首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
ABSTRACT A total of 78 isolates of Puccinia triticina from durum wheat from Argentina, Chile, Ethiopia, France, Mexico, Spain and the United States and 10 representative isolates of P. triticina from common wheat from the United States were tested for virulence phenotypes on seedling plants of 35 near-isogenic lines of Thatcher wheat. Isolates with virulence on lines with leaf rust resistance genes Lr10, Lr14b, Lr20, Lr22a, Lr23, Lr33, Lr34, Lr41, and Lr44 represented the most frequent phenotype. Cluster analysis showed that P. triticina from durum wheat from South America, North America, and Europe had an average similarity in virulence of 90%, whereas isolates from Ethiopia were <70% similar to the other leaf rust isolates collected from durum wheat. Of the 11 isolates from Ethiopia, 7 were avirulent to Thatcher and all near-isogenic lines of Thatcher. The isolates from common wheat had an average similarity in virulence of 60% to all leaf rust isolates from durum wheat. P. triticina from durum wheat was avirulent to many Lr genes frequently found in common wheat. It is possible that P. triticina currently found on durum wheat worldwide had a single origin, and then spread to cultivated durum wheat in North America, South America, and Europe, whereas P. triticina from Ethiopia evolved on landraces of durum wheat genetically distinct from the cultivated durum lines grown in Europe and the Americas.  相似文献   

2.
ABSTRACT A leaf rust attacking Aegilops speltoides in its natural habitat is reported for the first time. It was found in two locations in northern and central Israel. The two collections from A. speltoides resemble wheat leaf rust, Puccinia triticina, in most spore dimensions, in the morphology of the substomatal vesicle of the urediniospore, and in DNA content in pycniospore nuclei. Similarly to P. triticina isolates from wheat, isolates taken from A. speltoides are compatible with Thalictrum speciosissimum as an aecial host and they are crossed easily with wheat leaf rust isolates. However, isolates from A. speltoides differ from wheat leaf rust in their telial host range. They are avirulent to cultivated wheat cultivars, but attack hundreds of A. speltoides accessions that were immune to wheat leaf rust. This distinct host preference justifies delineation of the newly found leaf rust as a forma specialis (f. sp. speltoides) within P. triticina.  相似文献   

3.
ABSTRACT This study describes the segregation of genes for resistance to the fungus Puccinia triticina in a cross between partially resistant wheat lines L-574-1 and CI 13227 with two and four genes for resistance, respectively. The objectives of this study were to use parental, F(1), F(2), and backcross populations to quantify maternal effects, degree of dominance, and transgressive segregation, and to determine whether CI 13227 and L-574-1 share any resistance genes for long latent period or small uredinia. In two experiments conducted in the greenhouse, the uppermost leaf of adult wheat plants was inoculated prior to heading with P. triticina. On days 6 to 21 after inoculation, the number of uredinia that erupted from the leaf surface was counted and used to calculate the mean latent period (MLP). The length and width of five arbitrarily selected uredinia were measured and used to calculate uredinium area. Midparent values, degree of dominance, and broad-sense heritability were calculated for MLP and uredinium area. For experiment A, MLP values for CI 13227, L-574-1, F(1), and F(2) generations were 12.2, 10.5, 10.2, and 10.6 days, respectively. For experiment B, MLP values for CI 13227, L-574-1, F(1), F(2), backcross to CI 13227, and backcross to L-574-1 were 12.3, 10.0, 10.6, 10.8, 11.1, and 10.0 days, respectively. The inheritance of long latent period was partially recessive, and no maternal effect was present (P = 0.62 to 0.87 for the comparison of means in reciprocal crosses). Broad-sense heritability for MLP ranged from 0.72 to 0.74, and there was transgressive segregation in the F(2) and backcross populations. Uredinia of the F(1) generation were slightly larger than uredinia for CI 13227. The inheritance of uredinium size was partially dominant, and no maternal effect was present (P = 0.5 to 0.63). Broad-sense heritability for uredinium area ranged from 0.36 to 0.73 and transgressive segregation was present in the F(2) and backcross populations. The results for MLP indicate that lines CI 13227 and L-574 likely share one gene for resistance (based on F(1) values) but not two genes (based on the presence of transgressive segregation). CI 13227 and L 574-1 appear to have at least one gene difference for uredinium area. The linear relationship between uredinium area regressed onto MLP was significant (P < 0.001) and r(2) values ranged from 0.14 to 0.26. These results indicate that the resistance in CI 13227 and L-574-1 could be combined to create wheat cultivars with greater partial resistance than that possessed by either parent based on MLP or uredinium size.  相似文献   

4.
Abstract

Plants of susceptible and resistant varieties were inoculated with the brown rust pathogen Puccinia recondita. Rust reduced the average plant height, weight of grain, volume of grain and yield of susceptible varieties compared with healthy controls. Two varieties, Lerma Rojo and E.871 were resistant and are recommended for use in further hybridisation work.  相似文献   

5.
ABSTRACT Two strains of the wheat stem rust fungus, Puccinia graminis f. sp. tritici, were crossed on barberry, and a single F(1) progeny strain was selfed. The parents, F(1), and 81 F(2) progeny were examined for virulence phenotypes on wheat differential cultivars carrying stem rust resistance (Sr) genes. For eight Sr differentials, phenotypic ratios are suggestive of single dominant avirulence genes AvrT6, AvrT8a, AvrT9a, AvrT10, AvrT21, AvrT28, AvrT30, and AvrTU. Avirulence on the Sr; (Sr 'fleck') differential showed phenotypic ratios of approximately 15:1, indicating epistatic interaction of two genes dominant for avirulence. Avirulence on Sr9d favored a 3:13 over a 1:3 ratio, possibly indicating two segregating genes-one dominant for avirulence and one dominant for avirulence inhibition. Linkage analysis of eight single dominant avirulence genes and 970 DNA markers identified DNA markers linked to each of these avirulence genes. The closest linkages between AvrT genes and DNA markers were between AvrT6 and the random amplified polymorphic DNA marker crl34-155 (6 centimorgans [cM]) AvrT8a and the amplified fragment length polymorphism marker eAC/mCT-197 (6 cM) and between AvrT9a and the amplified fragment length polymorphism marker eAC/mCT-184 (6 cM). AvrT10 and AvrTU are linked at distance of 9 cM.  相似文献   

6.
Journal of Plant Diseases and Protection - Wheat leaf rust (Puccinia triticina) is one of the most important plant diseases in the world, and growing resistant cultivars is the most economical,...  相似文献   

7.
ABSTRACT Isolates of Puccinia triticina collected from durum wheat from Argentina, Chile, Ethiopia, France, Mexico, Spain, and the United States were analyzed with 11 simple sequence repeat (SSR) markers in order to determine the genetic relationship among isolates. These isolates also were compared with P. triticina isolates from common wheat from North America, and an isolate collected from Aegilops speltoides from Israel, to determine genetic relationships among groups of P. triticina found on different telial hosts. The large majority of isolates from durum wheat were identical for SSR markers or had <8% genetic dissimilarity, except for isolates from Ethiopia, which had 55% dissimilarity with respect to the other durum isolates. Isolates from common wheat had >70% genetic dissimilarity from isolates from durum wheat, and the isolate from A. speltoides was >90% dissimilar from all isolates tested. Analysis of molecular variance tests showed significant levels (P = 0.001) of genetic differentiation among regions and among isolates within countries. Isolates of P. triticina from durum wheat from South America, North America, and Europe were closely related based on SSR genotypes, suggesting a recent common ancestor, whereas P. triticina from Ethiopia, common wheat, and A. speltoides each had distinct SSR genotypes, which suggested different origins.  相似文献   

8.
ABSTRACT The identity of a Puccinia species occurring on the introduced weed dyer's woad (Isatis tinctoria) was studied using sequences from the internal transcribed spacer of the nuclear ribosomal DNA. The relationship of this fungus to other Puccinia species occurring on the family Brassicaceae in Europe and North America was examined, and we tested the hypothesis that P. thlaspeos and P. monoica are correlated species. The data suggest that the Puccinia species from dyer's woad is closely related to the North American species P. consimilis and may be derived from an indigenous strain of P. consimilis that switched hosts. Thus, the Puccinia species from dyer's woad is probably native to North America and is unlikely to cause disease epidemics on indigenous plants if used as a biological control agent against dyer's woad. P. thlaspeos appears to be polyphyletic and, therefore, P. thlaspeos and P. monoica do not appear to be correlated species. Additional DNA sequence data will be needed to clarify further the phylogeny of Puccinia species on the family Brassicaceae.  相似文献   

9.
43个中国小麦品种(系)抗叶锈性研究   总被引:2,自引:0,他引:2  
 选用12个墨西哥叶锈菌生理小种对43个中国小麦品种(系)所携带的抗叶锈病基因进行了推导,在25个品种(系)中推导出6个抗叶锈基因Lr1,Lr10,Lr13,Lr14a,Lr16Lr26,9个品种(系)对本试验所使有的12个叶锈菌生理小种都表现感病反应,另有9个品种(系)携带未知的抗叶锈基因。在墨西哥2个地点进行的田间成株期抗叶锈性试验表明,12个品种(系)表现慢叶锈性,在将来的抗病育种中有一定的应用价值。  相似文献   

10.
Kolmer JA  Ordoñez ME 《Phytopathology》2007,97(9):1141-1149
ABSTRACT Isolates of Puccinia triticina collected from common wheat in the Central Asia countries of Kazakhstan, Uzbekistan, Tajikistan, and Kyrgyzstan and the Caucasus countries of Azerbaijan, Georgia, and Armenia were tested for virulence to 20 isolines of Thatcher wheat with different leaf rust resistance genes and molecular genotype at 23 simple sequence repeat (SSR) loci. After clone correction within each country, 99 isolates were analyzed for measures of population diversity, variation at single SSR loci, and for genetic differentiation of virulence phenotypes and SSR genotypes. Isolates from Central Asia and the Caucasus were also compared with 16 P. triticina isolates collected from common wheat in North America that were representative of the virulence and molecular variation in this region and two isolates collected from durum wheat in France and the United States. Populations from the Caucasus, Uzbekistan, Tajikistan, and Kyrgyzstan were not significantly (P > 0.05) differentiated for SSR variation with F(st) and R(st) statistics. Populations from the Caucasus, Uzbekistan, Tajikistan, and Kyrgyzstan were significantly (P < 0.05) differentiated from the populations in South and North Kazakhstan for SSR variation. All populations from Central Asia and the Caucasus were significantly differentiated from the North American isolates and isolates from durum wheat for SSR variation and virulence phenotypes. There was a correlation between virulence phenotype and SSR genotype among individual isolates and at the population level. Mountain barriers may account for the differentiation of P. triticina geographic populations in Central Asia and the Caucasus.  相似文献   

11.
The objective of this study was to determine whether genetically differentiated groups of Puccinia triticina are present in Europe. In total, 133 isolates of P. triticina collected from western Europe, central Europe and Turkey were tested for virulence on 20 lines of wheat with single leaf rust resistance genes, and for molecular genotypes with 23 simple sequence repeat (SSR) markers. After removal of isolates with identical virulence and SSR genotype within countries, 121 isolates were retained for further analysis. Isolates were grouped based on SSR genotypes using a Bayesian approach and a genetic distance method. Both methods optimally placed the isolates into eight European (EU) groups of P. triticina SSR genotypes. Seven of the groups had virulence characteristics of isolates collected from common hexaploid wheat, and one of the groups had virulence characteristics of isolates from tetraploid durum wheat. There was a significant correlation between the SSR genotypes and virulence phenotypes of the isolates. All EU groups had observed values of heterozygosity greater than expected and significant fixation values, which indicated the clonal reproduction of urediniospores in the overall population. Linkage disequilibria for SSR genotypes were high across the entire population and within countries. The overall values of RST and FST were lower when isolates were grouped by country, which indicated the migration of isolates within Europe. The European population of P. triticina had higher levels of genetic differentiation compared to other continental populations.  相似文献   

12.
13.
14.
ABSTRACT Leaf rust uredospore production and lesion size were measured on flag leaves of adult wheat plants in a glasshouse for different lesion densities. We estimated the spore weight produced per square centimeter of infected leaf, per lesion, and per unit of sporulating area. Three levels of fertilization were applied to the plants to obtain different nitrogen content for the inoculated leaves. In a fourth treatment, we evaluated the effect of Septoria tritici blotch on leaf rust uredospore production. The nitrogen and carbon content of the spores was unaffected or marginally affected by lesion density, host leaf nitrogen content, or the presence of Mycosphaerella graminicola on the same leaf. In leaves with a low-nitrogen content, spore production per lesion was reduced, but lesion size was unaffected. A threshold effect of leaf nitrogen content in spore production was however, evident, since production was similar in the medium- and high-fertilizer treatments. In leaves inoculated with M. graminicola and Puccinia triticina, the rust lesions were smaller and produced fewer spores. The relationships among rust lesion density, lesion size, and uredospore production were fitted to a model. We determined that the density effect on spore production resulted mainly from a reduction in lesion size, the spore production per unit of sporulating surface being largely independent of lesion density. These results are consistent with those obtained previously on wheat seedlings. The main difference was that the sporulation period lasted longer in adult leaves.  相似文献   

15.
Lehman JS  Shaner G 《Phytopathology》2007,97(8):1022-1029
ABSTRACT Durability of partially resistant wheat cultivars to wheat leaf rust depends on the amount of genetic variation in parasitic fitness within populations of the pathogen Puccinia triticina. To assess the durability of partial resistance, selection experiments were used to explore quantitative variation in parasitic fitness of P. triticina. Fungal populations 881-WT and 882-WT were selected for shortened latent period on partially resistant cvs. CI 13277 and Sw 72469-6 for multiple generations. Fitness components were measured for wild-type and selected fungal populations. Responses to selection and selection differentials were calculated, and broad-sense, realized heritabilities for latent period were estimated for wild-type fungal populations on CI 13227 and on Sw 72469-6. Selected populations had fitness characteristics, not limited to latent period, that could provide greater fitness in nature. Generally, more cycles of selection had greater effects on fitness. In particular cases, selected populations on a partially resistant cultivar had values for latent period, uredinium area, and sporulation no different from those of a susceptible host-pathogen combination. Heritabilities of latent period of populations 881-WT and 882-WT on CI 13227 or populations 881-WT and 882-WT on Sw 72469-6 ranged from 0.65 to 0.76 and 0.17 to 0.24, respectively. Our results suggest the variation to overcome quantitative host resistance exists in extant populations of P. triticina. In addition, because more of the variation in latent period for populations of P. triticina on CI 13227 was genetic than for populations on Sw 72469-6, CI 13227 is likely to be more vulnerable to pathogen adaptation despite its exceptionally long latent period.  相似文献   

16.
17.
ABSTRACT Host plant resistance is an economical and environmentally sound method of control of leaf rust caused by the fungus Puccinia triticina, which is one of the most serious diseases of wheat (Triticum aestivum) worldwide. Wild relatives of wheat, including the tetraploid T. timopheevii subsp. armeniacum, represent an important source of genes for resistance to leaf rust. The objectives of this study were to (i) evaluate the performance of leaf rust resistance genes previously transferred to wheat from three accessions of T. timopheevii subsp. armeniacum, (ii) determine inheritance and allelic relationship of the new leaf rust resistance genes, and (iii) determine the genetic map location of one of the T. timopheevii subsp. armeniacum-derived genes using microsatellite markers. The leaf rust resistance gene transferred to hexaploid wheat from accession TA 28 of T. timopheevii subsp. armeniacum exhibited slightly different infection types (ITs) to diverse races of leaf rust in inoculated tests of seedlings compared with the gene transferred from TA 870 and TA 874. High ITs were exhibited when seedlings of all the germ plasm lines were inoculated with P. triticina races MBRL and PNMQ. However, low ITs were observed on adult plants of all lines having the T. timopheevii subsp. armeniacum-derived genes for resistance in the field at locations in Kansas and Texas. Analysis of crosses between resistant germ plasm lines showed that accessions TA 870 and TA 874 donated the same gene for resistance to leaf rust and TA 28 donated an independent resistance gene. The gene donated to germ plasm line KS96WGRC36 from TA 870 of T. timopheevii subsp. armeniacum was linked to microsatellite markers Xgwm382 (6.7 cM) and Xgdm87 (9.4 cM) on wheat chromosome arm 2B long. This new leaf rust resistance gene is designated Lr50. It is the first named gene for leaf rust resistance transferred from wild timopheevi wheat and is the only Lr gene located on the long arm of wheat homoeologous group 2 chromosomes.  相似文献   

18.
Barley leaf rust caused by Puccinia hordei is an important disease of barley in Ethiopia. In the 2003 and 2004 cropping seasons, surveys of P. hordei were conducted on fields in the main rainy, residual moisture and short rainy season-barley production systems. A total of 381 isolates were analysed on 12 barley differential hosts carrying different Rph resistance genes ( Rph1 – Rph12 ). Based on infection phenotypes on leaf rust ( Rph ) resistance genes, seven pathotypes were identified, namely ETPh7611, ETPh7631, ETPh6611, ETPh7651, ETPh7671, ETPh7653 and ETPh7633, with frequencies of 63·0, 21·5, 6·8, 2·9, 2·6, 2·1 and 1·2%, respectively. ETPh7611 and ETPh7631 were the most common pathotypes found in all the surveyed areas of the three production systems. ETPh7653 was found in the small rainy season production system only. ETPh7671, ETPh7653 and ETPh7633 were the most virulent, but the least frequent, pathotypes. All isolates were virulent on resistance genes Rph1 , Rph4 , Rph8 , Rph9 , Rph11 and Rph12 . Virulence against Rph3 and Rph7 was absent. Genes Rph2 , Rph6+2 , Rph5 and Rph10 were effective against 96·3, 88·9, 65 and 2·4% of the rust isolates tested, respectively.  相似文献   

19.
Puccinia triticina reproduces asexually in France and thus individual genotype is the unit of selection. A strong link has been observed between genotype identities (as assessed by microsatellite markers) and pathotypes (pools of individuals with the same combination of qualitative virulence factors). Here, we tested whether differences in quantitative traits of aggressiveness could be detected within those clonal lineages by comparing isolates of identical pathotype and microsatellite profile. Pairs of isolates belonging to different pathotypes were compared for their latent period, lesion size and spore production capacity on adult plants under greenhouse conditions, with a high number of replicates. Isolates of the same pathotype showed remarkably similar values for the measured traits, except in three situations: differences were obtained within two pathotypes for latent period and within one pathotype for sporulation capacity. One of these differences was tested again and confirmed. This indicates that the average aggressiveness level of a leaf rust pathotype may increase without any change in its virulence factors or microsatellite profile.  相似文献   

20.
ABSTRACT The rust fungus Puccinia punctiformis has potential as a biological control agent for creeping thistle Cirsium arvense, because systemically infected shoots usually die before flowering. The mechanism of rust transfer as well as the spore type responsible for systemic infections have been a source of controversy. One possibility of successful transmission is the use of the weevil Ceratapion onopordi as a vector. Our results from a garden experiment show that urediniospores transmitted by the weevil are able to induce systemic infections in established thistle clones. Furthermore, the weevil origin and the date of rust treatment significantly influenced the number of rust-infected shoots. The earlier a shoot was treated, the higher the probability of rust transmission. These results challenge the current belief that teliospores passing through the soil and infecting root buds are the major cause of systemic infections in the field. Further research on biological control of creeping thistle should therefore concentrate on the application of urediniospores to enhance systemic rust infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号