首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于支持向量机的植物图像分割   总被引:1,自引:0,他引:1  
图像分割是计算机视觉领域的特别在小样本、高维情况下,具有较好的泛化性能.为此,以植物图像为例,结合数字图像处理技术,采用支持向量机法实现了植物叶片图像与背景图像的分割.实验证明,与传统的分割方法比较,该方法是高效和准确的.  相似文献   

2.
玉米籽粒的特征选择算法——基于支持向量机与遗传算法   总被引:2,自引:0,他引:2  
在基于数字图像的玉米品种自动识别的研究中,寻找对识别贡献大的新特征项,对玉米品种识别率的提高具有十分重大的意义.把遗传算法和支持向量机算法相结合,设计了具体的基于支持向量机和遗传算法的玉米籽粒特征选择算法,利用这种算法优选提取出的玉米籽粒特征,从玉米籽粒的胚部和冠部的颜色特征与形状特征中找出了对玉米品种识别贡献较大的新特征.  相似文献   

3.
支持向量机在黄瓜病害识别中的应用研究   总被引:4,自引:0,他引:4  
探讨了采用支持向量机对黄瓜病害进行分类的方法;提取了病斑的形状、颜色、质地、发病时期等特征作为特征向量,利用支持向量机分类器,选取4种常见核函数,以Matlab7.0为平台对10类常见病害进行识别.结果表明,SVM 方法在处理小样本问题中具有良好的分类效果,线性核函数和径向基核函数的SVM 分类方法在黄瓜病害的识别方面优于其他类型核函数的SVM.  相似文献   

4.
基于颜色特征和支持向量机的黄瓜叶部病害识别   总被引:1,自引:0,他引:1  
针对黄瓜常见叶部病斑图像的颜色特点,提出了将支持向量机(Support Vector Machine,SVM)应用于黄瓜叶部病害识别中。首先,选择HSI颜色系统作为图像特征提取的颜色空间,以减少光照强度对获取图像时的影响;然后,利用支持向量机进行叶部病害的识别。不同核函数的结果比较分析表明:径向基核函数对黄瓜叶部病害的识别率最高,最适于黄瓜霜霉病、角斑病和白粉病的分类识别;支持向量机识别方法在病害识别时训练样本少,具有很好的分类性能和泛化能力。  相似文献   

5.
基于核函数支持向量机的植物叶部病害多分类检测方法   总被引:2,自引:0,他引:2  
现有植物病害图像检测方法存在检测病害单一的问题,因此,本文针对叶片的链格孢病、炭疽病、细菌性枯萎病、尾孢菌叶斑病4种病害和健康叶片,提出了基于核函数支持向量机的多分类检测方法。根据植物叶部病害图像具有多变的特点,首先通过受病叶片图像预处理增强病害部分与健康部分的对比度,使病害部分更加明显。然后在Lab彩色空间模型下的a、b分量上进行叶片分割并提取特征,采用K均值聚类方法,增强分割聚类效果。最后采用基于核函数的支持向量机多分类方法对4种病害进行检测识别并分类。为提高检测准确度,用500次迭代评估出最大精度,考虑交叉验证系数的影响,将样本的40%作为验证数据,60%作为训练数据,采用径向基核函数对其进行训练。该方法将传统的2种叶片病害识别扩大至4种,实验结果证实对4种病害的识别率最高达到89.5%,最低也达到了70%,证明了该方法的有效性。  相似文献   

6.
针对以往变压器油中溶解气体含量预测中对所有数据样本等同处理,没有区分不同时间样本对建模作用不同而造成预测误差的问题,提出一种基于模糊支持向量机预测模型,将样本按照时间由近及远赋予不同的权重,并采用自适应遗传算法优化其参数,根据适应度值自动调整交叉概率和变异概率,保证参数的全局最优性,克服参数选择的盲目性。实例分析证明,该模型应用于变压器DGA含量的预测中,有效降低了预测误差,提高了预测精度。  相似文献   

7.
为了实现发动机故障的快速实时诊断,提出一种基于主成分分析(PCA)和遗传支持向量机(GA-SVM)的发动机故障诊断方法。该方法利用振动信号经小波变换和主元分析来提取故障特征,以减少信号的冗余。针对人为选择SVM参数的盲目性,应用遗传算法优化其参数,并与BP神经网络(BPNN)比较。试验结果表明:GA-SVM比BPNN具有更强的分类识别能力,小样本故障诊断正确率达100%。  相似文献   

8.
为了实现发动机故障的快速实时诊断,提出一种基于主成分分析(PCA)和遗传支持向量机(GA-SVM)的发动机故障诊断方法。该方法利用振动信号经小波变换和主元分析来提取故障特征,以减少信号的冗余。针对人为选择SVM参数的盲目性,应用遗传算法优化其参数,并与BP神经网络(BPNN)比较。试验结果表明:GA-SVM比BPNN具有更强的分类识别能力,小样本故障诊断正确率达100%。  相似文献   

9.
基于传统统计学理论基础的鸭蛋破损检测方法有理论缺陷,因此提出了基于支持向量机的检测方法.试验结果验证该方法具有训练样本少、学习推广能力强等优点;基于径向基核函数(RBF)的SVM对鸭蛋破损检测的识别效果最佳,总体正确率达到97.5%.  相似文献   

10.
利用混沌运动的初值敏感性、内在随机性和遍历性的特点,提出基于混沌遗传算法和最小二乘支持向量机的城市日用水量预测法。通过混沌映射搜索自适应遗传算法的较优初始种群,采用自适应遗传算法优化最小二乘支持向量机的超参数,利用交叉验证法确定遗传算法个体的适应值,建立基于最小二乘支持向量机的日用水量预测模型。实例分析结果表明,与基于遗传最小二乘支持向量机的日用水量预测法相比,提出的预测方法具有更高的预测精度。  相似文献   

11.
基于支持向量机理论的植物根系图像边缘检测方法   总被引:1,自引:0,他引:1  
吴鹏  宋文龙 《农机化研究》2012,34(7):89-92,104
由于传统边缘检测方法中存在噪声大、粗糙边缘和不准确边缘等缺点,因此在植物根系的研究中,采用传统的图像边缘检测方法检测出来的边缘信息都无法达到令人满意的效果.为此,基于支持向量机方法给出了一种改善的边缘检测算法.同时,提出了边缘检测算法流程,然后使用支持向量机分类方法对图像进行边缘检测;用所得到的边缘检测算法与Canny算法和Prewitt算法的性能进行了比较.仿真结果表明,给出的算法与Canny算法和Prewitt算相比,不仅边缘检测性能得到提高,而且可以一定程度地克服噪声干扰.  相似文献   

12.
基于支持向量级模型良好的泛化能力,构建了区域水资源开发利用程度的支持向量机评价模型。针对评价标准,采用均匀分布随机函数,在三个标准间内插10个样本,形成共30个样本用于支持向量机的训练,实现了对西安市水资源开发利用程度的综合评价。实例研究表明,运用支持向量机分类模型进行区域水资源开发利用问题研究,评价结果合理、可靠,可以为区域水资源开发利用评价提供一种新的方法。  相似文献   

13.
为节约灌溉用水,采用垄沟集雨覆盖种植技术与滴灌技术相结合(MFR-DI),并对使用该技术种植的青椒进行作物需水量预测.根据多年气象资料、青椒冠层温度以及逐日作物需水量资料,构建了以冠层温度、气象因素为输入因子的预测MFR-DI种植模式下青椒作物需水量的GA-SVM模型,使用2017年的数据对模型进行了测试,结果表明:在...  相似文献   

14.
基于灰色支持向量机组合模型的农产品产量预测   总被引:4,自引:0,他引:4  
鉴于灰色预测模型和支持向量机各自的优点,将灰色预测模型与支持向量机相结合,提出灰色支持向量机组合模型,并将该模型应用于花生产量预测中。结果表明,与单一支持向量机和灰色预测模型相比,灰色支持向量机组合模型的预测精度明显提高。  相似文献   

15.
基于线性组合核函数支持向量机的病害图像识别研究   总被引:3,自引:0,他引:3  
合理的选择、设计核函数是支持向量机方法的重要部分,不同的核函数代表了利用支持向量机解决非线性分类问题时,进行的不同的非线性映射.核函数使支持向量机可以很容易地实现非线性算法.为此,提出了一种新的核函数-线性组合核函数,将该核函数应用于支持向量机方法中,并使用该方法对北京地区甜瓜病害图像进行了识别分类;同时也与人工神经网络和其它经典支持向量机核函数的分类结果进行了对比,实验结果也验证了该核函数的有效性.  相似文献   

16.
基于支持向量机和色度矩的植物病害识别研究   总被引:15,自引:8,他引:15  
针对植物病害彩色纹理图像的特点,提出将支持向量机和色度矩分析方法相结合应用于植物病害识别中。首先利用色度矩提取植物病害叶片的特征向量,然后利用支持向量机分类方法进行病害的识别。黄瓜病害纹理图像识别实验分析表明,利用色度矩提取病害彩色纹理图像特征简便、快捷、分类效果好;支持向量机分类方法在病害分类时训练样本较少,具有良好的分类能力和泛化能力,适合于植物病害的分类。不同分类核函数的相互比较分析表明,线性核函数最适于植物病害的分类识别。  相似文献   

17.
为克服传统遗传算法易陷入局部最优,收敛速度慢的问题,提出基于变尺度混沌遗传最小二乘支持向量机的日用水量预测法。采用混沌算法优化自适应遗传算法的初始种群,利用自适应遗传进化和变尺度混沌优化对LSSVM的参数进行循环优化,直至遗传算法达到最大进化代数,建立基于变尺度混沌遗传最小二乘支持向量机的日用水量预测模型。实例分析结果表明,与基于自适应遗传最小二乘支持向量机的日用水量预测法相比,提出的预测方法具有更好的预测精度。  相似文献   

18.
采用支持向量机方法,结合吉林西部地下水环境特征及水质监测资料,选取硫酸盐含量、氨氮含量、氯化物含量、氟化物含量、总硬度及溶解性总固体量作为评价因子,对吉林西部地下水进行水质评价,并与综合评价法所得评价结果对比分析.结果表明,研究区内地下水多为Ⅳ类和Ⅴ类水,少部分为Ⅱ类和Ⅰ类水.通过对比表明,支持向量机方法可以较好的实现水质评价,评价结果更为切合实际,为合理开发及保护研究区地下水资源提供了科学依据.  相似文献   

19.
基于支持向量机的机械系统多故障分类方法   总被引:11,自引:2,他引:11  
提出了一种利用支持向量机(SVM)对机械系统故障进行分类的新方法;以二值分类为基础,开发了基于支持向量机的多值分类器。并以齿轮的多种故障分类为例,进行了实际应用验证。结果表明,该方法具有很好的分类能力和较高的计算效率,不需要对原始数据进行预处理就可达到满意的效果,可以满足在线诊断的要求,适合于机械故障诊断中的多故障分类。该方法的应用,为故障诊断技术向智能化方向发展提供了新的途径。  相似文献   

20.
基于支持向量机的洪水预报模型初   总被引:10,自引:1,他引:10  
用传统的机器学习方法进行洪水预报建模存在泛化能力难以保障,训练速度慢等一些困难。对统计学习理论和支持向量机的基本内容和核心思想进行了简要的介绍,探讨了基于支持向量机的洪水预报模型的建模方法。通过实例中的应用,该模型显示了泛化能力强,训练速度快,便于建模等优点,有良好的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号