首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT A random set of recombinant inbred (RI) lines (F2:7) derived from the cross of the inbred lines Mo17 (resistant) and B73 (susceptible) were evaluated for resistance to southern leaf blight (SLB) caused by Cochliobolus heterostrophus race O. The RI lines were genotyped at a total of 234 simple sequence repeat, restriction fragment length polymorphism, or isozyme loci. Field plots of the RI lines were inoculated artificially with an aggressive isolate of C. heterostrophus race O in each of two growing seasons in North Carolina. Lines were rated for percent SLB severity two (1996) or three (1995) times during the grain-filling period. Data also were converted to area under the disease progress curve (AUDPC) and analyzed using the composite interval mapping option of the PLABQTL program. When means of disease ratings over years were fitted to models, a total of 11 quantitative trait loci (QTLs) were found to condition resistance to SLB, depending upon which disease ratings were used in the analyses. When the AUDPC data were combined and analyzed over environments, seven QTLs, on chromosomes 1, 2, 3, 4, 7, and 10 were found to come from the resistant parent Mo17. An additional QTL for resistance on chromosome 1 came from the susceptible parent B73. The eight identified QTLs accounted for 46% of the phenotypic variation for resistance. QTL x environment interactions often were highly significant but, with one exception, were the result of differences in the magnitude of QTL effects between years and not due to changes in direction of effects. QTLs on the long arm of chromosome 1 and chromosomes 2 and 3 had the largest effects, were the most consistently detected, and accounted for most of the phenotypic variance. No significant additive x additive epistatic effects were detected. These data support earlier reports of the polygenic inheritance of resistance to SLB of maize.  相似文献   

2.
ABSTRACT Development of pea cultivars resistant to Aphanomyces root rot, the most destructive root disease of pea worldwide, is a major disease management objective. In a previous study of a mapping population of 127 recombinant inbred lines (RILs) derived from the cross 'Puget' (susceptible) x '90-2079' (partially resistant), we identified seven genomic regions, including a major quantitative trait locus (QTL), Aph1, associated with partial resistance to Aphanomyces root rot in U.S. fields (21). The objective of the present study was to evaluate, in the same mapping population, the specificity versus consistency of Aphanomyces resistance QTL under two screening conditions (greenhouse and field, by comparison with the previous study) and with two isolates of Aphanomyces euteiches originating from the United States and France. The 127 RILs were evaluated in the greenhouse for resistance to pure culture isolates SP7 (United States) and Ae106 (France). Using the genetic map previously described, a total of 10 QTL were identified for resistance in greenhouse conditions to the two isolates. Among these were Aph1, Aph2, and Aph3, previously detected for partial field resistance in the United States. Aph1 and Aph3 were detected with both isolates and Aph2 with only the French isolate. Seven additional QTL were specifically detected with one of the two isolates and were not identified for partial field resistance in the United States. The consistency of the detected resistance QTL over two screening environments and isolates is discussed with regard to pathogen variability, and disease assessment and QTL detection methods. This study suggests the usefulness of three consistent QTL, Aph1, Aph2, and Aph3, for marker-assisted selection.  相似文献   

3.
ABSTRACT A recombinant inbred line population derived from a cross between the maize lines NC300 (resistant) and B104 (susceptible) was evaluated for resistance to southern leaf blight (SLB) disease caused by Cochliobolus heterostrophus race O and for days to anthesis in four environments (Clayton, NC, and Tifton, GA, in both 2004 and 2005). Entry mean and average genetic correlations between disease ratings in different environments were high (0.78 to 0.89 and 0.9, respectively) and the overall entry mean heritability for SLB resistance was 0.89. When weighted mean disease ratings were fitted to a model using multiple interval mapping, seven potential quantitative trait loci (QTL) were identified, the two strongest being on chromosomes 3 (bin 3.04) and 9 (bin 9.03-9.04). These QTL explained a combined 80% of the phenotypic variation for SLB resistance. Some time-point-specific SLB resistance QTL were also identified. There was no significant correlation between disease resistance and days to anthesis. Six putative QTL for time to anthesis were identified, none of which coincided with any SLB resistance QTL.  相似文献   

4.
Wangshuibai is a Chinese landrace wheat with a high level of resistance to fusarium head blight (FHB) and deoxynivalenol (DON) accumulation. Using an F7 population of recombinant inbred lines (RILs) derived from the cross between Wangshuibai and Annong 8455 for molecular mapping of quantitative trait loci (QTL) for FHB resistance, the proportion of scabbed spikelets (PSS) and DON content were assessed under field conditions. Composite interval mapping revealed that two and three QTL were significantly associated with low PSS and low DON content, respectively, over 2 years. QTL on chromosomes 3B and 2A explained 17 and 11·5%, respectively, of the phenotypic variance for low PSS, whereas QTL on chromosomes 5A, 2A and 3B explained 12·4, 8·5 and 6·2%, respectively, of the phenotypic variance for low DON content. The 3B QTL appeared to be associated mainly with low PSS, and the 5A QTL primarily with low DON content in Wangshuibai. The 2A QTL had minor effects on both low PSS and DON content. Microsatellite and AFLP markers linked to these QTL should be useful for marker-assisted selection of QTL for low PSS and low DNA content from Wangshuibai.  相似文献   

5.
The objectives of this research were to identify quantitative trait loci (QTL) for Stewart's wilt resistance from a mapping population derived from a sweet corn hybrid that is highly resistant to Pantoea stewartii and to determine if marker-based selection for those QTL could substantially improve Stewart's wilt resistance in a population derived from a cross of resistant lines and a highly susceptible sweet corn inbred. Three significant QTL for Stewart's wilt resistance on chromosomes 2 (bin 2.03), 5 (bin 5.03), and 6 (bin 6.06/6.07) explained 31% of the genetic variance in a population of 110 F(3:4) families derived from the sweet corn hybrid Bonus. The three QTL appeared to be additive in their effects on Stewart's wilt ratings. Based on means of families that were either homozygous or heterozygous for marker alleles associated with the resistance QTL, the QTL on chromosomes 2 and 6 appeared to have dominant or partially dominant gene action, while the QTL on chromosome 5 appeared to be recessive. A population of 422 BC(2)S(2) families was derived from crosses of a sweet corn inbred highly susceptible to Stewart's wilt, Green Giant Code 88 (GG88), and plants from two F(3:4) families (12465 and 12467) from the Bonus mapping population that were homozygous for marker alleles associated with Stewart's wilt resistance at the three QTL. Mean Stewart's wilt ratings for BC(2)S(2) families were significantly (P < 0.05) lower for families that were homozygous for the bnlg1902 marker allele (bin 5.03) from resistant lines 12465 or 12467 than for families that were heterozygous at this marker locus or homozygous for the bnlg1902 marker allele from GG88. Resistance associated with this QTL was expressed only if F(3:5) or BC(2)S(2) families were homozygous for marker alleles associated with the resistant inbred parent (P(1)). Marker alleles identified in the F(3:5) mapping population that were in proximity to the resistance QTL on chromosomes 2 and 6 were not polymorphic in crosses of GG88 with 12465 and 12467. Selection for other polymorphic marker loci adjacent to these two regions did not improve Stewart's wilt resistance of BC(2)S(2) families.  相似文献   

6.
Bai G  Kolb FL  Shaner G  Domier LL 《Phytopathology》1999,89(4):343-348
ABSTRACT Scab is a destructive disease of wheat. To accelerate development of scab-resistant wheat cultivars, molecular markers linked to scab resistance genes have been identified by using recombinant inbred lines (RILs) derived by single-seed descent from a cross between the resistant wheat cultivar Ning 7840 (resistant to spread of scab within the spike) and the susceptible cultivar Clark. In the greenhouse, F(5), F(6), F(7), and F(10) families were evaluated for resistance to spread of scab within a spike by injecting about 1,000 conidiospores of Fusarium graminearum into a central spikelet. Inoculated plants were kept in moist chambers for 3 days to promote initial infection and then transferred to greenhouse benches. Scab symptoms were evaluated four times (3, 9, 15, and 21 days after inoculation). The frequency distribution of scab severity indicated that resistance to spread of scab within a spike was controlled by a few major genes. DNA was isolated from both parents and F(9) plants of the 133 RILs. A total of 300 combinations of amplified fragment length polymorphism (AFLP) primers were screened for polymorphisms using bulked segregant analysis. Twenty pairs of primers revealed at least one polymorphic band between the two contrasting bulks. The segregation of each of these bands was evaluated in the 133 RILs. Eleven AFLP markers showed significant association with scab resistance, and an individual marker explained up to 53% of the total variation (R(2)). The markers with high R(2) values mapped to a single linkage group. By interval analysis, one major quantitative trait locus for scab resistance explaining up to 60% of the genetic variation for scab resistance was identified. Some of the AFLP markers may be useful in marker-assisted breeding to improve resistance to scab in wheat.  相似文献   

7.
The genetic architecture underlying resistance in maize to southern leaf blight (SLB) caused by Cochliobolus heterostrophus race O is not well understood. The objective of this study was to identify loci contributing to SLB resistance in two recombinant inbred line populations and to compare these to SLB resistance loci in other populations. The two populations used were derived from crosses between maize inbred lines H99 and B73 (HB population-142 lines) and between B73 and B52 (BB population-186 lines). They were evaluated for SLB resistance and for days from planting to anthesis (DTA) in 2005 and 2006. Two replications arranged as randomized complete blocks were assessed in each year for each population. Entry mean heritabilities for disease resistance were high for both populations (0.876 and 0.761, respectively). Quantitative trait loci (QTL) for SLB resistance were identified in bins 3.04 (two QTL), 6.01, and 8.05 in the HB population and in bin 2.07 in the BB population. No overlap of DTA and SLB resistance QTL was observed, nor was there any phenotypic correlation between the traits. A comparison of the results of all published SLB resistance QTL studies suggested that bins 3.04 and 6.01 are 'hotspots' for SLB resistance QTL.  相似文献   

8.
Yu JB  Bai GH  Zhou WC  Dong YH  Kolb FL 《Phytopathology》2008,98(1):87-94
Use of diverse sources of Fusarium head blight (FHB)-resistant germplasm in breeding may significantly improve wheat resistance to FHB. Wangshuibai is an FHB-resistant Chinese landrace unrelated to cv. Sumai 3, the most commonly used FHB-resistant source. In all, 139 F(6) recombinant inbred lines were developed from a cross between Wangshuibai and an FHB-susceptible cultivar, Wheaton, to map quantitative trait loci (QTL) for wheat resistance to initial infection (type I resistance), spread of FHB symptoms within a spike (type II resistance), and deoxynivalenol (DON) accumulation (type III resistance) in infected grain. The experiments were conducted in a greenhouse at Manhattan, KS from 2003 to 2005. More than 1,300 simple-sequence repeat and amplified fragment length polymorphism markers were analyzed in this population. Five QTL for type I resistance were detected on chromosomes 3AS, 3BS, 4B, 5AS, and 5DL after spray inoculation; seven QTL for type II resistance were identified on chromosomes 1A, 3BS, 3DL, 5AS, 5DL, and 7AL after point inoculation; and seven QTL for type III resistance were detected on chromosomes 1A, 1BL, 3BS, 5AS, 5DL, and 7AL with the data from both inoculation methods. These QTL jointly explained up to 31.7, 64, and 52.8% of the phenotypic variation for the three types of FHB resistance, respectively. The narrow-sense heritabilities were low for type I resistance (0.37 to 0.41) but moderately high for type II resistance (0.45 to 0.61) and type III resistance (0.44 to 0.67). The QTL on the distal end of 3BS, 5AS, and 5DL contributed to all three types of resistance. Two QTL, on 7AL and 1A, as well as one QTL near the centromere of 3BS (3BSc), showed effects on both type II and type III resistance. Selection for type II resistance may simultaneously improve type I and type III resistance as well. The QTL for FHB resistance identified in Wangshuibai have potential to be used to pyramid FHB-resistance QTL from different sources.  相似文献   

9.
ABSTRACT Resistance to the chlorosis factor of tan spot of wheat, caused by the ascomycete Pyrenophora tritici-repentis, has been reported to be quantitative and a single quantitative trait loci (QTL), QTsc.ndsu-1A, explained 35% of the variation for resistance to a single isolate in seedlings of recombinant inbred (RI) lines derived from the cross W-7984/Opata 85. The objectives of this study were to determine the number and locations of genes conditioning resistance to the same isolate in adult plants of this population and three isolates in seedlings of wheat RI lines derived from the cross W-7976/Trenton. An extensive restriction fragment length polymorphism map exists for the W-7984/Opata 85 population, and markers significantly associated (P < 0.01) with resistance to tan spot were selected to analyze the W-7976/Trenton population. A multiple regression model accounted for 49% of the variation for resistance in adult plants with QTsc.ndsu-1A, explaining 26% of the variation. QTsc.ndsu-1A explained 47, 58, and 64% of the variation for resistance in seedlings to isolates Pti2, 78-62, and D308, respectively. These results showed that the QTL for tan spot resistance on chromosome 1AS was effective in both seedlings and adult plants and against isolates from different races of P. tritici-repentis.  相似文献   

10.
ABSTRACT In our previous report, quantitative trait loci (QTL) for field adult plant resistance to crown rust were identified in an oat population of 152 F(5:6) recombinant inbred lines from the cross of 'Ogle' (susceptible)/MAM17-5 (resistant). The objectives of the present study were to identify in the same population, the number, genomic location, and effect of QTL and digenic QTL epistasis associated with greenhouse seedling resistance to isolates of Puccinia coronata to determine if the QTL detected are isolate-specific and to compare them with previously detected QTL for field resistance. Reaction type was scored on greenhouse seedlings inoculated with three isolates. Composite interval mapping was conducted to identify genomic regions associated with resistance using a framework map of 272 molecular markers. Two QTL, Pcq1 and Pcq2, were identified for resistance to each of the three isolates. Pcq1, the major QTL controlling field resistance, did not confer detectable greenhouse seedling resistance when present singly; however, Pcq1 did serve as an enhancer of seedling resistance when it was combined with Pcq2. The final model explained 76.5, 77.9, and 79.3% of total phenotypic variation for resistance to isolates MNB248, MNB249, and MNB251, respectively. Race-specificity of quantitative resistance remains to be further examined.  相似文献   

11.
ABSTRACT A quantitative method to screen common bean (Phaseolus vulgaris) plants for resistance to Bean common mosaic necrosis virus (BCMNV) is described. Four parameters were assessed in developing the quantitative method: symptoms associated with systemic virus movement, plant vigor, virus titer, and plant dry weight. Based on these parameters, two rating systems (V and VV rating) were established. Plants from 21 recombinant inbred lines (RILs) from a Sierra (susceptible) x Olathe (partially resistant) cross inoculated with the BCMNV-NL-3 K strain were used to evaluate this quantitative approach. In all, 11 RILs exhibited very susceptible reactions and 10 RILs expressed partially resistant reactions, thus fitting a 1:1 susceptible/partially resistant ratio (chi(2) = 0.048, P = 0.827) and suggesting that the response is mediated by a single gene. Using the classical qualitative approach based only on symptom expression, the RILs were difficult to separate into phenotypic groups because of a continuum of responses. By plotting mean percent reduction in either V (based on visual symptoms) or VV (based on visual symptoms and vigor) rating versus enzyme-linked immunosorbent assay (ELISA) absorbance values, RILs could be separated clearly into different phenotypic groups. The utility of this quantitative approach also was evaluated on plants from 12 cultivars or pure lines inoculated with one of three strains of BCMNV. Using the mean VV rating and ELISA absorbance values, significant differences were established not only in cultivar and pure line comparisons but also in virus strain comparisons. This quantitative system should be particularly useful for the evaluation of the independent action of bc genes, the discovery of new genes associated with partial resistance, and assessing virulence of virus strains.  相似文献   

12.
ABSTRACT Partial resistance to Stewart's wilt (Erwina stewartii, syn. Pantoea stewartii), northern corn leaf blight (NCLB) (Exserohilum turcicum), and common rust (Puccinia sorghi) was observed in an F(2:3) population developed from a cross between the inbred sweet corn lines IL731a and W6786. The objective of this study was to identify quantitative trait loci (QTL) associated with partial resistance using restriction fragment length polymorphic markers. Phenotypic data were collected for 2 years for Stewart's wilt, NCLB, and common rust but, due to significant family-environment interaction, analysis was conducted individually on data from each year. In 2 years of evaluation for the three diseases, a total of 33 regions in the maize genome were associated with partial resistance describing from 5.9 to 18% of the total phenotypic variability. Of six regions common in both years, three were associated with partial resistance to Stewart's wilt (chromosomes 4:07, 5:03, and 6:04), one was associated with NCLB (chromosome 9:05), and two were associated with common rust (chromosomes 2:04 and 3:04). The rust QTL on 3S mapped to within 20 cM of the rp3 locus and explained 17.7% of the phenotypic variability. Some of the QTL associated with partial resistance to the three diseases have been reported previously, and some are described here for the first time. Results suggest it may be possible to consolidate QTL from various elite backgrounds in a manner analogous to the pyramiding of major resistance genes. We also report here on two QTL associated with anthocyanin production on chromosomes 10:6 and 5:03 in the general location of the a2 gene.  相似文献   

13.
Quantitative trait loci (QTL) for resistance to phytophthora root rot caused by Phytophthora capsici were investigated using two Korean P. capsici isolates and 126 F8 recombinant inbred lines derived from a cross of Capsicum annuum line YCM334 (resistant parent) and local cv. Tean (susceptible parent). The experimental design was a split plot with two replications. Highly significant effects of pathogen isolate, plant genotype, and genotype × isolate were detected. QTL mapping was performed using a genetic linkage map covering 1486·6 cM of the pepper genome, and consisted of 249 markers including 136 AFLPs (Amplified Fragment Length Polymorphisms), 112 SSRs (Simple Sequence Repeats) and one CAPS (Cleaved Amplified Polymorphic Sequence). Fifteen QTLs were detected on chromosomes 5 (P5), 10 (P10), 11 (P11), Pb and Pc using two data processing methods: percentage of wilted plants (PWP) and relative area under the disease progress curves (RAUDPC). The phenotypic variation explained by each QTL (R2) ranged from 6·0% to 48·2%. Seven QTLs were common to resistance for the two isolates on chromosome 5 (P5); six were isolate‐specific for isolate 09‐051 on chromosomes 10 (P10) and Pc, and two for isolate 07‐127 on chromosomes 11 (P11) and Pb. The QTLs in common with the major effect on the resistance for two isolates explained 20·0–48·2% of phenotypic variation. The isolate‐specific QTLs explained 6·0–17·4% of phenotypic variation. The result confirms a gene‐for‐gene relationship between C. annuum and P. capsici for root rot resistance.  相似文献   

14.
Black stem, caused by Phoma macdonaldii , is one of the most important diseases of sunflower in the world. Quantitative trait loci (QTLs) implicated in partial resistance to two single pycnidiospore isolates of P. macdonaldii (MP8 and MP10) were investigated using 99 recombinant inbred lines (RILs) from the cross between sunflower parental lines PAC2 and RHA266. The experimental design was a randomized complete block with three replications. High genetic variability and transgressive segregation were observed among RILs for partial resistance to P. macdonaldii isolates. QTL-mapping was performed using a recently developed high-density SSR/AFLP sunflower linkage map. A total of 10 QTLs were detected for black stem resistance. The phenotypic variance explained by each QTL (R2) was moderate, ranging from 6 to 20%. Four QTLs were common between two isolates on linkage group 5 and 15 whereas the others were specific for each isolate. Regarding isolate-specific and isolate-nonspecific QTLs detected for partial resistance, it is evident that both genetic effects control partial resistance to the disease isolates. This confirms the need to consider different isolates in the black stem resistance breeding programmes. The four SSR markers HA3700, SSU25, ORS1097 and ORS523_1 encompassing the QTLs for partial resistance to black stem isolates could be good candidates for marker assisted selection.  相似文献   

15.
Verticillium albo‐atrum is responsible for considerable yield losses in many economically important crops, among them alfalfa (Medicago sativa). Using Medicago truncatula as a model for studying resistance and susceptibility to V. albo‐atrum, previous work has identified genetic variability and major resistance quantitative trait loci (QTLs) to Verticillium. In order to study the genetic control of resistance to a non‐legume isolate of this pathogen, a population of recombinant inbred lines (RILs) from a cross between resistant line F83005.5 and susceptible line A17 was inoculated with a potato isolate of V. albo‐atrum, LPP0323. High genetic variability and transgressive segregation for resistance to LPP0323 were observed among RILs. Heritabilites were found to be 0·63 for area under the disease progress curve (AUDPC) and 0·93 for maximum symptom score (MSS). A set of four QTLs associated with resistance towards LPP0323 was detected for the parameters MSS and AUDPC. The phenotypic variance explained by each QTL (R2) was moderate, ranging from 4 to 21%. Additive gene effects showed that favourable alleles for resistance all came from the resistant parent. The four QTLs are distinct from those described for an alfalfa V. albo‐atrum isolate, confirming the existence of several resistance mechanisms in this species. None of the QTLs co‐localized with regions involved in resistance against other pathogens in M. truncatula.  相似文献   

16.
Ma HX  Bai GH  Zhang X  Lu WZ 《Phytopathology》2006,96(5):534-541
ABSTRACT Chinese Spring Sumai 3 chromosome 7A disomic substitution line (CS-SM3-7ADS) is highly resistant to Fusarium head blight (FHB), and an F(7) population of recombinant inbred lines derived from the cross CS-SM3-7ADS x Annong 8455 was evaluated for resistance to FHB to investigate main effects, epistasis, and environmental interactions of quantitative trait loci (QTLs) for FHB resistance. A molecular linkage map consists of 501 simple sequence repeat and amplified fragment length polymorphism markers. A total of 10 QTLs were identified with significant main effects on the FHB resistance using MapQTL and QTLMapper software. Among them, CS-SM3-7ADS carries FHB-resistance alleles at five QTLs on chromosomes 2D, 3B, 4D, and 6A. One QTL on 3BS had the largest effect and explained 30.2% of the phenotypic variance. Susceptible QTLs were detected on chromosomes 1A, 1D, 4A, and 4B. A QTL for enhanced FHB resistance was not detected on chromosome 7A of CS-SM3-7ADS; therefore, the increased FHB resistance in CS-SM3-7ADS was not due to any major FHB-resistance QTL on 7A of Sumai 3, but more likely was due to removal of susceptible alleles of QTLs on 7A of Chinese Spring. QTLMapper detected nine pairs of additive-additive interactions at 17 loci that explained 26% phenotypic variance. QTL-environment interactions explained 49% of phenotypic variation, indicating that the environments significantly affected the expression of the QTLs, especially these epistasis QTLs. Adding FHB-enhancing QTLs or removal of susceptible QTLs both may significantly enhance the degree of wheat resistance to FHB in a wheat cultivar.  相似文献   

17.
This study used the pathosystem of lettuce ( Lactuca spp.) and downy mildew ( Bremia lactucae ) as a model to investigate the inheritance of nonhost resistance, and focused on the contribution of quantitative trait loci (QTLs) to nonhost resistance at various developmental stages in the lettuce life cycle. A set of 28 backcross inbred lines (BILs) of L. saligna CGN05271 (nonhost) introgressions in a L. sativa cv. Olof (host) background identified 16 introgressions that contributed to resistance at various plant developmental stages: seedlings, young plants, adult plants in the greenhouse and adult plants in the field. This paper provisionally considered these introgressions to be 16 QTLs. Of these 16 QTLs, seven were identified previously and nine were new. For 15 QTLs ( Rbq1, Rbq2, rbq3–7 and Rbq8–15 ), the resistance alleles were derived from the nonhost L. saligna ; the resistance allele of the other QTL ( Rbq16 ) was from the susceptible L. sativa cv. Olof. Of the 15 QTLs in L. saligna , only two, rbq5 and rbq7 , were found to be effective at every plant developmental stage; the other 13 QTLs were only effective at certain developmental stages. Experiments with seven B. lactucae races did not provide evidence that any QTL was race-specific. The data suggest that nonhost resistance in L. saligna is the result of cumulative effects of many resistance QTLs operating at various developmental stages.  相似文献   

18.
Wang Y  Wang D  Deng X  Liu J  Sun P  Liu Y  Huang H  Jiang N  Kang H  Ning Y  Wang Z  Xiao Y  Liu X  Liu E  Dai L  Wang GL 《Phytopathology》2012,102(8):779-786
Tianjingyeshengdao' (TY) is a rice cultivar with durable resistance to populations of Magnaporthe oryzae (the causal agent of blast) in China. To understand the genetic basis of its resistance to blast, we developed a population of recombinant inbred lines from a cross between TY and the highly susceptible 'CO39' for gene mapping analysis. In total, 22 quantitative trait loci (QTLs) controlling rice blast resistance were identified on chromosomes 1, 3, 4, 5, 6, 9, 11, and 12 from the evaluation of four disease parameters in both greenhouse and blast nursery conditions. Among these QTLs, 19 were contributed by TY and three by CO39. Two QTL clusters on chromosome 6 and 12 were named Pi2-1 and Pi51(t), respectively. Pi2-1 was detected under both growth chamber and natural blast nursery conditions, and explained 31.24 to 59.73% of the phenotypic variation. Pi51(t) was only detected in the natural blast nursery and explained 3.67 to 10.37% of the phenotypic variation. Our results demonstrate that the durable resistance in TY is controlled by two major and seven minor genes. Identification of the markers linked to both Pi2-1 and Pi51(t) in this study should be useful for marker-aided selection in rice breeding programs as well as for molecular cloning of the identified resistance genes.  相似文献   

19.
Verticillium longisporum is one of the major pathogens of oilseed rape (Brassica napus; genome AACC, 2n = 38) in Europe. Current European cultivars possess only a low level of resistance against V. longisporum, meaning that heavy infection can cause major yield losses. The aim of this study was to identify quantitative trait loci (QTL) for resistance against V. longisporum as a starting point for marker-assisted breeding of resistant cultivars. Resistance QTL were localized in a segregating oilseed rape population of 163 doubled haploid (DH) lines derived by microspore culture from the F1 of a cross between two B. napus breeding lines, one of which exhibited V. longisporum resistance derived by pedigree selection from a resynthesized B. napus genotype. A genetic map was constructed comprising 165 restriction fragment length polymorphism, 94 amplified fragment length polymorphism and 45 simple sequence repeats (SSR) markers covering a total of 1,739 cM on 19 linkage groups. Seedlings of the DH lines and parents were inoculated with V. longisporum isolates in four greenhouse experiments performed in Sweden during autumn 1999. In three of the experiments the DH lines were inoculated with a mixture of five isolates, while in the fourth experiment only one of the isolates was used. The intention was to simulate four different environments with variable disease pressure, while still maintaining uniform conditions in each environment to enable reliable disease scoring. The disease index (DI) was calculated by scoring symptoms on a total of 21 inoculated plants per line in comparison to 21 noninoculated plants per line. Using the composite interval mapping procedure a total of four different chromosome regions could be identified that showed significant QTL for resistance in more than one environment. Two major QTL regions were identified on the C-genome linkage groups N14 and N15, respectively; each of these QTL consistently exhibited significant effects on resistance in multiple environments. The presence of flanking markers for the respective QTL was associated with a significant reduction in DI in the inoculated DH lines.  相似文献   

20.
Septoria tritici blotch (STB) is one of the most important leaf spot diseases in wheat worldwide. The goal of this study was to detect chromosomal regions for adult-plant resistance in large winter wheat populations to STB. Inoculation by two isolates with virulence to Stb6 and Stb15, both present in the parents, was performed and STB severity was visually scored plotwise as percent coverage of flag leaves with pycnidia-bearing lesions. 'Florett'/'Biscay' and 'Tuareg'/'Biscay', each comprising a cross of a resistant and a susceptible cultivar, with population sizes of 316 and 269 F(7:8) recombinant inbred lines, respectively, were phenotyped across four and five environments and mapped with amplified fragment length polymorphism, diversity array technology, and simple sequence repeat markers covering polymorphic regions of ≈1,340 centimorgans. Phenotypic data revealed significant (P < 0.01) genotypic differentiation for STB, heading date, and plant height. Entry-mean heritabilities (h(2)) for STB were 0.73 for 'Florett'/'Biscay' and 0.38 for 'Tuareg'/'Biscay'. All correlations between STB and heading date as well as between STB and plant height were low (r = -0.13 to -0.20). In quantitative trait loci (QTL) analysis, nine and six QTL were found for STB ratings explaining, together, 55 and 51% of phenotypic variation in 'Florett'/'Biscay' and 'Tuareg'/'Biscay', respectively. Genotype-environment and QTL-environment interactions had a large impact. Two major QTL were detected consistently across environments on chromosomes 3B and 6D from 'Florett' and chromosomes 4B and 6B from 'Tuareg', each explaining 12 to 17% of normalized adjusted phenotypic variance. These results indicate that adult-plant resistance to STB in both mapping populations was of a quantitative nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号