首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Organic wastes such as sewage sludge and compost increase the input of carbon and nutrients to the soil. However, sewage sludge-applied heavy metals, and organic pollutants adversely affect soil biochemical properties. Therefore, an incubation experiment lasting 90 days was carried out to evaluate the effect of the addition of two sources of organic C: sewage sludge or composted turf and plant residues to a calcareous soil at three rates (15, 45, and 90 t of dry matter ha–1) on pH, EC, dissolved organic C, humic substances C, organic matter mineralization, microbial biomass C, and metabolic quotient. The mobile fraction of heavy metals (Zn, Cd, Cu, Ni, and Pb) extracted by NH4NO3 was also investigated.The addition of sewage sludge decreased soil pH and increased soil salinity to a greater extent than the addition of compost. Both sewage sludge and compost increased significantly the values of the cumulative C mineralized, dissolved organic C, humic and fulvic acid C, microbial biomass C, and metabolic quotient (qCO2), especially with increasing application rate. Compared to compost, the addition of sewage sludge caused higher increases in the values of these parameters. The values of dissolved organic C, fulvic acid C, microbial biomass C, metabolic quotient, and C/N ratio tended to decrease with time. The soil treated with sewage sludge showed a significant increase in the mobile fractions of Zn, Cd, Cu, and Ni and a significant decrease in the mobile fraction of Pb compared to control. The high application rate of compost resulted in the lowest mobility of Cu, Ni, and Pb. The results suggest that biochemical properties of calcareous soil can be enhanced by both organic wastes. But, the high salinity and extractability of heavy metals, due to the addition of sewage sludge, may limit the application of sewage sludge.  相似文献   

2.
Field evaluation of release and availability of nutrients and potentially toxic elements from composts is necessary to estimate their nutrient contribution to crops, potential effect on soil and environmental quality. A biosolids (BSD), a yard waste (YW), and a West Palm Beach cocompost (WPCC) were incubated under field conditions in a citrus grove on an Oldsmar fine sandy soil (sandy, siliceous, hyperthermic Alfic Arenic Haplaquods). The incubation columns and the soil underneath each column were sampled on 0, 240, and 360 days after incubation and analyzed for KCl extractable NH4-N and NO3-N, 0.5 M NaHCO3 extractable P, and Mehlich 3 extractable K, Fe, Mn, Zn, Cu, and microbial biomass. The total concentration and extractable proportion of each element greatly varied among the three organic amendments. Approximately 34-73% of K, 1-14% of Fe, 7-68% of Zn, 7-47% of Mn, and 2-34% of Cu in the three organic amendments were extractable by the Mehlich 3 reagent at the beginning of incubation. Incubation of these amendments under field conditions for a period of 1 yr increased the availability of N, P, K, and several micronutrients including Fe, Cu, Zn, and Mn. Microbial biomass-C and -P were markedly increased during the field incubation. However, the BSD, containing high total C and other nutrients, produced less microbial biomass-C than the two composts. The rapid increase in concentrations of available metals including Cu, Zn, and Mn in the BSD during the incubation may have adverse effects on microbial biomass growth and proliferation in this compost. A combination of BSD and YW improved conditions for the microbial biomass growth as evidenced by the increase in microbial biomass C and P of this combination during the course of incubation.  相似文献   

3.
A greenhouse pot experiment was carried out to investigate the effects of different P‐fertilizer application forms (triple superphosphate [TSP], compost + TSP, TSP‐enriched compost) on the growth of ryegrass and the soil microbial biomass. The fertilizers were applied at equivalent doses for all nutrients to a neutral Luvisol in comparison with an acidic Ferralsol. Fertilizer application led to significantly increased contents of microbial biomass C, N, and P. Furthermore, yields of shoot C and root C, and concentrations of P, Ca, Mg, K, Fe, and Mn in shoots and roots were significantly increased. These increases always followed the order TSP < compost + TSP < TSP‐enriched compost. Sole TSP application led only to maximum concentrations of N and S. In the Ferralsol, TSP had only minimal positive effect on the P concentration of the grass shoots. The positive effect of TSP‐enriched compost, i.e., incubating TSP together with compost for 24 h, did not differ between the neutral Luvisol and the acidic Ferralsol, i.e., the effect is independent of the soil type. Consequently, soluble inorganic P fertilizer should generally be mixed into an organic fertilizer before application to soil.  相似文献   

4.
[目的]为解决滨海地区土壤盐分高和生态环境恶劣的问题,研究发酵园林废弃物与膨润土不同比例配合施用对滨海盐渍土的改良效果。[方法]通过滨海地区田间试验,采用单独施用68 kg/m~3发酵园林废弃物(T_1)、单独施用15 kg/m~3膨润土(T_2)和二者混合施用(T_3)的方法,分析不同处理组土壤酶活性、微生物量碳、氮的变化及其与土壤理化性质的相关关系。[结果]有机无机改良剂混施(T_3)在提高土壤酶活性和微生物量碳、氮方面具有更显著的效果。脲酶、蔗糖酶和脱氢酶分别为对照的10.1,9.0和4.5倍;土壤微生物量碳、氮分别比对照提高了24.8%和78.1%。此外,混施也可以显著改善土壤理化性质,使土壤盐分降低了62.7%,养分各项指标增幅为57.2%~101.4%。同有机改良剂处理相比,无机改良剂对土壤酶活和土壤微生物量的影响较小。速效钾与速效氮是影响土壤酶活性与微生物量的主要因子,而含盐量、容重则与土壤酶和微生物量呈负相关,具有抑制作用。[结论]发酵园林废弃物的加入对土壤酶活性和微生物量的增加起到了决定性的作用。最佳施用处理组为原土混合掺拌68 kg/m~3发酵园林废弃物和15 kg/m~3膨润土。  相似文献   

5.
The dynamics of fungal and bacterial residues to a one-season tillage event in combination with manure application in a grassland soil are unknown. The objectives of this study were (1) to assess the effects of one-season tillage event in two field trials on the stocks of microbial biomass, fungal biomass, microbial residues, soil organic C (SOC) and total N in comparison with permanent grassland; (2) to determine the effects of repeated manure application to restore negative tillage effects on soil microbial biomass and residues. One trial was started 2 years before sampling and the other 5 years before sampling. Mouldboard ploughing decreased the stocks of SOC, total N, microbial biomass C, and microbial residues (muramic acid and glucosamine), but increased those of the fungal biomarker ergosterol in both trials. Slurry application increased stocks of SOC and total N only in the short-term, whereas the stocks of microbial biomass C, ergosterol and microbial residues were generally increased in both trials, especially in combination with tillage. The ergosterol to microbial biomass C ratio was increased by tillage, and decreased by slurry application in both trials. The fungal C to bacterial C ratio was generally decreased by these two treatments. The metabolic quotient qCO2 showed a significant negative linear relationship with the microbial biomass C to SOC ratio and a significant positive relationship with the soil C/N ratio. The ergosterol to microbial biomass C ratio revealed a significant positive linear relationship with the fungal C to bacterial C ratio, but a negative one with the SOC content. Our results suggest that slurry application in grassland soil may promote SOC storage without increasing the role of saprotrophic fungi in soil organic matter dynamics relative to that of bacteria.  相似文献   

6.
Long‐term effects on soil chemical and soil biological properties were analyzed after an 8 y period with addition of biogenic household‐waste compost and shredded shrubs with and without N fertilization to an arable field. The addition of compost and shredded shrubs to soil increased significantly all soil organic matter–related properties. The effects of compost addition on soil chemical properties were in most cases stronger than those of adding shredded shrubs, especially the effects on total N, 0.5 M K2SO4‐extractable Corg and 0.5 M NaHCO3‐extractable phosphate. In the shredded‐shrubs treatments, basal respiration and the contents of soil microbial‐biomass C, biomass N, and fungal ergosterol were significantly increased by 40%, 45%, 67%, and 90%, respectively. In the compost treatment, only microbial‐biomass C and biomass N were significantly increased by 25% and 38%, respectively. Microbial‐biomass P remained unaffected by both organic‐amendment treatments. Nitrogen fertilization had significantly negative effects on the NaHCO3‐extractable P fraction (–22%) and on the basal respiration (–31%), but positive effects on the ergosterol content (+17%).  相似文献   

7.
孙婷婷  徐磊  周静  樊剑波  陈晏 《土壤》2016,48(5):946-953
针对江西贵溪Cu、Cd重金属污染土壤,通过田间试验,比较无机生物材料羟基磷灰石及3种植物(海州香薷、巨菌草、伴矿景天)与羟基磷灰石联合修复对土壤总Cu、Cd的吸收及对活性Cu、Cd的钝化吸收能力差异。采用磷脂脂肪酸(PLFA)分析法,比较不同修复模式对土壤微生物群落结构的影响,以评估土壤微生态环境对不同修复措施的响应。研究结果表明:羟基磷灰石的施加可显著提高土壤pH,并有效钝化土壤活性Cu、Cd含量,但对土壤总Cu、Cd的含量影响较小。植物与羟基磷灰石的联合修复在显著降低土壤活性Cu、Cd(P0.05)的同时,减少了植物根际土壤总Cu、Cd的含量(P0.05)。不同修复措施对土壤微生物群落组成影响差异明显。单独施加羟基磷灰石与土壤真菌群落呈显著正相关,使土壤真菌生物量提高,从而引起真菌/细菌(F/B)的升高。植物与羟基磷灰石的联合修复可有效缓解土壤真菌化的趋势,其中巨菌草与羟基磷灰石的联合修复可有效提高土壤革兰氏阳性、革兰氏阴性细菌生物量及多样性,降低F/B值,从而降低土壤真菌病害的风险。不同植物根系活性代谢引起有机质的积累促进植物与羟基磷灰石处理中根际有机碳含量显著提高。聚类增强树(Aggregated boosted tree,ABT)分析结果表明:不同修复模式是影响土壤微生物群落的重要因素,其次土壤pH和Cu的含量及活性也是改变重金属污染区域微生物群落的因子。该研究从微生物群落结构角度解释了植物与羟基磷灰石联合修复对土壤微生态体系的作用,为开展Cu、Cd等重金属污染地植物与无机生物材料的联合修复方式的筛选及实施提供可靠的理论依据。  相似文献   

8.
Soil‐quality parameters, such as soil organic matter (SOM) and plant‐available nutrient contents, microbial properties, aggregate stability, and the amounts of heavy metals were carried out in arable soils of different rotation schedules applied with a total of 50 Mg dry mass ha–1 biowaste compost relative to an untreated control. This was investigated during a 10 y period from 1994 to 2004. Overall, soil‐quality parameters studied appeared to be promoted by biowaste‐compost application. This was evidenced for example by a remarkable increase of SOM and total N content of ≈ 15%–20% relative to the control. Subsequently, amounts of soil microbial biomass and alkaline phosphatase activity were significantly increased as well. In addition, biowaste‐compost application revealed an increase of plant‐available P and K contents and aggregate stability in soil. There was, however, no treatment effect for net N‐mineralization rates. Moreover, in soils of maize and sugar beet rotation schedule a slight decrease was found. Heavy‐metal contents of Pb and Zn were significantly increased in all compost‐treated soils, whereas no significant increase of Cd and Cu contents was measured. However, the investigated amounts were far below of the limits of the German Biowaste Ordinance. It is finally recommended, that biowaste compost may sustain and improve soil quality in agriculture when N nutrition will be considered.  相似文献   

9.
Long-term effects of compost application are expected, but rarely measured. A 7-yr growth trial was conducted to determine nitrogen availability following a one-time compost application. Six food waste composts were produced in a pilot-scale project using two composting methods (aerated static pile and aerated, turned windrow), and three bulking agents (yard trimmings, yard trimmings + mixed paper waste, and wood waste + sawdust). For the growth trial, composts were incorporated into the top 8 to 10 cm of a sandy loam soil at application rates of approximately 155 Mg ha?1 (about 7 yd3 1000 ft2). Tall fescue (Festuca arundinacea Schreb. ‘A.U. Triumph’) was seeded after compost incorporation, and was harvested 40 times over a 7-yr period. Grass yield and grass N uptake for the compost treatments was greater than that produced without compost at the same fertilizer N rate. The one-time compost application increased grass N uptake by a total of 294 to 527 kg ha?1 during the 7-yr. field experiment. The greatest grass yield response to compost application occurred during the second and third years after compost application, when annual grass N uptake was increased by 93 to 114 kg ha?1 yr?1. Grass yield response to the one-time compost application continued at about the same level for Years 4 through 7, increasing grass N uptake by 42 to 62 kg ha?1 yr?1. Soil mineralizable N tests done at 3 and 6 yr. after application also demonstrated higher N availability with compost. The increase in grass N uptake accounted for 15 to 20% of compost N applied after 7-yr. for food waste composts produced with any of the bulking agents. After 7-yr, increased soil organic matter (total soil C and N) in the compost-amended soil accounted for approximately 18% of compost-C and 33% of compost-N applied. This study confirmed the long-term value of compost amendment for supplying slow-release N for crop growth.  相似文献   

10.
The use of gravel–sand mulch is a traditional water-conservation technique in the semi-arid Loess Plateau of North-western China. In this study, we investigated the 16-year effects of this mulch on soil physicochemical properties (total organic C, N and P; bulk density; Ca, Cu, Fe, Mg, Mn and Zn; soil texture; pH), microbial biomass C, N and P and enzymatic activities (peroxidase, dehydrogenase, invertase, β-glucosidase, alkaline phosphomonoesterase and urease) in a field trial in China's Gaolan County. We examined how these parameters changed after 7, 11 and 16 years of mulching. After 16 years, soil bulk density and sand content increased significantly. Soil Ca and Cu contents did not change significantly during the study period, but Fe, Mg, Mn and Zn contents all decreased significantly after 16 years. The total N increased significantly after 11 years, but total C and N both decreased dramatically and significantly after 16 years (by 22% and 13%, respectively, compared to the control). The mulch significantly increased microbial biomass C (by 29% after 11 years), with similar results for N and P, but these positive effects were lost after 16 years. Enzyme activities revealed changes in the soil microbial community over time; the mulch increased enzyme activities until 11 years, followed by a significant decrease that suggested degradation of soil quality after long-term mulching. The positive effects of the mulch (increasing soil temperature) could explain the high microbial biomass and enzyme activities after 11 years. However, long-term increases in soil bulk density and sand content (caused by mixing of the mulch layer with the surface soil) and a lack of inputs of organic matter (caused by the barrier created by the mulch layer) led to degradation of the soil after 16 years.  相似文献   

11.
A 6-year study was conducted in an organically managed orange orchard located in Sicily (Southern Italy) to assess the effect of compost and organic fertiliser utilisation on soil quality. Adopting a randomised-block experimental design with three replicates, four treatments were carried out. In treatments 1 and 2, two different composts (C1 from distillery by-products and C2 from livestock waste) were applied. The plots of treatment 3 were fertilised using dried poultry manure. The control treatment was fertilised by mineral/synthetic fertilisers. In order to verify the hypothesis that composts and organic fertilisers improve soil fertility, soil quality was evaluated by selecting dynamic soil parameters, as indicators linked to C and N cycles. Total organic C, total N, C/N ratio, humified fraction, isoelectric focussing (IEF) of extracted organic matter, microbial biomass C, potentially mineralisable N under anaerobic conditions, potentially mineralisable C, C mineralisation quotient and metabolic quotient were determined for each sample. Moreover, the Community Level Physiological Profile (by Biolog technique) was defined, calculating derived functional biodiversity and versatility indexes. Parameters related to IEF and potentially mineralisable C showed significant differences among the treatments. Moreover, total C, total N and humification parameters tended to increase, while no differences were observed in biodiversity indexes. On these findings, it was concluded that composts and poultry manure only weakly affected soil properties, though they increased soil potentially available nutritive elements to crops.  相似文献   

12.
The accumulation of heavy metals (HMs) in soils is the most often cited potential risk of compost application. As the ecological effects of metals are related to mobile fractions rather than to total concentrations in the soil, we measured the total (aqua regia–extractable) HM concentrations, the readily available water‐soluble and the potentially bioavailable LiCl‐extractable fraction of soil HMs in a field experiment after 10 y with total applications of 95, 175, and 255 t ha–1 biowaste compost (fresh matter). Total soil concentrations of Cd, Cr, Cu, Ni, and Pb in the compost treatments were not significantly higher than in the unfertilized control. Total Zn concentrations increased in the treatment with the highest application rate, as expected from the calculation of the Zn load in the composts. In the mobile fractions, as measured in soil saturation extract and LiCl extract, Cd and Pb were not detectable. Concentrations of Cr, Ni, and Zn were in the range published for unpolluted soils in other studies and did not show any differences according to treatment. Easily exchangeable Cu (in LiCl extract) was increased with compost fertilization, most probably due to complexation with low‐molecular organic complexants. Except for Cd and Zn, the results of the mobile HM fractions in the soil were in good agreement with plant HM concentrations. In conclusion, fertilization with high‐quality biowaste compost at such rates and after 10 y of application gives no cause for concern with regard to both total HM concentrations and available HM fractions.  相似文献   

13.
采用盆栽试验研究了蔬菜废弃物堆肥对小白菜的增产效果、土壤养分含量、土壤微生物量和酶活性的影响。结果表明,蔬菜废弃物堆肥能够显著提高盆栽小白菜的产量和品质,其中30 t/hm2的高量蔬菜废弃物堆肥将产量提高了66.26%,将品质指标Vc、可溶性糖和可溶性蛋白含量显著提高了35.64%、183.36%和39.42%。蔬菜废弃物堆肥能够显著提高土壤质量,有机质、总氮、碱解氮、有效磷、速效钾含量和土壤微生物量碳、氮,以及土壤淀粉酶、脲酶、磷酸酶、脱氢酶活性的土壤质量指标。与牛粪相比较,高用量的蔬菜废弃物堆肥处理在小白菜产量、可溶性蛋白含量、土壤碱解氮、有效磷、速效钾含量、磷酸酶活性上显著高于牛粪;而在可溶性糖含量、土壤有机质含量、土壤微生物量、淀粉酶、脱氢酶活性上显著低于牛粪。综合而言,蔬菜废弃物堆肥能够提高土壤质量,增加蔬菜产量和品质;在蔬菜产量方面,蔬菜废弃物堆肥优于牛粪,在蔬菜品质和土壤质量方面,蔬菜废弃物堆肥与牛粪相当。  相似文献   

14.
In this experiment, vermicomposts, prepared from five different waste materials, were applied to acid lateritic soil under field conditions and soil samples were collected after 90 days to study the effect of vermicomposts on different chemical and biochemical. Results suggest that vermicompost prepared from paddy straw is most effective to improve nutrient content, enzymatic activities and microbial properties of lateritic soil. Vermicompost application significantly (P ≤ 0.05) increased the concentration of organic C, mineralizable N, available P and exchangeable K in soil. Amylase, protease, urease and acid phosphatase activities were also significantly (P ≤ 0.05) higher in vermicompost treated soils compared with the control. Both basal and substrate‐induced microbial respiration, microbial biomass C and N and fungal population in lateritic soil were increased due to vermicompost application. Ergosterol and chitin content were significantly (P ≤ 0.05) higher in vermicompost treated soils over the control. Application of vermicompost increased the proportion of fungal biomass in total soil microorganisms.  相似文献   

15.
The size of the microbial biomass and dehydrogenase activity were measured in air-dried and rewetted apple orchard surface soils with accumulation of Cu, Pb, and As due to the application of Bordeaux mixtures and lead arsenate. The largest amounts of total Cu, Pb, and As found in the soils used were 1,108, 1,271, and 209 mg kg-1 soil, respectively. The amounts of 0.1 M HCl-extractable heavy metals were strongly correlated with the total amounts, while those of 0.1 M CaCl2-extractable heavy metals, except for As, increased significantly with decreasing soil pH. The amounts of microbial biomass C and N, expressed on a soil organic C and total N basis, respectively, were each negatively correlated with the amounts of total and 0.1 M HCl-extractable Cu. On the other hand, the dehydrogenase activity was not affected by the amounts of total and 0.1 M HCl-extractable heavy metals, and was negatively correlated with the amount of 0.1 M CaCl2-extractable Cu and positively with the soil pH. Higher significant correlations were observed when the dehydrogenase activity was calculated per unit of soil organic C. Thus the microbial biomass was adversely affected by the slightly soluble fractions of Cu accumulated in apple orchard soils, whereas the dehydrogenase activity was affected by the water-soluble and exchangeable Cu of which amount depended on the soil pH. It is suggested that the microbial biomass and dehydrogenase activity expressed on a soil organic matter basis could become useful indicators for assessing the effects of heavy metals on the size and activity of the microbial biomass in soils differing in organic matter contents.  相似文献   

16.
An incubation experiment was carried out to test the effects of biogenic municipal waste (compost I) and shrub/grass (compost II) composts in comparison to peat on respiration and microbial biomass in soil. The amounts of these three substrates added were linearly increased in the range of field application rates (0.5%, 1.0%, 1.5%, 2.0%). The sum of CO2 evolved during the incubation was markedly raised by the three substrates and increased with the rate of substrate concentration. However, the percentage of substrate mineralized to CO2 decreased with the addition rate from 103 to 56% for compost I, from 81 to 56% for compost II, and from 21 to 8% for peat. During the first 25 days of incubation, compost I enlarged the biomass C content, which remained constant until the end. In contrast, compost II did not raise biomass C initially. But at the end of the incubation, the biomass C content of all 4 compost II treatments almost reached the level of the respective compost I treatment. The increase was significantly larger the more of the two composts was added. In contrast to the two composts, the addition of peat did not have any significant effect on microbial biomass C. The average qCO2 values at day 25 declined in the order compost I > compost II > peat, at day 92 the order was changed to compost II > peat > compost 1. This change in the order was caused by a significant decrease in qCO2 values of the compost I treatments, a significant increase in qCO2 values of the peat treatments and constant qCO2 values in the compost II treatments.  相似文献   

17.
We established a field trial to assess the impacts on soil biological properties of application of heavy metal-spiked sewage sludge, with the aim of determining toxicity threshold concentrations of heavy metals in soil. Plots were treated with sludges containing increasing concentrations of Cu, Ni and Zn in order to raise the metal concentrations in the soil by 0-200 mg Cu kg−1, 0-60 mg Ni kg−1 and 0-400 mg Zn kg−1, and were then cultivated and sown in ryegrass-clover pasture and monitored annually for 6 years. All biological properties measured (soil basal respiration, microbial biomass C, and sulphatase enzyme activities), except phosphatase activity, increased in all plots over the duration of the experiment. Consequently, it was only possible to assess effects of heavy metals across time if, each year, all data for each metal were normalised by expressing them as percentages of the activities measured in an un-sludged control plot. When this was done, no significant effects of increasing heavy-metal concentrations on basal respiration, microbial biomass C or respiratory quotient (qCO2) were observed, although total Cu and soil solution Cu were significantly negatively related to microbial biomass C when it was expressed as a proportion of soil total C. None of the properties measured were affected by increasing Ni concentrations. Phosphatase and sulphatase activities were significantly negatively related to increasing Zn concentrations, but not usually to increasing Cu unless they were expressed as a proportion of total C. A sigmoidal dose-response model was used to calculate EC20 and EC50 values using the normalised data, but generally, the model parameters had very large 95% confidence intervals and/or the fits to the model had small R2 values. The factors primarily responsible for confounding these results were site and sample variations not accounted for by the normalisation process and the absence of any data points at metal concentrations beyond the calculated EC50 values. In the few instances where reasonable EC20 values could be calculated, they were relatively consistent across properties, e.g., EC20 for total Zn and phosphatase (330 mg kg−1), total Zn and sulphatase (310 mg kg−1), and EC20 for total Cu and sulphatase (140 mg kg−1) and total Cu and microbial biomass C (140 mg kg−1), when both sulphatase and microbial biomass C were expressed as a proportion of total C. Our results suggest that Cu and Zn at the upper concentrations used in this experiment were possibly having adverse effects on some soil biological properties. However, much higher metal concentrations will be needed to accurately calculate EC20 and EC50 and this may not be easily achievable without many applications of sewage sludge, even if the sludge is spiked with heavy metals.  相似文献   

18.
Summary Microbial biomass in the upper 7 cm of soil and needle decomposition on the forest floor were measured seasonally for 10 months in a mountain hemlock (Tsuga mertensiana) old-growth forest and in a regrowth forest after Phellinus weirii, a root-rot pathogen infection, had caused disturbance. The microbial biomass was higher in the old-growth forest soil than in the regrowth forest soil. However, T. mertensiana needle decomposition rates were higher in the regrowth than in the old-growth forest. Total N, Ca, Fe, Cu, and Zn concentrations in needles increased during the 1st year of decomposition in both the old and the regrowth forests, but P, K, Mg, Mn, and B concentrations decreased. N, P, K, Mg, Cu, and Zn concentrations were lower in regrowth than in old-growth decomposing needles. During mineralization, needles in the regrowth forests released more N, P, and K as a result of higher needle decomposition rates. Our results suggest that higher needle decomposition rates increased the mineralization of N, P, and K, which may lead to increased soil fertility and faster tree growth rates in the regrowth forest.  相似文献   

19.
The suitability of two composted solid urban wastes for crop production was evaluated in a pot experiment with sorghum (Sorghum bicolor) that focused on the geochemical fractions, bioavailability, and phytotoxicity of copper (Cu), manganese (Mn), and zinc (Zn). Total concentrations of Cu, Mn, and Zn in soil increased with increasing waste application, ranging from 1.6 to 48.2 mg kg?1 for Cu, 84 to 474 mg kg?1 for Mn, and 13.8 to 597 mg kg?1 for Zn. Waste application significantly increased pH and electrical conductivity (EC) of the soil. Copper, Mn, and Zn in the waste-amended soil were speciated into mobile (F1), easily mobilizable (F2), occluded in Mn oxides (F3), organically bound (F4), occluded in amorphous Fe oxides (F5), occluded in crystalline Fe oxides (F6), and residual (F7) fractions to assess the lability of the metals. On the average, the F4 was the most dominant Cu and Zn fraction, accounting for between 37 and 60% of total Cu and from 14 to 40% of total Zn concentrations, whereas F3 was the dominant Mn fraction closely followed by F4. The concentrations of Cu, Mn, and Zn in sorghum dry matter (DM) decreased with increasing waste application, probably induced by osmotic stress and ionic toxicity. Tissue Zn (Y-Zn) and Mn (Y-Mn) correlated significantly with the F1 and F2 fractions, but pH was an overriding factor in predicting Cu and Zn bioconcentration. Used as soil amendments, the application rate for these Zaria urban wastes should be limited to ≤10% (w/w basis), as Zn in the sorghum tissue reached the toxic limit just from one application of the waste to soil.  相似文献   

20.
Heavy metals such as arsenic (As), lead (Pb), copper (Cu) and zinc (Zn) can be found in large concentrations in mine spills in Mexico. Interest in contamination by these heavy metals has increased recently as they can change the functioning of soil ecosystems qualitatively and quantitatively. They disturb the activities of soil fauna and contaminate drinking water in large parts of the world, which severely affects human health. Little, however, is known how heavy metals might affect the biological functioning of a soil. Soil was sampled from eight locations along a gradient of heavy-metal contamination with distance from a mine in San Luis Potosí (Mexico) active since about 1800 AD. Microbial biomass was determined with the original chloroform fumigation incubation (CFI) as well as extraction (CFE) techniques and the substrate induced respiration (SIR) technique while C and N mineralization were measured. Total concentrations of As in the top 0–10 cm soil layer ranged from 8 to 22992 mg kg–1, from 31 to 1845 mg kg–1 for Pb, from 27 to 1620 mg kg–1 for Cu and from 81 to 4218 mg kg–1 for Zn. There was a significant negative correlation (P < 0.0001) between microbial biomass, soil organic carbon, total N and C mineralization and the heavy metal content of the soil. The microbial biomass C to organic C ratio, which varied from 0.4 to 1.9%, specific respiratory activity (qCO2), and oxidation of NO2 were not affected by heavy metals. It was found that long-term contamination of soil with heavy metals had an adverse effect on the amount of soil microorganisms as evidenced by a marked decrease in microbial biomass C, but not some of their characteristics. According to principal components analysis (PCA), the correlation matrix showed three distinct factors explaining 71% of the variance. A first factor including heavy metals (As, Pb, Cu and Zn) with a negative loading and total N, organic C, soil microbial biomass with a positive loading characterized the soil organic matter and contamination status. Loam and sand combined for the second factor characterizing the textural classification while the third factor was loaded by CEC and clay content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号