共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
支持向量机在黄瓜病害识别中的应用研究 总被引:4,自引:0,他引:4
探讨了采用支持向量机对黄瓜病害进行分类的方法;提取了病斑的形状、颜色、质地、发病时期等特征作为特征向量,利用支持向量机分类器,选取4种常见核函数,以Matlab7.0为平台对10类常见病害进行识别.结果表明,SVM 方法在处理小样本问题中具有良好的分类效果,线性核函数和径向基核函数的SVM 分类方法在黄瓜病害的识别方面优于其他类型核函数的SVM. 相似文献
4.
5.
基于核函数支持向量机的植物叶部病害多分类检测方法 总被引:2,自引:0,他引:2
现有植物病害图像检测方法存在检测病害单一的问题,因此,本文针对叶片的链格孢病、炭疽病、细菌性枯萎病、尾孢菌叶斑病4种病害和健康叶片,提出了基于核函数支持向量机的多分类检测方法。根据植物叶部病害图像具有多变的特点,首先通过受病叶片图像预处理增强病害部分与健康部分的对比度,使病害部分更加明显。然后在Lab彩色空间模型下的a、b分量上进行叶片分割并提取特征,采用K均值聚类方法,增强分割聚类效果。最后采用基于核函数的支持向量机多分类方法对4种病害进行检测识别并分类。为提高检测准确度,用500次迭代评估出最大精度,考虑交叉验证系数的影响,将样本的40%作为验证数据,60%作为训练数据,采用径向基核函数对其进行训练。该方法将传统的2种叶片病害识别扩大至4种,实验结果证实对4种病害的识别率最高达到89.5%,最低也达到了70%,证明了该方法的有效性。 相似文献
6.
针对以往变压器油中溶解气体含量预测中对所有数据样本等同处理,没有区分不同时间样本对建模作用不同而造成预测误差的问题,提出一种基于模糊支持向量机预测模型,将样本按照时间由近及远赋予不同的权重,并采用自适应遗传算法优化其参数,根据适应度值自动调整交叉概率和变异概率,保证参数的全局最优性,克服参数选择的盲目性。实例分析证明,该模型应用于变压器DGA含量的预测中,有效降低了预测误差,提高了预测精度。 相似文献
7.
官丹 《农业机械化与电气化》2011,(8):19-22
为了实现发动机故障的快速实时诊断,提出一种基于主成分分析(PCA)和遗传支持向量机(GA-SVM)的发动机故障诊断方法。该方法利用振动信号经小波变换和主元分析来提取故障特征,以减少信号的冗余。针对人为选择SVM参数的盲目性,应用遗传算法优化其参数,并与BP神经网络(BPNN)比较。试验结果表明:GA-SVM比BPNN具有更强的分类识别能力,小样本故障诊断正确率达100%。 相似文献
8.
为了实现发动机故障的快速实时诊断,提出一种基于主成分分析(PCA)和遗传支持向量机(GA-SVM)的发动机故障诊断方法。该方法利用振动信号经小波变换和主元分析来提取故障特征,以减少信号的冗余。针对人为选择SVM参数的盲目性,应用遗传算法优化其参数,并与BP神经网络(BPNN)比较。试验结果表明:GA-SVM比BPNN具有更强的分类识别能力,小样本故障诊断正确率达100%。 相似文献
9.
10.
利用混沌运动的初值敏感性、内在随机性和遍历性的特点,提出基于混沌遗传算法和最小二乘支持向量机的城市日用水量预测法。通过混沌映射搜索自适应遗传算法的较优初始种群,采用自适应遗传算法优化最小二乘支持向量机的超参数,利用交叉验证法确定遗传算法个体的适应值,建立基于最小二乘支持向量机的日用水量预测模型。实例分析结果表明,与基于遗传最小二乘支持向量机的日用水量预测法相比,提出的预测方法具有更高的预测精度。 相似文献
11.
基于支持向量机理论的植物根系图像边缘检测方法 总被引:1,自引:0,他引:1
由于传统边缘检测方法中存在噪声大、粗糙边缘和不准确边缘等缺点,因此在植物根系的研究中,采用传统的图像边缘检测方法检测出来的边缘信息都无法达到令人满意的效果.为此,基于支持向量机方法给出了一种改善的边缘检测算法.同时,提出了边缘检测算法流程,然后使用支持向量机分类方法对图像进行边缘检测;用所得到的边缘检测算法与Canny算法和Prewitt算法的性能进行了比较.仿真结果表明,给出的算法与Canny算法和Prewitt算相比,不仅边缘检测性能得到提高,而且可以一定程度地克服噪声干扰. 相似文献
12.
基于支持向量级模型良好的泛化能力,构建了区域水资源开发利用程度的支持向量机评价模型。针对评价标准,采用均匀分布随机函数,在三个标准间内插10个样本,形成共30个样本用于支持向量机的训练,实现了对西安市水资源开发利用程度的综合评价。实例研究表明,运用支持向量机分类模型进行区域水资源开发利用问题研究,评价结果合理、可靠,可以为区域水资源开发利用评价提供一种新的方法。 相似文献
13.
14.
15.
16.
17.
为克服传统遗传算法易陷入局部最优,收敛速度慢的问题,提出基于变尺度混沌遗传最小二乘支持向量机的日用水量预测法。采用混沌算法优化自适应遗传算法的初始种群,利用自适应遗传进化和变尺度混沌优化对LSSVM的参数进行循环优化,直至遗传算法达到最大进化代数,建立基于变尺度混沌遗传最小二乘支持向量机的日用水量预测模型。实例分析结果表明,与基于自适应遗传最小二乘支持向量机的日用水量预测法相比,提出的预测方法具有更好的预测精度。 相似文献
18.
19.
20.
基于支持向量机的洪水预报模型初 总被引:10,自引:1,他引:10
用传统的机器学习方法进行洪水预报建模存在泛化能力难以保障,训练速度慢等一些困难。对统计学习理论和支持向量机的基本内容和核心思想进行了简要的介绍,探讨了基于支持向量机的洪水预报模型的建模方法。通过实例中的应用,该模型显示了泛化能力强,训练速度快,便于建模等优点,有良好的应用前景。 相似文献