首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An international CCQM-P60 pilot study involving eight national metrological institutes was organized to investigate if the quantification of genetically modified (GM) corn powder by real-time PCR was affected by the DNA extraction method applied. Four commonly used extraction methods were compared for the extraction of DNA from a GM Bt176 corn powder. The CTAB-based method yielded the highest DNA template quantity and quality. A difference in the 260 nm/230 nm absorbance ratio was observed among the different extraction methods. Real-time amplification of sequences specific for endogenous genes zein and hmg as well as transgenic sequences within the cryIA(b) gene and a fragment covering the junction between the transformed DNA and the plant genome were used to determine the GM percentage. The detection of the transgenic gene was affected by the quantity and quality of template used for the PCR reaction. The Bt176 percentages measured on diluted or purified templates were statistically different depending on the extraction method applied.  相似文献   

2.
Polymerase chain reaction (PCR) methods have been the main technical support for the detection of genetically modified organisms (GMOs). To date, GMO-specific PCR detection strategies have been developed basically at four different levels, such as screening-, gene-, construct-, and event-specific detection methods. Event-specific PCR detection method is the primary trend in GMO detection because of its high specificity based on the flanking sequence of exogenous integrant. GM canola, event T45, with tolerance to glufosinate ammonium is one of the commercial genetically modified (GM) canola events approved in China. In this study, the 5'-integration junction sequence between host plant DNA and the integrated gene construct of T45 canola was cloned and revealed by means of TAIL-PCR. Specific PCR primers and TaqMan probes were designed based upon the revealed sequence, and qualitative and quantitative TaqMan real-time PCR detection assays employing these primers and probe were developed. In qualitative PCR, the limit of detection (LOD) was 0.1% for T45 canola in 100 ng of genomic DNA. The quantitative PCR assay showed limits of detection and quantification (LOD and LOQ) of 5 and 50 haploid genome copies, respectively. In addition, three mixed canola samples with known GM contents were detected employing the developed real-time PCR assay, and expected results were obtained. These results indicated that the developed event-specific PCR methods can be used for identification and quantification of T45 canola and its derivates.  相似文献   

3.
Qualitative and quantitative analytical methods were developed for the new event of genetically modified (GM) maize, MON863. One specific primer pair was designed for the qualitative polymerase chain reaction (PCR) method. The specificity and sensitivity of the designed primers were confirmed. PCR was performed on genomic DNAs extracted from MON863, other GM events, and cereal crops. Single PCR product was obtained from MON863 by the designed primer pair. Eight test samples including GM maize MON863 were prepared at 0.01 approximately 10% levels and analyzed by PCR. Limit of detection of the method was 0.01% for GM maize MON863. On the other hand, another specific primer pair and probe were also designed for quantitative method using a real-time polymerase chain reaction. As a reference molecule, a plasmid was constructed from a taxon-specific DNA sequence for maize, a universal sequence for a cauliflower mosaic virus (CaMV) 35S promoter used in most genetically modified organisms, and a construct-specific DNA sequence for the MON863 event. Six test samples of 0.1, 0.5, 1.0, 3.0, 5.0 and 10.0% of GM maize MON863 were quantitated for the validation of this method. At the 3.0% level, the bias (mean vs true value) for MON863 was 3.0%, and its relative standard deviation was 5.5%. Limit of quantitation of the method was 0.5%. These results show that the developed PCR methods can be used to qualitatively and quantitatively detect GM maize MON863.  相似文献   

4.
For implementation of the issued regulations and labeling policies for genetically modified organism (GMO) supervision, the polymerase chain reaction (PCR) method has been widely used due to its high specificity and sensitivity. In particular, use of the event-specific PCR method based on the flanking sequence of transgenes has become the primary trend. In this study, both qualitative and quantitative PCR methods were established on the basis of the 5' flanking sequence of transgenic soybean A2704-12 and the 3' flanking sequence of transgenic soybean A5547-127, respectively. In qualitative PCR assays, the limits of detection (LODs) were 10 copies of haploid soybean genomic DNA for both A2704-12 and A5547-127. In quantitative real-time PCR assays, the LODs were 5 copies of haploid soybean genomic DNA for both A2704-12 and A5547-127, and the limits of quantification (LOQs) were 10 copies for both. Low bias and acceptable SD and RSD values were also achieved in quantification of four blind samples using the developed real-time PCR assays. In addition, the developed PCR assays for the two transgenic soybean events were used for routine analysis of soybean samples imported to Shanghai in a 6 month period from October 2010 to March 2011. A total of 27 lots of soybean from the United States and Argentina were analyzed: 8 lots from the Unites States were found to have the GM soybean A2704-12 event, and the GM contents were <1.5% in all eight analyzed lots. On the contrary, no GM soybean A5547-127 content was found in any of the eight lots. These results demonstrated that the established event-specific qualitative and quantitative PCR methods could be used effectively in routine identification and quantification of GM soybeans A2704-12 and A5547-127 and their derived products.  相似文献   

5.
The applicability of quantifying genetically modified (GM) maize and soy to processed foods was investigated using heat treatment processing models. The detection methods were based on real-time quantitative polymerase chain reaction (PCR) analysis. Ground seeds of insect resistant GM maize (MON810) and glyphosate tolerant Roundup Ready (RR) soy were dissolved in water and were heat treated by autoclaving for various time intervals. The calculated copy numbers of the recombinant and taxon specific deoxyribonucleic acid (DNA) sequences in the extracted DNA solution were found to decrease with time. This decrease was influenced by the PCR-amplified size. The conversion factor (Cf), which is the ratio of the recombinant DNA sequence to the taxon specific DNA sequence and is used as a constant number for calculating GM% at each event, tended to be stable when the sizes of PCR products of two DNA sequences were nearly equal. The results suggested that the size of the PCR product plays a key role in the quantification of GM organisms in processed foods. It is believed that the Cf of the endosperm (3n) is influenced by whether the GM originated from a paternal or maternal source. The embryos and endosperms were separated from the F1 generation seeds of five GM maize events, and their Cf values were measured. Both paternal and maternal GM events were identified. In these, the endosperm Cf was lower than that of the embryo, and the embryo Cf was lower than that of the endosperm. These results demonstrate the difficulties encountered in the determination of GM% in maize grains (F2 generation) and in processed foods from maize and soy.  相似文献   

6.
Because of the genetically modified organisms (GMOs) labeling policies issued in many countries and areas, polymerase chain reaction (PCR) methods were developed for the execution of GMO labeling policies, such as screening, gene specific, construct specific, and event specific PCR detection methods, which have become a mainstay of GMOs detection. The event specific PCR detection method is the primary trend in GMOs detection because of its high specificity based on the flanking sequence of the exogenous integrant. This genetically modified maize, MON863, contains a Cry3Bb1 coding sequence that produces a protein with enhanced insecticidal activity against the coleopteran pest, corn rootworm. In this study, the 5'-integration junction sequence between the host plant DNA and the integrated gene construct of the genetically modified maize MON863 was revealed by means of thermal asymmetric interlaced-PCR, and the specific PCR primers and TaqMan probe were designed based upon the revealed 5'-integration junction sequence; the conventional qualitative PCR and quantitative TaqMan real-time PCR detection methods employing these primers and probes were successfully developed. In conventional qualitative PCR assay, the limit of detection (LOD) was 0.1% for MON863 in 100 ng of maize genomic DNA for one reaction. In the quantitative TaqMan real-time PCR assay, the LOD and the limit of quantification were eight and 80 haploid genome copies, respectively. In addition, three mixed maize samples with known MON863 contents were detected using the established real-time PCR systems, and the ideal results indicated that the established event specific real-time PCR detection systems were reliable, sensitive, and accurate.  相似文献   

7.
高效特异表达的启动子往往是转基因研究的关键因素。Rubisco小亚基启动子具有光诱导性、组织特异性和高表达的特性,可利用该启动子为转基因研究服务。本文以水稻(Oryza sativa)中花11叶片为材料,根据GenBank所报道的水稻Rubisco小亚基启动子序列,设计特异引物从水稻基因组DNA中扩增得到长度约1600bp的DNA片段,将该片段连接至T载体pMD18-TSimple,测序结果表明该片段序列与GenBank报道序列一致为100%。Plant CARE序列分析表明,该启动子具有12个与光诱导表达相关的元件。为构建光诱导表达载体,将该启动子和植物表达载体pCactF分别以KpnⅠ和XbaⅠ酶切后连接。光诱导表达载体的构建为进一步研究基因功能及利用光诱导表达载体改良作物品质奠定基础。  相似文献   

8.
Multiplex PCR procedures were developed for simultaneously detecting multiple target sequences in genetically modified (GM) soybean (Roundup Ready), maize (event 176, Bt11, Mon810, T14/25), and canola (GT73, HCN92/28, MS8/RF3, Oxy 235). Internal control targets (invertase gene in corn, lectin and beta-actin genes in soybean, and cruciferin gene in canola) were included as appropriate to assess the efficiency of all reactions, thereby eliminating any false negatives. Primer combinations that allowed the identification of specific lines were used. In one system of identification, simultaneous amplification profiling (SAP), rather than target specific detection, was used for the identification of four GM maize lines. SAP is simple and has the potential to identify both approved and nonapproved GM lines. The template concentration was identified as a critical factor affecting efficient multiplex PCRs. In canola, 75 ng of DNA template was more effective than 50 ng of DNA for the simultaneous amplification of all targets in a reaction volume of 25 microL. Reliable identification of GM canola was achieved at a DNA concentration of 3 ng/microL, and at 0.1% for GM soybean, indicating high levels of sensitivity. Nonspecific amplification was utilized in this study as a tool for specific and reliable identification of one line of GM maize. The primer cry1A 4-3' (antisense primer) recognizes two sites on the DNA template extracted from GM transgenic maize containing event 176 (European corn borer resistant), resulting in the amplification of products of 152 bp (expected) and 485 bp (unexpected). The latter fragment was sequenced and confirmed to be Cry1A specific. The systems described herein represent simple, accurate, and sensitive GMO detection methods in which only one reaction is necessary to detect multiple GM target sequences that can be reliably used for the identification of specific lines of GMOs.  相似文献   

9.
Genetically modified (GM) alfalfa (Medicago sativa) was marketed for the first time in 2005. For countries with established thresholds for GM plants, methods to detect and quantify their adventitious presence are required. We selected acetyl CoA carboxylase as a reference gene for the detection and quantification of GM alfalfa. Two qualitative polymerase chain reaction (PCR) assays (Acc1 and Acc2) were designed to detect alfalfa. Both were specific to alfalfa, amplifying DNA from 12 separate cultivars and showing negative results for PCR of 15 nonalfalfa plants. The limits of detection for Acc1 and Acc2 were 0.2 and 0.01%, respectively. A quantitative real-time PCR assay was also designed, having high linearity (r > 0.99) over alfalfa standard concentrations ranging from 100 to 2.0 x 10(5) pg of alfalfa DNA per PCR. The real-time PCR assay was effective in quantifying alfalfa DNA from forage- and concentrate-based mixed diets containing different amounts of alfalfa meal.  相似文献   

10.
An optimized DNA extraction protocol for animal tissues coupled with sensitive PCR methods was used to determine whether trace levels of feed-derived DNA fragments, plant and/or transgenic, are detectable in animal tissue samples including dairy milk and samples of muscle (meat) from chickens, swine, and beef steers. Assays were developed to detect DNA fragments of both the high copy number chloroplast-encoded maize rubisco gene (rbcL) and single copy nuclear-encoded transgenic elements (p35S and a MON 810-specific gene fragment). The specificities of the two rbcL PCR assays and two transgenic DNA PCR assays were established by testing against a range of conventional plant species and genetically modified maize crops. The sensitivities of the two rbcL PCR assays (resulting in 173 and 500 bp amplicons) were similar, detecting as little as 0.08 and 0.02 genomic equivalents, respectively. The sensitivities of the p35S and MON 810 PCR assays were approximately 5 and 10 genomic equivalents for 123 bp and 149 bp amplicons, respectively, which were considerably less than the sensitivity of the rbcL assays in terms of plant cell equivalents, but approximately similar when the higher numbers of copies of the chloroplast genome per cell are taken into account. The 173 bp rbcL assay detected the target plant chloroplast DNA fragment in 5%, 15%, and 53% of the muscle samples from beef steers, broiler chickens, and swine, respectively, and in 86% of the milk samples from dairy cows. Reanalysis of new aliquots of 31 of the pork samples that were positive in the 173 bp rbcL PCR showed that 58% of these samples were reproducibly positive in this same PCR assay. The 500 bp rbcL assay detected DNA fragments in 43% of the swine muscle samples and 79% of the milk samples. By comparison, no statistically significant detections of transgenic DNA fragments by the p35S PCR assay occurred with any of these animal tissue samples.  相似文献   

11.
GTS40-3-2是抗草甘膦转基因大豆,为建立GTS40-3-2大豆转化体特异性PCR检测方法,本研究以GTS40-3-2标准品为实验材料,根据已公布转基因大豆GTS40-3-2基因与大豆基因组连接序列信息,利用Primer5.0软件设计了5对品系特异性引物,对每对引物进行了退火温度、特异性及扩增效率的PCR检测,结果显示,5对特异性引物均能够从GTS40-3-2中扩增出大小约279bp、238bp、470bp、490bp和257bp的预期产物,可用于特异性检测转基因大豆GTS40-3-2转化事件。以转基因大豆GTS40-3-2含量为5%、2%、1%、0.5%和0.1%的标准品进行PCR灵敏度检测,结果表明5对引物的检测灵敏度均能达到0.1%。通过荧光定量PCR对5对特异性引物的Ct值与溶解曲线比较,最后选择出RRS2引物对为转基因大豆GTS40-3-2品系特异性检测的最适引物。本文结果将为我国未来转基因生物产品成分检测提供科学合理的实验参考。  相似文献   

12.
With the development of genetically modified organism (GMO) detection techniques, the Polymerase Chain Reaction (PCR) technique has been the mainstay for GMO detection, and real-time PCR is the most effective and important method for GMO quantification. An event-specific detection strategy based on the unique and specific integration junction sequences between the host plant genome DNA and the integrated gene is being developed for its high specificity. This study establishes the event-specific detection methods for TC1507 and CBH351 maizes. In addition, the event-specific TaqMan real-time PCR detection methods for another seven GM maize events (Bt11, Bt176, GA21, MON810, MON863, NK603, and T25) were systematically optimized and developed. In these PCR assays, the fluorescent quencher, TAMRA, was dyed on the T-base of the probe at the internal position to improve the intensity of the fluorescent signal. To overcome the difficulties in obtaining the certified reference materials of these GM maizes, one novel standard reference molecule containing all nine specific integration junction sequences of these GM maizes and the maize endogenous reference gene, zSSIIb, was constructed and used for quantitative analysis. The limits of detection of these methods were 20 copies for these different GM maizes, the limits of quantitation were about 20 copies, and the dynamic ranges for quantification were from 0.05 to 100% in 100 ng of DNA template. Furthermore, nine groups of the mixed maize samples of these nine GM maize events were quantitatively analyzed to evaluate the accuracy and precision. The accuracy expressed as bias varied from 0.67 to 28.00% for the nine tested groups of GM maize samples, and the precision expressed as relative standard deviations was from 0.83 to 26.20%. All of these indicated that the established event-specific real-time PCR detection systems and the reference molecule in this study are suitable for the identification and quantification of these GM maizes.  相似文献   

13.
The genetically modified common bean Embrapa 5.1, developed by Brazilian Agricultural Research Corporation (Embrapa), is the first commercial GM plant produced in Latin America. It presents high resistance to the Bean golden mosaic virus. In this work, primers and probes targeting a taxon-specific reference DNA sequence for the common bean (Phaseolus vulgaris L.) and a construct-specific DNA sequence of Embrapa 5.1 GM common bean were successfully developed. The primers and probes showed high specificity for the target detection. Both methods showed suitable efficiency and performance to be used as an endogenous target for detection of common bean DNA and for construct-specific detection of GM common bean Embrapa 5.1, respectively. Both real-time PCR assays proved to be valuable for future assessment of interlaboratory studies.  相似文献   

14.
PCR-based techniques are the most widely used methods for the quantification of genetically modified organisms (GMOs) through the determination of the ratio of transgenic DNA to total DNA. It is shown that the DNA content per mass unit is significantly different among 10 maize cultivars. The DNA contents of endosperms, embryos, and teguments of individual kernels from 10 maize cultivars were determined. According to our results, the tegument's DNA ratio reaches at maximum 3.5% of the total kernel's DNA, whereas the endosperm's and the embryo's DNA ratios are nearly equal to 50%. The embryo cells are diploid and made of one paternal and one maternal haploid genome, whereas the endosperm is constituted of triploid cells made of two maternal haploid genomes and one paternal haploid genome. Therefore, it is shown, in this study, that the accuracy of the GMO quantification depends on the reference material used as well as on the category of the transgenic kernels present in the mixture.  相似文献   

15.
Qualitative and quantitative Polymerase Chain Reaction (PCR) systems aimed at the specific detection and quantification of common wheat DNA are described. Many countries have issued regulations to label foods that include genetically modified organisms (GMOs). PCR technology is widely recognized as a reliable and useful technique for the qualitative and quantitative detection of GMOs. Detection methods are needed to amplify a target GM gene, and the amplified results should be compared with those of the corresponding taxon-specific reference gene to obtain reliable results. This paper describes the development of a specific DNA sequence in the waxy-D1 gene for common wheat (Triticum aestivum L.) and the design of a specific primer pair and TaqMan probe on the waxy-D1 gene for PCR analysis. The primers amplified a product (Wx012) of 102 bp. It is indicated that the Wx012 DNA sequence is specific to common wheat, showing homogeneity in qualitative PCR results and very similar quantification accuracy along 19 distantly related common wheat varieties. In Southern blot and real-time PCR analyses, this sequence showed either a single or a low number of copy genes. In addition, by qualitative and quantitative PCR using wx012 primers and a wx012-T probe, the limits of detection of the common wheat genome were found to be about 15 copies, and the reproducibility was reliable. In consequence, the PCR system using wx012 primers and wx012-T probe is considered to be suitable for use as a common wheat-specific taxon-specific reference gene in DNA analyses, including GMO tests.  相似文献   

16.
17.
摘要:传统的纯化外源基因的方法主要是通过多代自交,该方法耗时长,效率低。通过对转基因材料中外源基因T-DNA区域插入位点侧翼序列的分析,本文开发了筛选纯合转基因植株的新方法。首先,利用酶切连接接头的PCR方法,我们在番茄转基因植株中扩增外源基因Avr3a的两翼序列并测序;然后通过该序列设计的引物在转基因植株中验证,得到的两翼序列通过与SGN数据库比对分析,发现外源基因的插入位点有40bp的碱基缺失;最后利用侧翼序列和边界序列设计的引物,成功在转基因T1代植株中筛选出纯合单株,并在T2代进行了验证。  相似文献   

18.
Serine protease inhibitors (PIs) are involved in several physiological processes, such as regulation of endogenous proteinases and defence against phytophageous insects. Transgenic modifications have enhanced protease inhibitor expression to develop insect resistant cultivars in several important crops. The fate of protease inhibitors released from genetically engineered plants is an important issue because of possible inhibition of soil proteases and effects of the insecticidal protein and its codifying sequence on soil microorganisms. The persistence of transgenic sequence mustard trypsin inhibitor-2 in soil and its hypothetical acquisition by soil microorganisms by horizontal gene transfer and the effect of transgenic plant material on soil microbial community structure and soil protease activity were investigated. With the aim to simulate the effects of plant litter on soil microorganisms, a microcosm experimental model was used. Despite the persistence of transgenic DNA sequences, no recombination event was detected between plant DNA and soil bacteria; molecular analysis of bacterial community also showed no significant influence on the dominant members of the bacterial community and soil protease activity was not inhibited by the release of constitutively over-expressed protease inhibitor.  相似文献   

19.
Toward the development of reliable qualitative and quantitative Polymerase Chain Reaction (PCR) detection methods of transgenic tomatoes, one tomato (Lycopersicon esculentum) species specific gene, LAT52, was selected and validated as suitable for using as an endogenous reference gene in transgenic tomato PCR detection. Both qualitative and quantitative PCR methods were assayed with 16 different tomato varieties, and identical amplified products or fluorescent signals were obtained with all of them. No amplified products and fluorescent signals were observed when DNA samples from 20 different plants such as soybean, maize, rapeseed, rice, and Arabidopsis thaliana were used as templates. These results demonstrated that the amplified LAT52 DNA sequence was specific for tomato. Furthermore, results of Southern blot showed that the LAT52 gene was a single-copy gene in the different tested tomato cultivars. In qualitative and quantitative PCR analysis, the detection sensitivities were 0.05 and 0.005 ng of tomato genomic DNA, respectively. In addition, two real-time assays employing this gene as an endogenous reference gene were established, one for the quantification of processed food samples derived from nontransgenic tomatoes that contained degraded target DNA and the other for the quantification of the junction region of CaMV35s promoter and the anti-sense ethylene-forming enzyme (EFE) gene in transgenic tomato Huafan No. 1 samples. All of these results indicated that the LAT52 gene could be successfully used as a tomato endogenous reference gene in practical qualitative and quantitative detection of transgenic tomatoes, even for some processed foods derived from transgenic and nontransgenic tomatoes.  相似文献   

20.
With the development of transgenic crops, many countries have issued regulations to label the genetically modified organisms (GMOs) and their derived products. Polymerase Chain Reaction (PCR) methods are thought to be reliable and useful techniques for qualitative and quantitative detection of GMOs. These methods generally need to amplify the transgene and compare the amplified result with that of the corresponding reference gene to obtain reliable results. In this article, we reported the development of specific primers and probe for the rice (Oryza sativa) sucrose phosphate synthase (SPS) gene and PCR cycling conditions suitable for the use of this sequence as an endogenous reference gene in both qualitative and quantitative PCR assays. Both methods were assayed with 13 different rice varieties, and identical amplification products were obtained with all of them. No amplification products were observed when DNA samples from other species, such as wheat, maize, barley, tobacco, soybean, rapeseed, tomato, sunflower, carrot, pepper, eggplant, lupine, mung bean, plum, and Arabidopsis thaliana, were used as templates, which demonstrated that this system was specific for rice. In addition, the results of the Southern blot analysis confirmed that the SPS gene was a single copy in the tested rice varieties. In qualitative and quantitative PCR analyses, the detection sensitivities were 0.05 and 0.005 ng of rice genomic DNA, respectively. To test the practical use of this SPS gene as an endogenous reference gene, we have also quantified the beta-glucuronidase (GUS) gene in transgenic rice using this reference gene. These results indicated that the SPS gene was species specific, had one copy number, and had a low heterogeneity among the tested cultivars. Therefore, this gene could be used as an endogenous reference gene of rice and the optimized PCR systems could be used for practical qualitative and quantitative detection of transgenic rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号