seed filling rate explained by these unconditional QTL ranged from 4.29 to 33.3?%. Thirty-nine conditional QTL underlying seed filling rate were mapped onto sixteen linkage groups. The phenotypic variation explained by these conditional QTL ranged from 4.47 to 25.03?%. The locations, numbers, genetic effects and types of QTL for seed filling rate were different at each seed developmental stage. Genotype by environment interaction effects among QTL related to seed filling rate were observed. In addition, several genomic regions that influenced seed filling rate were detected.  相似文献   

14.
采用包括基因型×环境互作效应的加性-显性遗传模型及非条件和条件的分析方法,研究多环境下玉米吐丝后不同发育时期叶片保绿度性状的遗传主效应及其与环境互作效应。结果表明:非条件遗传分析表明控制玉米叶片保绿度在发育不同时期的各遗传效应均受到环境条件的影响并存在着表达水平上的差异;条件遗传方差分量分析表明,控制玉米吐丝后不同时期叶片保绿度表现的净遗传效应在各个发育时期均有新的不同程度的表达,对玉米由抽丝期到成熟期发育进程基因表达净效应的选择越来越受到环境条件的影响。  相似文献   

15.
小麦GMP含量发育动态的QTL定位   总被引:3,自引:2,他引:3  
利用小麦京771和Pm97034杂交后代重组自交系(RIL)群体,对小麦谷蛋白大聚合体(GMP)含量发育动态进行了QTL定位研究。结果表明,在籽粒灌浆的5个不同时期,共检测到8个条件QTL和10个非条件QTL,但没有一个QTL能在测定的5个时期都有效应。花后12 d,控制GMP形成的基因就已经有了一定的表达量,条件QTL能解释6.21%的表型变异,该基因位于1A染色体上。花后17 d,在1D染色体上测到了1个新表达的条件QTL位点,单独能解释14.14%的表型变异。花后22 d,控制GMP形成的基因的表达比较活跃,非条件分析检测到3个QTL位点,条件分析检测到2个QTL位点,这5个QTL位点分别位于1B、5B、6B和7B染色体上,其效应值都比较低,2个条件QTL共同能解释12.67%的净表型变异。花后27 d,在2D和3B染色体上各检测到2个条件和非条件QTL位点,加性效应值比较大。条件QTL能解释16.37%的表型变异,非条件QTL能解释23.94%的变异。花后32 d,仍有2个新的基因位点在表达,但此时QTL的净表达量已经开始下降,条件QTL仅能解释11.43%的表型变异。  相似文献   

16.
17.
利用新版SG遗传图谱和282个SG-DH株系在中国西安、杭州和德国哥廷根3个生长环境下8个发育时期测定的株高数据,运用WinQTLCart2.5复合区间作图法以及结合条件遗传分析方法对其进行静态和动态QTL分析。结果显示, 来自品种Gaoyou等位基因在PHA3和PHC6两个QTL上同时存在时,可降低株高约20 cm;而当植株整合来自冬性品种Sollux的PHA9、PHC1和来自半冬性品种Gaoyou的PHA1、PHA3、PHC6时,株高可相应下降40 cm;环境对株高QTL的作用机理影响不大,但不同QTL的基因表达模式不同,存在来自双亲之一的等位基因控制株高和双亲等位基因在不同生长时期交替控制株高两种情况;通常株高QTL在中后期才能被检测到,但基因多在生长最为旺盛的短时期内表达,符合基因表达在先,性状表现在后的规律。解析株高性状在不同发育时期基因的累加效应和特定时段内的净表达效应,对克隆油菜株高基因和指导生产实践都将提供富有价值的科学信息和理论依据。  相似文献   

18.
Seed protein content at the harvest stage is the sum of protein accumulation during seed filling. The aim of our investigation was to identify loci underlying the filling rate of seed protein at different developmental stages. To this end, we used 143 recombinant inbred lines (RILs) derived from the cross of soybean cultivars ‘Charleston’ and ‘Dongnong 594’ and composite interval mapping with a mixed genetic model. The genotype × environment interactions of the quantitative trait loci (QTL) were also evaluated. Thirty-nine unconditional QTL underlying the filling rate of seed protein at five developmental stages were mapped onto 14 linkage groups. The proportion of phenotypic variation explained by these QTL ranged from 4.88 to 26.05%. Thirty-eight conditional QTL underlying the filling rate of seed protein were mapped onto 16 linkage groups. The proportion of phenotypic variation explained by these QTL ranged from 1.87 to 31.34%. The numbers and types of QTL and their genetic effects on the filling rate of seed protein were different at each developmental stage. A G × E interaction effect was observed for some QTL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号