首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT The influence exerted by the mycoparasite Pythium oligandrum in triggering plant defense reactions was investigated using an experimental system in which tomato plants were infected with the crown and root rot pathogen Fusarium oxysporum f. sp. radicis-lycopersici. To assess the antagonistic potential of P. oligandrum against F. oxysporum f. sp. radicis-lycopersici, the interaction between the two fungi was studied by scanning and transmission electron microscopy (SEM and TEM, respectively). SEM investigations of the interaction region between the fungi demonstrated that collapse and loss of turgor of F. oxysporum f. sp. radicis-lycopersici hyphae began soon after close contact was established with P. oligandrum. Ultrastructural observations confirmed that intimate contact between hyphae of P. oligandrum and cells of the pathogen resulted in a series of disturbances, including generalized disorganization of the host cytoplasm, retraction of the plasmalemma, and, finally, complete loss of the protoplasm. Cytochemical labeling of chitin with wheat germ agglutinin (WGA)/ovomucoid-gold complex showed that, except in the area of hyphal penetration, the chitin component of the host cell walls was structurally preserved at a time when the host cytoplasm had undergone complete disorganization. Interestingly, the same antagonistic process was observed in planta. The specific labeling patterns obtained with the exoglucanase-gold and WGA-ovomucoid-gold complexes confirmed that P. oligandrum successfully penetrated invading cells of the pathogen without causing substantial cell wall alterations, shown by the intense labeling of chitin. Cytological investigations of samples from P. oligandrum-inoculated tomato roots revealed that the fungus was able to colonize root tissues without inducing extensive cell damage. However, there was a novel finding concerning the structural alteration of the invading hyphae, evidenced by the frequent occurrence of empty fungal shells in root tissues. Pythium ingress in root tissues was associated with host metabolic changes, culminating in the elaboration of structural barriers at sites of potential fungal penetration. Striking differences in the extent of F. oxysporum f. sp. radicis-lycopersici colonization were observed between P. oligandrum-inoculated and control tomato plants. In control roots, the pathogen multiplied abundantly through much of the tissues, whereas in P. oligandrum-colonized roots pathogen growth was restricted to the outermost root tissues. This restricted pattern of pathogen colonization was accompanied by deposition of newly formed barriers beyond the infection sites. These host reactions appeared to be amplified compared to those seen in nonchallenged P. oligandrum-infected plants. Most hyphae of the pathogen that penetrated the epidermis exhibited considerable changes. Wall appositions contained large amounts of callose, in addition to be infiltrated with phenolic compounds. The labeling pattern obtained with gold-complexed laccase showed that phenolics were widely distributed in Fusarium-challenged P. oligandrum-inoculated tomato roots. Such compounds accumulated in the host cell walls and intercellular spaces. The wall-bound chitin component in Fusarium hyphae colonizing P. oligandrum-inoculated roots was preserved at a time when hyphae had undergone substantial degradation. These observations provide the first convincing evidence that P. oligandrum has the potential to induce plant defense reactions in addition to acting as a mycoparasite.  相似文献   

2.
ABSTRACT The interaction between the oomycete Pythium oligandrum and various soilborne oomycete and fungal plant pathogens (P. ultimum, P. aphanidermatum, Fusarium oxysporum f. sp. radicis-lycopersici, Verticillium albo-atrum, Rhizoctonia solani, and Phytophthora megasperma) was studied by light and electron microscopy in order to assess the relative contribution of mycoparasitism and antibiosis in the antagonistic process. Scanning electron microscope investigations of the interaction regions showed that structural alterations of all pathogenic fungi and oomycetes (except for Phytophthora megasperma) occurred soon after contact with the antagonist. Light and transmission electron microscope studies of the interaction region between the antagonist and P. ultimum revealed that intimate contact between both partners preceded a sequence of degradation events including aggregation of host cytoplasm and penetration of altered host hyphae. Localization of the host wall cellulose component showed that cellulose was altered at potential penetration sites. A similar scheme of events was observed during the interaction between P. oligandrum and F. oxysporum f. sp. radicis-lycopersici, with the exception that complete loss of host protoplasm was associated with antagonist invasion. The interaction between P. oligandrum and R. solani resulted in an abnormal deposition of a wall-like material at potential penetration sites for the antagonist. However, the antagonist displayed the ability to circumvent this barrier and penetrate host hyphae by locally altering the chitin component of the host hyphal wall. Interestingly, antagonist cells also showed extensive alteration as evidenced by the frequent occurrence of empty hyphal shells. In the case of Phytophthora megasperma, hyphal interactions did not occur, but hyphae of the plant pathogen were damaged severely. At least two distinct mechanisms appear to be involved in the process of oomycete and fungal attack by P. oligandrum: (i) mycoparasitism, mediated by intimate hyphal interactions, and (ii) antibiosis, with alteration of the host hyphae prior to contact with the antagonist. However, the possibility that the antagonistic process may rely on the dual action of antibiotics and hydrolytic enzymes is discussed.  相似文献   

3.
4.
Oh E  Hansen EM 《Phytopathology》2007,97(6):684-693
ABSTRACT Port-Orford-cedar (POC) root disease, caused by Phytophthora lateralis, continues to kill POC in landscape plantings and natural forests in western North America. POC trees resistant to P. lateralis have been identified and propagated. Cytological observations of P. lateralis in susceptible and resistant roots and stems were made with light and transmission electron microscopy to identify resistance mechanisms. No differences in infection pathway and initial colonization were observed between susceptible and resistant roots, although there were differences in the rate and extent of development. Germ tubes formed appressoria, and penetration hyphae grew either between or directly through epidermal cell walls; inter- and intracellular hyphae colonized the root cortex. In susceptible roots, hyphae penetrated into the vascular system within 48 h of inoculation. In contrast, hyphae in roots of resistant seedlings grew more slowly in cortical cells and were not observed to penetrate to the vascular tissues. In resistant roots, infection was marked by general thickening of cortical cell walls, wall appositions around penetrating hyphae, collapse of cortical cells, and accumulation of osmophillic granules around hyphae. In susceptible stems, hyphae grew inter- and intracellularly in all cells of the secondary phloem except fiber cells, but were concentrated in sieve and parenchyma cells in the functional phloem. The pattern of penetration and colonization of hyphae was similar in the resistant stems, except that hyphae were found in the fiber cells of the xylem. In resistant stems, there were fewer hyphae in the functional phloem, and cytological changes such as damaged nuclei and disintegrated cytoplasm were evident. Structural changes in resistant stems included collapsed cells, wall thickening, secretory bodies, apposition of electron dense materials, and crystals in cell walls.  相似文献   

5.
ABSTRACT Phytophthora nicotianae and P. palmivora infect and cause rot of fibrous roots of susceptible and tolerant citrus rootstocks in Florida orchards. The infection and colonization by the two Phytophthora spp. of a susceptible citrus host, sour orange (Citrus aurantium), and a tolerant host, trifoliate orange (Poncirus trifoliata), were compared using light and electron microscopy. Penetration by both Phytophthora spp. occurred within 1 h after inoculation, regardless of the host species. No differences were observed in mode of penetration of the hypodermis or the hosts' response to infection. After 24 h, P. palmivora had a significantly higher colonization of cortical cells in susceptible sour orange than in tolerant trifoliate orange. Intracellular hyphae of both Phytophthora spp. were observed in the cortex of sour orange, and cortical cells adjacent to intercellular hyphae of P. palmivora were disrupted. In contrast, the cortical cells of sour orange and trifoliate orange adjacent to P. nicotianae hyphae and the cortical cells of trifoliate orange adjacent to P. palmivora were still intact. After 48 h, the cortical cells of both hosts adjacent to either Phytophthora spp. were disrupted. After 48 and 72 h, P. palmivora hyphae colonized the cortex of sour orange more extensively than the cortex of trifoliate orange; P. palmivora also colonized both hosts more extensively than P. nicotianae. A higher rate of electrolyte leakage among host-pathogen combinations reflected the combined effects of greater cell disruption by P. palmivora than by P. nicotianae, and the higher concentration of electrolytes in healthy roots of trifoliate orange than of sour orange. Although cellular responses unique to the tolerant host were not observed, reduced hyphal colonization by both pathogens in the cortex of trifoliate orange compared with sour orange is evidence for a putative resistance factor(s) in the trifoliate orange roots that inhibits the growth of Phytophthora spp.  相似文献   

6.
Gnomonia fragariae is a poorly studied ascomycete, which was recently demonstrated to be a cause of severe root rot and petiole blight of strawberry. The pathogen was genetically transformed with the GFP as a vital marker and hygromycin resistance gene. Several stable transformants were obtained, which did not differ in their phenotype from the wild type isolate. Using one of the GFP-tagged isolates the infection process and colonization of roots and petioles of host plant by the pathogen were studied. Fluorescence microscopy examinations of the inoculated plants at different time points showed that plant infection occurs 24 h after inoculation and intensively continues during first 3 days. The specific penetration sites on epidermal cells and preferences in colonization for certain root and petiole tissues were observed. The pathogen intensively colonized and destroyed cortex of roots and petioles and spread rapidly longitudinally within intercellular spaces. The petioles were colonized by the hyphae, which grew mostly in the intracellular spaces of the cortical cells while in the roots the intracellular growth of hyphae occurred only in the later stages of infection. The fungus was also capable to infect the vascular tissues of petioles although these were not the primary tissues colonized by the pathogen. The mature ascomata were formed on the infected petiole bases several weeks after the inoculation. This study presents a genetic transformation method for Gnomonia fragariae and it demonstrates details on infection process and colonization of root, crown and petiole tissues of strawberry by the pathogen.  相似文献   

7.
 光镜和电镜观察表明,禾顶囊壳小麦变种(Gaeumannomyces graminis var.tritici,小麦全蚀病菌)对小麦种子根的侵染过程可分为侵入前、侵入表皮层、进入皮层和进入中柱等4个连续阶段。麦根接菌后在15℃下培养,48 h后侵入表皮层细胞,60 h后进入皮层,120 h后进入中柱。病原菌主要以侵染菌丝直接侵入表皮层,表皮细胞间隙和根毛基细胞是主要侵入部位,少数由附着枝侵入。菌丝穿透细胞壁有明显的酶解作用特征,菌丝先端前方胞壁上还产生电子密物质。皮层细胞是病原菌定殖和发展的主要场所,病原菌还能离解胞间层,形成胞外空间,特别有利于菌丝和菌丝束的扩展。在侵入位点的寄主细胞壁和质膜之间,形成多种形状的木质管,其数量与侵入菌丝的数目相对应,但木质管不能阻止菌丝进入细胞。菌丝进入中柱后,可阻塞导管和筛管。小麦细胞发生退行性病变,尤以细胞壁膨大崩坏和早期质壁分离最明显,细胞间隙还产生性质不明的黄色物质。  相似文献   

8.
The compatible interaction of pepper stems with Phytophthora capsici showed more rapid and severe disease development than did the incompatible interaction, although pathogen penetration styles of host cells in compatible and incompatible interactions were similar to each other. Treatment with -β-amino- n -butyric acid (BABA) protected the pepper plants against P. capsici infection. Reduced hyphal growth and sporangial formation were found after P. capsici infection in BABA-induced resistant and incompatible reactions. One of the most noticeable ultrastructural features of the BABA-induced resistant reaction was the formation of electron-dense wall appositions. The thick and dense wall appositions that encased the haustoria restricted haustorial development, thus leading to limitation of further pathogen penetration into inner plant tissues. A main host response in the incompatible interaction was the occlusion of cortical cells with an amorphous material. Plugging of the intercellular spaces in the cortical cells with electron opaque material was frequently observed in the incompatible interaction, but not in the compatible interaction. Another common feature of the BABA-induced resistant and incompatible reactions was degeneration of mitochondrial structure within penetrating hyphal cytoplasm. The mitochondrial structure in the BABA-induced resistant or incompatible reactions had no distinct double membrane layer and well-shaped cristae.  相似文献   

9.
ABSTRACT Peronospora tabacina is an obligate plant pathogen that causes downy mildew disease on several species of Nicotiana, including N. tabacum (tobacco). The primary objective of this study was to use gnotobiotic associations to describe interactions between the pathogen and roots of either N. tabacum (cv. KY14) or N. repanda. We found that the pathogen was capable of moving systemically from shoots to roots of both host species and emerged from the root tissues as hyphae. We also demonstrated that root-associated hyphae were infectious on roots of nearby plants and resulted in new systemic infections. Following overnight darkness, sporulation of the pathogen was observed on infected roots exposed to air on both host species. We also found that within 2 months in culture, structures resembling resting stages of Peronospora tabacina were produced on hyphae emerging from roots of N. repanda but not N. tabacum. These findings appear relevant to both the epidemiology of the disease and to future studies of this and other downy mildew pathosystems.  相似文献   

10.
Ultrastructural aspects of host–parasite interactions were investigated in fruits and leaves of citrus (satsuma mandarin) infected with Elsinoe fawcettii. Fungal infection induced host tissues to form cork layers bordering the necrotic areas below the infected sites. The cork layers were composed of compact host cells with convoluted cell walls and alternating lamellations, indicating ligno–suberized tissues in the wound periderm. No host tissues below the cork layers were invaded by hyphae. Hyphae grew intercellularly and intracellularly, often causing hypertrophy and compartmentalization of infected host cells. Also, host cells adjacent to invading hyphae showed accumulation of electron-dense materials and the formation of host cell wall protuberances in intercellular spaces. Hyphae had concentric bodies that showed an electron-transparent core surrounded by an electron-dense layer with radiating filamentous structures on their surface. One or more intrahyphal hyphae were found in the cytoplasm of intercellular or intracellular hyphae. These results suggest that the ligno–suberized cork layers in the wound periderm of citrus act as a protective barrier, which leads to restricted growth of E. fawcettii in bordered scab lesions. The fungus is thought to form concentric bodies and intrahyphal hyphae as a survival mechanism against the water- and nutrient-deficient environments that occur in the cork layers of necrotic host parts.  相似文献   

11.
Ralstonia solanacearum strain OE1-1 causes bacterial wilt on tobacco plants. The popA -mutant 31b, derived from OE1-1 by insertion of transposon Tn 4431 , did not cause wilt on tobacco plants inoculated through the roots. However, when 31b was directly inoculated into xylem vessels, the tobacco plants wilted, similarly to those inoculated with OE1-1. 31b retained its exopolysaccharide productivity and its type-III secretion function. Furthermore, 31b grew in intercellular spaces and systemically infected tobacco plants, similarly to OE1-1. popA consists of an operon with popB and popC , and suppression of popB and popC expression resulting from polar mutation by transposon insertion did not affect the virulence of 31b. The mutated popA ( popA31b ) was composed of 960 nucleotides, including 39 derived from Tn 4431. A recombinant mutant from OE1-1, where popA31b was introduced by marker exchange, showed the same phenotype as 31b. PopA31b protein was extracellularly secreted by 31b co-cultured with Arabidopsis thaliana . These results suggest that PopA31b extracellularly secreted by 31b in intercellular spaces may be implicated in suppression of disease development, leading to inability of the bacteria to induce wilt on plants. Taken together, interactions between host plants and R. solanacearum existing in intercellular spaces immediately after invasion may be involved in disease development.  相似文献   

12.
小麦雪霉叶枯病菌的侵染过程   总被引:7,自引:0,他引:7  
 本文报道了小麦雪霉叶枯病菌Gerlachia nivalis的叶面侵染过程。该菌分生孢子发芽后相互结合,形成网状复合体,产生粗壮的叶面菌丝,经由气孔保卫细胞间隙侵入,不产生特化的侵染机构。侵染菌丝在叶肉细胞间和细胞内扩展,也可由气孔逸出在叶面蔓延。分生孢子梗由分生孢子座上产生,由气孔抽出。产孢细胞顶端有环痕。叶面菌丝亦能产孢。寄主组织病变特点表明该菌产生活性很强的胞外酶。  相似文献   

13.
ABSTRACT Phytophthora nicotianae is a common and destructive pathogen of numerous ornamental, agronomic, and horticultural crops such as tobacco, tomato, and citrus. We have developed a species-specific polymerase chain reaction (PCR) assay for rapid and accurate detection of this pathogen in irrigation water, a primary source of inoculum and an efficient means of propagule dissemination. This PCR assay consists of a pair of species-specific primers (PN), customization of a commercial soil DNA extraction kit for purification of DNA from propagules in irrigation water, and efficient PCR protocols for primer tests and sample detection. The PN primers proved adequately specific for P. nicotianae in evaluations with 131 isolates of P. nicotianae, 102 isolates from 15 other species of Phytophthora, and 64 isolates from a variety of other oomycetes, true fungi, and bacteria. These isolates originated from a wide range of host plants, three substrates (plant tissue, soil, and irrigation water), and numerous geographic locations. The detection sensitivity is between 80 and 800 fg DNA/mul. The assay detected the pathogen in naturally infested water samples from Virginia and South Carolina nurseries more rapidly and accurately than standard isolation methods. Use of this PCR assay can assist growers in making timely disease management decisions with confidence.  相似文献   

14.
基于环介导等温扩增技术检测雪松疫霉根腐病菌   总被引:2,自引:0,他引:2  
雪松疫霉根腐病菌(Phytophthora lateralis Tucker et Milbrath)是一种重要的毁灭性植物病原菌,也是我国进境植物检疫性有害生物。目前,我国未有该病害发生的报道,为了防止P.lateralis的传入和扩散,需对其进行快速、准确的检测。本文利用环介导等温扩增技术(loop-mediated isothermal amplification,LAMP),以Ypt1基因为靶标序列,设计LAMP特异性引物,建立LAMP反应体系,并对灵敏度和特异性进行检测。结果表明:整个检测过程仅需80 min,即可通过肉眼观察直接判定检测结果。在特异性检测中,P.lateralis菌株都能观察到天蓝色的阳性反应,而其他疫霉菌和真菌供试菌株均呈阴性反应。在灵敏度检测中,最低检测限为100 pg/μL。该方法的建立为P.lateralis的检疫鉴定及其所致病害的快速诊断提供了新技术。  相似文献   

15.
The decline of cork oak (Quercus suber) stands in Iberian Peninsula is associated with infection by Phytophthora cinnamomi. Most Phytophthora species secrete elicitins, which can enhance defence reactions against some pathogens. Here cytological and physiological effects of the elicitins cryptogein and capsicein on cork oak root infection by P. cinnamomi were evaluated. The progression of the pathogen in root tissue and its effects on total fatty acid (TFA) composition of roots and leaves were analysed in seedlings. Net photosynthesis (P n ), stomatal conductance (g s ), chlorophyll a fluorescence measurements (quantum yield of linear electron transport ? e , photochemical quenching q P, non-photochemical quenching NPQ) and carotenoid determinations were carried out in well established (4?months) plants. In elicitin-treated roots, 2?days after inoculation, the pathogen which presented loss of viability and membrane degradation was mainly restricted to the intercellular spaces of the cortical parenchyma, and did not reach the vascular cylinder. Electron dense materials accumulated in the intercellular spaces of the cortex next to disorganized hyphae, suggested to be related with defence reactions. Cryptogein (or its interaction with P. cinnamomi) induced enhanced lipid synthesis in leaves, which may contribute to preserve membrane stability. P. cinnamomi decreased P n , g s , ? e , and q P, whereas elicitin-treated plants displayed values similar to controls. Overall, the results indicated a resistance response of cork oak against this oomycete, induced by the elicitins.  相似文献   

16.
17.
ABSTRACT Chronological events of the intercellular interaction between Verticillium lecanii and the postharvest pathogen Penicillium digitatum were investigated by transmission electron microscopy and gold cytochemistry. Growth inhibition of P. oligandrum as a response to V. lecanii attack correlated with striking host changes including retraction of the plasma membrane and cytoplasm disorganization. Such changes were associated with the deposition on the inner host cell surface of a chitin- and cellulose-enriched material which appeared to be laid down as a structural defense reaction. The accumulation of chitin in the newly formed material correlated with a decrease in the amount of wallbound chitin. However, the deposition of cellulose appeared to correspond to a de novo synthesis, as evidenced by the occurrence of cellulose-containing vesicles which released their content in the space between the invaginated plasma membrane and the host cell wall. Results of the present study provide the first ultrastructural and cytochemical evidence that antagonism, triggered by V. lecanii, is a multifaceted process in which antibiosis, with alteration of the host hyphae prior to contact with the antagonist, appears to be the key process in the antagonism against P. digitatum.  相似文献   

18.
The growth of a coffee orange rust fungus (Hemileia vastatrix Berk and Br.) isolate (race II) and the sequence of responses it induced in leaves of resistant Coffea arabica L. and C. congensis Froehner as well as on a susceptible C. arabica were investigated cytologically and biochemically. The percentages of germinated urediospores and of appressoria formed over stomata as well as the fungal growth inside leaf tissues were similar in resistant and susceptible leaves until the 3rd day after the inoculation. In the susceptible leaves, at the majority of the infection sites (70%) the fungus pursued its growth without apparent inhibition while in the resistant leaves the fungus ceased its growth with higher frequency (34% in C. arabica and 54% in C. congensis) after the formation of at least one haustorium. The first signs of incompatibility, detected 2 days after the inoculation, were cytologically expressed by hypersensitive host cell death (HR), host cell wall autofluorescence and haustoria encasement with callose and β-1,4-glucans. Biochemically, two peaks of phenylalanine ammonia-lyase (PAL) activity were detected by 2 and 5 days after the inoculation. The 1st peak coincided with the early accumulation of phenolic compounds and with the beginning of cell death. The 2nd peak could be related to later accumulation of phenols and the lignification of the host cell walls. About 5–7 days after the inoculation, ultrastructural observations revealed the accumulation of a material partially crystallized in the intercellular spaces around the senescent hyphae, next to dead host cells and in close association with the middle lamella that initially labelled for pectins. It also contained polysaccharides and phenolic-like compounds. Cellulose, hemicellulose, extensins, hydroxyproline-rich glycoproteins and proteins were not detected. The hypertrophy of the host cells in the infection area were also observed around 12 days after the inoculation corresponding macroscopically to the reaction flt.In susceptible plants, cell death was also observed 3 days after the inoculation but only in a reduced percentage of infection sites in which the fungus aborted at an early stage. A late haustorium encasement and stimulation of PAL activity were also observed but these delayed host responses did not prevent fungal growth and sporulation.The intercellular material, only observed in the resistant plants, is here reported for the first time and although its role is unknown it might be the result of plant cell death.  相似文献   

19.
无致病性腐霉的生防作用和诱导防卫反应   总被引:7,自引:5,他引:7       下载免费PDF全文
寡雄腐霉Pythium oligandrum作为一种重要的土传病害生防因子越来越受到关注,它能在多种重要农作物根围定殖,对20多种病原真菌或其它卵菌具有拮抗或寄生作用,并能诱导植物产生防卫反应.寡雄腐霉产生的拟激发素寡雄蛋白诱导番茄系统获得抗性,抵抗寄生疫霉Phytophthora parasitica和尖孢镰刀菌羽扇豆-番茄枯萎病菌Fusarium oxysporum f.sp.radicis-lycopersici侵入,显著降低病害的发生率.作者对寡雄腐霉的分离与鉴定、寄主种类、寄生作用、抗生作用和拟激发素寡雄蛋白诱导番茄系统获得抗性等方面的研究进行了综述.  相似文献   

20.
Phytophthora ramorum and Phytophthora kernoviae are two fungus‐like organisms affecting a wide range of hardy ornamental plants and trees. Emergency measures are implemented in the European Union for P. ramorum and aim to eradicate, or at least prevent the further spread of this harmful pathogen. Phytophthora kernoviae has so far been found only in New Zealand, the UK and Ireland, and is regulated on a UK level using the same measures as for P. ramorum. Both Phytophthora species have a similar host range and can be diagnosed using similar methods. Therefore a duplex PCR detection, based on the internal transcribed spacer (ITS) regions of the ribosomal DNA, was developed to enable simultaneous testing to reduce diagnostic times. The method was tested for its specificity and sensitivity, and on plant samples, and was shown to be reliable for identification of the two organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号