首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Seal  Taghavi  Fegan  Hayward  & Fegan 《Plant pathology》1999,48(1):115-120
Rapid and sensitive polymerase chain reaction (PCR) methods are described for determination of the two 16 S rDNA subgroups of Ralstonia solanacearum, the causal agent of bacterial wilt. A third subgroup consisting of Indonesian R. solanacearum isolates belonging to Division II, the blood disease bacterium and Pseudomonas syzygii can also be identified. Primers were designed to sequences within R. solanacearum 16 S rDNA (equivalent to Escherichia coli 16 S rDNA positions 74–97, 455–475, 1454–1474), and the internal transcribed spacer region between the 16 S and 23 S rDNA genes. Different combinations of forward and reverse primers allowed selective PCR amplification of (a) R. solanacearum Division I (biovars 3, 4 and 5), (b) Division II (biovars 1, N2, and 2) including the blood disease bacterium and P. syzygii , or (c) amplification of Division II only except for five biovar 1, 2 or N2 isolates of R. solanacearum from Indonesia, P. syzygii and the BDB. A total of 104 R. solanacearum , 14 blood disease bacterium and 10 P. syzygii isolates were tested. Simultaneous detection of species and subdivision was achieved by designing a multiplex PCR test in which a 288-base pair (bp) band is produced by all R. solanacearum isolates, and an additional 409-bp band in Division I strains.  相似文献   

2.
ABSTRACT The importance of ethylene production for virulence of Pseudomonas syringae pvs. glycinea and phaseolicola was assayed by comparing bacterial multiplication and symptom development in bean and soybean plants inoculated with ethylene-negative (efe) mutants and wild-type strains. The efe mutants of Pseudomonas syringae pv. glycinea were significantly reduced in their ability to grow in planta. However, the degree of reduction was strain-dependent. Population sizes of efe mutant 16/83-E1 that did not produce the phototoxin coronatine were 10- and 15-fold lower than those of the wild-type strain on soybean and on bean, and 16/83-E1 produced very weak symptoms compared with the wild-type strain. The coronatine-producing efe mutant 7a/90-E1 reached fourfold and twofold lower population sizes compared with the wild-type strain on soybean and bean, respectively, and caused disease symptoms typical of the wild-type strain. Experiments with ethylene-insensitive soybeans confirmed these results. The virulence of the wild-type strains was reduced to the same extent in ethylene-insensitive soybean plants as the virulence of the efe mutants in ethylene-susceptible soybeans. In contrast, the virulence of Pseudomonas syringae pv. phaseolicola was not affected by disruption of the efe gene.  相似文献   

3.
All virulent strains of Pseudomonas syringae pv. atrofaciens produce in vitro substances with syringomycin-like features. All strains inhibited the growth of Geotrichum candidum in the plate assay although the extent of their growth inhibition was variable.
Purification of bioactive culture extracts of a highly virulent strain by ion exchange chromatography (Whatman CM52) yielded a main fraction which inhibited the growth of Rhodotorula pilimanae and Bacillus megaterium , and was phytotoxic to tobacco and wheat plants. In particular, the injection of this fraction in the culm of wheat plants caused phytotoxic symptoms on leaves similar to those caused in nature by the pathogen. The further purification by HPLC of the above fraction gave rise to four main bioactive substances which have been identified by spectroscopic methods (FAB-MS) and amino acid analysis as syringomycin E, syringomycin G, syringopeptin 25A and syringopeptin 25B, toxic lipodepsipeptides thus far recognized to be produced by most strains of P. syringae pv. syringae . The injection of both syringomycin E and syringopeptin 25A in wheat leaves caused necrotic symptoms; however, syringopeptin 25A was at least six times more active than syringomycin E. The possible role of the toxins in the disease development on cereals and the need for a careful examination of pathogenetic and biochemical features of P. syringae pv. atrofaciens to establish the relationships of the two pathovars in the 'syringae group' are discussed.  相似文献   

4.
Ralstonia solanacearum is a pathogenic bacterium that causes wilt in over 200 plant species. Here we report a rapid and sensitive detection of R. solanacearum using an isothermal method for copying DNA known as loop-mediated amplification (LAMP). A set of four primers was designed to replicate the gene coding for the flagellar subunit, fliC, and conditions for detection were optimized to complete in 60 min at 65 degrees C. Magnesium pyrophosphate resulting from the amplification reaction could be detected optically as an increase in the solution turbidity, and the DNA products spread in a reproducible ladder-like banding pattern after electrophoresis in an agarose gel. Replication of the fliC gene was detected only from R. solanacearum. The detection limit of this LAMP assay was between 10(4) to 10(6) colony forming units/ml, and the technique may be useful for developing rapid and sensitive detection methods for the R. solanacearum pathogen in soil and water.  相似文献   

5.
病症观察表明,烟草感染青枯菌后168h叶片全部萎蔫下垂、褐变。茎部切片表明,青枯菌处理72h,个别导管内出现了染色较深的物质,髓部和皮层的部分薄壁细胞出现破损。120h后导管内染色较深的物质增多,导管堵塞程度加大。168h后局部区域的木质部和韧皮部分离。对感病植株的叶进行青枯病菌分离,结果表明:从叶中可分离出致病青枯菌,并可以导致复感植株得病继而死亡。  相似文献   

6.
The survival in drain water of two strains of Ralstonia solanacearum and three strains of Ralstonia pseudosolanacearum, including two strains able to cause wilt in roses, was determined. Water draining from drip‐irrigated rock wool mats on which roses were grown was supplemented with the pathogen and survival was monitored at 4, 12, 20 and 28°C for up to 112 days. All strains were able to survive for at least 112 days in drain water at 12 and 20°C, but at 4°C maximum survival was 56 days. At 28°C, the survival period was strain dependent, but was at least 56 days. Populations declined gradually in non‐sterile drain water to a low level (maximum 100 cfu mL?1 after 112 days). In sterile drain water (autoclaved prior to addition of populations), no or only a limited decline in populations was found at 112 days, dependent on strain and temperature. Drain water that tested negative for Ralstonia in the dilution plating assay was tested for the presence of cells in a viable but non‐culturable state (VBNCs). Tomato plants were inoculated, but no symptoms developed, and plants sampled 22 days post‐inoculation were negative in a plating assay. Therefore, no indications were found that VBNCs were present.  相似文献   

7.
The relationships among strains of Pseudomonas syringae pv. glycinea (Psg) and Pseudomonas syringae pv. phaseolicola (Psp) isolated from kudzu ( Pueraria lobata) and bean ( Phaseolus vulgaris) were investigated. All strains tested showed a close phenotypic similarity, with the exception of the utilization of inositol and mannitol as well as the production of toxins. On this basis the strains could be divided into three groups. Group 1 consists of all strains of pathovar glycinea, group 2 includes all Psp strains isolated from kudzu, and all Psp strains isolated from bean belong to group 3. This grouping was also reflected in the genetic fingerprints using the polymerase chain reaction (PCR) with primers that anneal to dispersed repetitive bacterial sequences (rep-PCR). The rep-PCR generated fingerprints were unique for each of the three groups. The strains of group 2, Psp strains isolated from kudzu, possess certain characteristics of group 1 (ethylene production) and group 2 (phaseolotoxin production). The Psp strains from kudzu can be clearly differentiated from Psp strains isolated from bean. They utilize mannitol, produce ethylene, and are strongly pathogenic to kudzu, bean, and soybean. The results obtained show that the Psp strains from kudzu should be separated from the pathovar phaseolicola and should represent their own pathovar.  相似文献   

8.
9.
A sudden wilt of bellflower (Campanula lactiflora) was observed in Japan in 1997. A bacterium that formed white fluidal and mucoid colonies resembling those of Ralstonia solanacearum was isolated from the infected plants. The bacterium was bacteriologically identified as biovar 3 of R. solanacearum. This is the first report of R. solanacearum affecting a plant species of the Campanulaceae family.  相似文献   

10.
Pseudomonas syringae causes a wide range of symptoms on plants including blights, leaf spots, and galls. Phytotoxins generally enhance the virulence of phytopathogenic P. syringae, and their synthesis can substantially increase disease severity. Although several P. syringae phytotoxins cause chlorosis (coronatine, phaseolotoxin, and tabtoxin), they are synthesized by unrelated biosynthetic pathways and have completely different modes of action. Phaseolotoxin and tabtoxin inhibit ornithine carbamoyltransferase and glutamine synthetase, respectively, whereas coronatine functions as a mimic of methyl jasmonate in some plant species. This review focusses on the mode of action, genetics, biosynthesis and regulation of coronatine, tabtoxin, and phaseolotoxin. Current techniques used to detect these toxins and phytotoxin-producing P. syringae pathovars are discussed. The utilization of toxin resistance genes in the development of transgenic plants with phytotoxin tolerance is also reviewed.  相似文献   

11.
McGarvey JA  Denny TP  Schell MA 《Phytopathology》1999,89(12):1233-1239
ABSTRACT One susceptible and two resistant cultivars of tomato were tested for differences in infection by Ralstonia solanacearum and for the subsequent multiplication, colonization, and production of the wilt-inducing virulence factor, exopolysaccharide I (EPS I). Bacterial ingress into the taproot was fastest in the susceptible cv. Marion, followed by the resistant cvs. L285 (fivefold slower) and Hawaii 7996 (15-fold slower). Once inside the taproot, R. solanacearum colonized, to some extent, almost all regions of the resistant and susceptible plants. However, colonization occurred sooner in the susceptible than in the resistant cultivars, as measured by viablecell counts of bacteria in the midstems. Rates of multiplication and maximum bacterial cell densities were also greater in the susceptible than in the resistant cultivars. Growth experiments utilizing xylem fluid from infected and uninfected plants indicated that neither antimicrobial activities nor reduced levels of growth-supporting nutrients in the xylem fluids were responsible for the reduced bacterial multiplication in the resistant cultivars. Quantification of EPS I in the infected plants, using an enzyme-linked immunosorbent assay, revealed that the bacterial populations in the susceptible cultivar produced greater amounts of EPS I per plant than those in the resistant cultivars. Immunofluorescence microscopy using antibodies against either EPS I or R. solanacearum cells revealed that bacteria and EPS I were distributed throughout the vascular bundles and intercellular spaces of the pith in the susceptible cultivar, whereas in the resistant cultivars, bacteria and EPS I were restricted to the vascular tissues.  相似文献   

12.
Ralstonia solanacearum is a phytopathogenic bacterium that colonizes the xylem vessels of host plants leading to a lethal wilt disease. Although several studies have investigated the virulence of R. solanacearum on adult host plants, infection studies of this pathogen on the seedling stages of hosts are less common. In a preliminary observation, inoculation of R. solanacearum F1C1 on 6‐ to 7‐day‐old tomato seedlings by a simple leaf‐clip strategy resulted in a lethal pathogenic condition in seedlings that eventually killed these seedlings within a week post‐inoculation. This prompted testing of the effect of this inoculation technique in seedlings from different cultivars of tomato and similar results were obtained. Colonization and spread of the bacteria throughout the infected seedlings was demonstrated using gus‐tagged R. solanacearum F1C1. The same method of inoculating tomato seedlings was used with R. solanacearum GMI1000 and independent mutants of R. solanacearum GMI1000, deficient in the virulence genes hrpB, hrpG, phcA and gspD. Wildtype R. solanacearum GMI1000 was found to be virulent on tomato seedlings, whereas the mutants were found to be non‐virulent. This leaf‐clip technique, for inoculation of tomato seedlings, has the potential to be a valuable approach, saving time, space, labour and costs.  相似文献   

13.
14.
番茄青枯病内生拮抗细菌的筛选   总被引:46,自引:2,他引:46  
 从广西一些市县采集番茄茎标本分离得到55个细菌菌株,分属为芽孢杆菌(Bacillus spp.)、黄单胞菌(Xanthomonas spp.)、假单胞菌(Pseudomonas spp.)和欧文氏菌(Erwinia spp.),其中芽孢杆菌为优势种群。经回接测试,有36个菌株为番茄植株内生菌。这些内生菌只有7个菌株对番茄青枯病菌有拮抗作用,芽孢杆菌B47菌株对番茄青枯病菌拮抗作用较强,经室内和田间初步防治测定,它对番茄青枯病有较好的防治效果。  相似文献   

15.
 采用SDS-PAGE技术对70株不同来源及致病力青枯雷尔氏菌(Ralstonia solanacearum)进行胞外蛋白指纹多态性分析,研究结果表明,供试青枯雷尔氏菌菌株呈现丰富的胞外蛋白指纹多态性,多态性比率为100%。不同来源青枯雷尔氏菌分泌的胞外蛋白不同,EZ-Tn5TM插入诱变菌株电泳出20条不同大小蛋白条带,分子量集中在20~97 kD ,且菌株间蛋白条带相似或完全相同;60Co辐射诱变菌株共电泳出16条不同大小的蛋白条带,多数蛋白分子量44.3 kD;野生型菌株电泳的蛋白条带最多,共获得26条不同大小的蛋白条带。进一步对37株不同致病力的野生型菌株进行胞外蛋白含量测定,结果表明,不同致病力菌株胞外蛋白含量差异大,强致病力菌株分泌的胞外蛋白含量较高,为1.026~5.963μg/mL,无致病力菌株胞外蛋白含量较低,为0.083~0.761 μg/mL。  相似文献   

16.
Conditions were established for inducing pear blossom blast caused by Pseudomonas syringae pv. syringae on both attached and detached shoots. The incidence of blossom blast was proportional to the logarithm of the P.s. pv. syringae population under optimal temperature, moisture, and bloom developmental stage. Highest incidence of blossom infection followed occurrence of a major exotherm (an increase in temperature caused by the heat of fusion from ice formation within blossom tissue) in the presence of P. s. pv. syringae. The exotherm was detected inside ovary tissue at temperatures ranging from –1.8 to –3.5 C. Wetness duration following the thawing process was less important than wetness during and immediately after the freeze event. Blossoms inoculated, then air-dried or removed from low-temperature treatment prior to occurrence of an exotherm, had a low incidence of infection, The full bloom stage of blossom development was more susceptible to blossom blast than either the open cluster or tight cluster stages of development.  相似文献   

17.
为探讨大蒜根系分泌物对烟草青枯病菌的抑菌活性,采用抑菌圈法和盆栽试验研究了大蒜根系分泌物及其主要成分对烟草青枯病的影响。结果表明:大蒜根系分泌物浓度为1g/mL时,对烟草青枯病菌抑制效果最好,其抑菌率为53.67%。大蒜根系分泌物4种成分的抑菌效果由强到弱依次为:2,6-二异丙基苯酚>二烯丙基二硫>2,6-二叔丁基对甲酚>邻苯二甲酸二丁酯。其中,2,6-二异丙基酚对烟草青枯病菌的抑制作用最强,在1和5mmol/L时的抑菌率分别为99.66%和100.00%;在盆栽试验中也具有较好的防治效果,接种后7 d和14 d后,其防效分别为34.75%和31.35%。因此,大蒜根系分泌物及其成分均对烟草青枯病有明显的抑制作用。本研究揭示了大蒜作为轮作或间作作物对烟草青枯病的防控机理,以及大蒜根系分泌物和2,6-二异丙基酚作为烟草青枯病防治剂的潜力。  相似文献   

18.
Genetic Diversity of Japanese Strains of Ralstonia solanacearum   总被引:2,自引:0,他引:2  
ABSTRACT The genetic diversity of 74 Japanese strains of Ralstonia solanacearum was assessed by pathogenicity tests and the repetitive sequencebased polymerase chain reaction (rep-PCR) fingerprint method. Based on their genomic fingerprints, biovar N2 strains were divided into two distinct groups, one consisting of potato isolates belonging to race 3, and the other consisting of tomato, eggplant, pepper, and tobacco isolates belonging to race 1. Biovar 3 strains had low average similarity and were divided into five groups that differed in original host or pathogenicity. Biovar 4 strains consisted of only one group at the 80% similarity level. Comparative analysis of the rep-PCR fingerprints of 78 strains, including six biovars from Japan and various countries, revealed two main clusters. Cluster 1 comprised all biovar 3, 4, and 5 strains, biovar 1 strains from Reunion, and some biovar N2 strains from Japan. Cluster 2 included most of the biovar 1, 2, and N2 strains. The fingerprints showed low average similarity with biovar N2 strains from Japan and Brazil.  相似文献   

19.
Molecular sequencing (rpoB) and standard pathological and microbiological methods identified Pseudomonas syringae pv. syringae (Pss) as the causal agent of bacterial inflorescence rot of grapevines (Vitis vinifera) in three vineyards in Tumbarumba, NSW, Australia in 2006 and 2007. Pss strains from shrivelled berries and necrotic inflorescences of diseased grapevines were used to inoculate leaves and inflorescences of potted cv. Semillon grapevines. Pss caused disease symptoms similar to those experienced in the field, including angular leaf lesions, longitudinal lesions in shoot tissues and rotting of inflorescences from before flowering until shortly after fruit set. High humidity promoted symptom severity. The necrotic bunch stem and leaf lesions were susceptible to the development of Botrytis cinerea infections. Cryo‐scanning electron microscopy (cryoSEM) indicated that Pss entered leaves and inflorescence tissues via distorted, open, raised stomata surrounded by folds of tissue that appeared as ‘star‐shaped’ callose‐rich complexes when viewed by UV light microscopy. In necrotic tissues, cryoSEM revealed Pss within petiole parenchyma cells and air‐filled rachis xylem vessels. This is the first report of inflorescence and hence fruit loss caused by Pss in grapevines. The disease is described as ‘bacterial inflorescence rot’ and regarded as one that expands the previously reported pathology of grapevines caused by P. syringae. This study also indicated that infection by Pss might promote destructive B. cinerea infections when the fungus is already present but latent, although further experimentation is needed to prove such an interaction.  相似文献   

20.
Yang CH  Ho GD 《Phytopathology》1998,88(4):330-334
ABSTRACT Tomato bacterial wilt caused by Ralstonia solanacearum is a model system for studying plant-bacterial interactions, because it is genetically one of the best characterized plant diseases. We demonstrate here that four different strains of R. solanacearum, two from radishes (Rd4 and Rd15) and two from tomato (Ps21 and Ps95), can infect 27 different ecotypes of Arabidopsis thaliana, causing different responses. All ecotypes tested were highly susceptible to strain Rd15, which caused symptoms similar to those observed in tomato plants. For example, leaf drooping and discoloration developed just 3 days after inoculation, and plants completely wilted within 1 week. Strains Rd4 and Ps95 were less infectious than Rd15. With these two strains, a variety of disease responses were observed among different ecotypes at 2 weeks after inoculation; both susceptible and resistant ecotypes of A. thaliana were identified. Ps21 was the least infectious of the four strains and caused almost no symptoms in any of the ecotypes of Arabidopsis tested. Direct bacterial isolation and plant skeleton hybridization analysis from infected plants indicated that bacterial colonization was correlated with the severity of symptoms. Growth of bacteria was limited to the infection site in resistant plants, whereas the bacteria spread throughout susceptible plants by 1 week after inoculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号