首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
ABSTRACT A tospovirus-like virus recovered from netted melon was transmitted by Thrips palmi in a persistent manner but had different cytopathological features from tospoviruses previously reported. Viral nucleocapsid (N) was purified with two protective reagents, 2-mercaptoethanol and L-ascorbic acid, and RNA extracted from the viral nucleocapsid was used for genomic analysis. The virus had a genome consisting of three single-stranded RNA molecules. The open reading frame on the viral complementary strand, located at the 3' end of the viral S RNA, encoded the N protein. The 3' terminus of this RNA also contained an eight-nucleotide sequence similar to the conserved sequence at the 3' end of genomic RNA molecules of tospoviruses. These features of the viral genome are identical to those of tospoviruses; therefore, this virus is considered to belong to the genus Tospovirus. Its N protein comprised 279 amino acids and had a molecular mass of 31.0 kDa. Comparisons of its amino acid sequence with those of known tospoviruses revealed less than 60% identity. This melon virus is concluded to be a distinct species in the genus Tospovirus, and the name Melon yellow spot virus is proposed.  相似文献   

2.
Two tospovirus isolates collected from tomato and bell pepper in Thailand were studied. The isolates induced severe necrotic mottling and/or necrotic spots and rings on the leaves and fruits of the respective plants as confirmed by back-inoculation. A polyclonal antiserum raised against its nucleocapsid (N) protein reacted only with an extract from plants infected with the homologous virus. Analysis of the nucleocapsid (N) gene sequence and its deduced amino acid sequence (Mw ∼31 kDa) showed 99% amino acid sequence homology with that of Tomato necrotic ring virus (TNRV). The nucleotide sequence of the 5΄ untranslated region and intergenic region flanking the N gene revealed typical features of the S RNA segment of tospoviruses. Mechanical inoculation of the virus on some plant species showed that most of the tested solanaceous species were susceptible to this virus. The biological, serological and molecular data presented here indicate that both isolates are identical to TNRV, a recently described tospovirus species in Thailand.  相似文献   

3.
 应用DAS-ELISA和RT-PCR方法从褪绿和银色斑驳的西瓜叶片中检测到病毒分离物(WSMoV-YN),感病样品能与WSMoV/GBNV复合抗血清(Agdia)呈阳性反应。获得WSMoV N蛋白的多克隆抗体,抗体能与WSMoV血清组成员CaCV和TZSV反应,但不能与INSV、TSWV、HCRV和GYSV反应。为明确引起该病害的病毒种类,采用Tospovirus通用引物对样品的总RNA进行RT-PCR扩增,获得长度为3 554 nt的S RNA全序列,经Blastn比对分析与WSMoV中国台湾分离物同源性最高,为95.8%,其N和NSs蛋白氨基酸序列同源性分别为99%和97.6%。构建系统进化树发现,西瓜银灰斑驳病毒云南分离物(WSMoV-YN)与其他WSMoV聚为一支。确定引起云南西瓜病害的病毒为WSMoV。  相似文献   

4.
ABSTRACT A new tospovirus was identified in iris cultivations in the Netherlands. Both serological comparisons and sequence determination of the S RNA demonstrate that this virus represents a new and distinct species, belonging to a separate serogroup, and for which the name iris yellow spot virus (IYSV) is proposed. The disease symptoms on iris are characterized by yellow spots on the leaves. Its experimental host range is very narrow and, in addition to iris, only includes Nicotiana benthamiana and Datura stramonium. The nucleoprotein of IYSV shows only 30 to 44% sequence identity with those of other tospoviruses identified so far; the highest homology being found with the tospovirus species of serogroup IV.  相似文献   

5.
 应用特异性引物MYSV-L-F和MYSV-L-R对海南5个市县采集的150份疑似感染病毒病的黄瓜样品进行RT-PCR检测,在三亚、乐东和东方等3个市县的18份样品中检测到甜瓜黄斑病毒(Melon yellow spot virus, MYSV)。选取采自三亚的分离物C29(MYSV-Hainan)进行MYSV全基因组克隆及序列分析,结果表明:该分离物的L RNA、M RNA和S RNA基因组全长分别为8 918 nt、4 815 nt和3 257 nt,与已知MYSV分离物的核苷酸相似性分别为97.4%~97.7%、96.2%~97.9%和94.8%~99.8%,系统进化关系分析与相似性分析一致,序列相似值越高,系统进化关系越近。  相似文献   

6.
 应用特异性引物MYSV-L-F和MYSV-L-R对海南5个市县采集的150份疑似感染病毒病的黄瓜样品进行RT-PCR检测,在三亚、乐东和东方等3个市县的18份样品中检测到甜瓜黄斑病毒(Melon yellow spot virus, MYSV)。选取采自三亚的分离物C29(MYSV-Hainan)进行MYSV全基因组克隆及序列分析,结果表明:该分离物的L RNA、M RNA和S RNA基因组全长分别为8 918 nt、4 815 nt和3 257 nt,与已知MYSV分离物的核苷酸相似性分别为97.4%~97.7%、96.2%~97.9%和94.8%~99.8%,系统进化关系分析与相似性分析一致,序列相似值越高,系统进化关系越近。  相似文献   

7.
中国小麦花叶病毒(Chinese wheat mosaic virus,CWMV)是我国小麦土传花叶病毒病的重要病原.将CWMV RNA1、RNA2片段分别连接到pCB301-Rz载体,得到重组质粒pCWMV-RNA1和pCWMV-RNA2,这2个质粒可在本氏烟上引起花叶和畸形症状,在小麦上引起黄花叶症状.在pCWMV...  相似文献   

8.
小西葫芦黄花叶病毒外壳蛋白基因的克隆及序列分析   总被引:8,自引:2,他引:8  
 以小西葫芦黄花叶病毒(Zucchini yellow mosaic virus,ZYMV)的中国分离物(CH-87)接种发病的叶片中提取的总RNA为模板,经RT-PCR扩增获得ZYMV CP基因,将其克隆到pUCm-T质粒上进行序列分析。结果表明该CP基因由837个核苷酸组成,编码279个氨基酸。与已发表序列相比较,该CP基因与国际上已报道的4个基因型不同,应属于新的基因型,暂命名为基因型Ⅴ。  相似文献   

9.
Chu FH  Chao CH  Peng YC  Lin SS  Chen CC  Yeh SD 《Phytopathology》2001,91(9):856-863
ABSTRACT To clarify the serological relationship of Peanut chlorotic fan-spot virus (PCFV) with other tospoviruses, antisera were produced against the nucleocapsid (N) proteins of this virus and tospoviruses from four serogroups including Tomato spotted wilt virus (TSWV), Impatiens necrotic spot virus (INSV), Groundnut ringspot virus (GRSV), and Watermelon silver mottle virus (WSMoV). In immunodiffusion tests, the antisera only reacted with their homologous antigens. Similar results were noticed in indirect enzyme-linked immunosorbent assay and immunoblot tests, with the exception that strong cross-reactions were observed in heterologous combinations between TSWV and GRSV. The results indicated that the N protein of PCFV is not serologically related to those of the tospoviruses from the four serogroups. To further characterize the virus, viral S double-stranded RNA was extracted from PCFV-infected Chenopodium quinoa and used for cDNA cloning and sequencing. The full-length viral strand of the S RNA was determined to be 2,833 nucleotides, with an inverted repeat at the 5' and 3' ends and two open reading frames in an ambisense arrangement. The 3'-terminal sequence (5'-AUUGCUCU-3') of the viral S RNA is identical to those of other tospoviruses, indicating that PCFV belongs to the genus Tospovirus. The N and the NSs proteins of PCFV share low amino acid identities (22.3 to 67.5% and 19.3 to 54.2%) with those of reported tospoviruses, respectively. The phylogenetic dendrogram of the N gene of PCFV compared with those of other tospoviruses indicates that PCFV is distinct from other tospoviruses. In hybridization analyses, an N gene cDNA probe of PCFV did not react with viral RNAs of TSWV, GRSV, INSV, and WSMoV, and vice versa. Thus, based on these results, we conclude that PCFV is a new tospovirus species.  相似文献   

10.
ABSTRACT During a survey conducted in several different regions of Brazil, two unique tospoviruses were isolated and characterized, one from chrysanthemum and the other from zucchini. The chrysanthemum virus displayed a broad host range, whereas the virus from zucchini was restricted mainly to the family Cucurbitaceae. Double-antibody sandwich-enzyme-linked immunosorbent assay and western immunoblot analyses demonstrated that both viruses were serologically distinct from all reported tospovirus species including the recently proposed peanut yellow spot virus and iris yellow spot virus (IYSV) species. The nucleotide sequences of the nucleocapsid (N) genes of both viruses contain 780 nucleotides encoding for deduced proteins of 260 amino acids. The N proteins of these two viruses displayed amino acid sequence similarities with the previously described tospovirus species ranging from 20 to 75%, but they were more closely related to each other (80%). Based on the biological and molecular features, these viruses are proposed as two new tospovirus species, designated chrysanthemum stem necrosis virus (CSNV) and zucchini lethal chlorosis virus (ZLCV). With the identification of CSNV and ZLCV, in addition to tomato spotted wilt virus, groundnut ring spot virus, tomato chlorotic spot virus, and IYSV, Brazil harbors the broadest spectrum of tospovirus species reported.  相似文献   

11.
西瓜银斑驳病毒(Watermelon silver mottle vi-rus,WSMoV)为布尼亚病毒科(Bunyaviridae)番茄斑萎病毒属(Orthotospovirus)病毒,通过蓟马以持久增殖型方式传播,主要危害番茄、辣椒、西瓜等茄科和葫芦科作物,引起褪绿轮纹、环斑、皱缩等症状,造成严重的经济损失[1]....  相似文献   

12.
Actinidia chinensis and A. deliciosa plants from China, showing a range of symptoms, including vein clearing, interveinal mottling, mosaics and chlorotic ring spots, were found to contain ~300 nm rod-shaped virus particles. The virus was mechanically transmitted to several herbaceous indicators causing systemic infections in Nicotiana benthamiana, N. clevelandii, and N. occidentalis, and local lesions in Chenopodium quinoa. Systemically- infected leaves reacted with a Tobacco mosaic virus polyclonal antibody in indirect ELISA. PCR using generic and specific Tobamovirus primers produced a 1,526 bp sequence spanning the coat protein (CP), movement protein (MP), and partial RNA replicase genes which showed a maximum nucleotide identity (88%) with Turnip vein clearing virus and Penstemon ringspot virus. However, when the CP sequence alone was considered the highest CP sequence identity (96% nt and 98% aa) was to Ribgrass mosaic virus strain Kons 1105. The morphological, transmission, serological and molecular properties indicate that the virus is a member of subgroup 3 of the genus Tobamovirus.  相似文献   

13.
14.
甜瓜黄斑病毒三亚分离物S RNA的分子特征   总被引:1,自引:1,他引:0  
 甜瓜黄斑病毒(Melon yellow spot virus, MYSV)首次发生于日本,造成甜瓜和黄瓜的严重损失,Kato等系统地研究了病毒的传播方式、寄主范围、超微结构和基因组特征,认为MYSV应为番茄斑萎病毒属(Tospovirus)的1个新种[1,2]。2006年以来,台湾的西瓜[3]和黄瓜[4]上相继发现MYSV。2009年春季,古勤生在海南三亚的保护地甜瓜上发现一种新发生的病毒病,发病率30%~100%,病株出现系统性黄化坏死斑点,为MYSV侵染的典型症状,结合分子检测结果判定病原为MYSV。  相似文献   

15.
 2019年7月,在北京市月季叶片上观察到了黄色斑驳症状,高通量测序(High-throughput sequencing,HTS)显示在感病样本中存在一种新的正义ssRNA病毒。该病毒全基因组序列除去3′末端poly(A)后由8 393个核苷酸(nucleotide,nt)组成,含5个开放阅读框(open reading frame,ORF)。其依赖于RNA的RNA聚合酶(RNA-dependent RNA polymerase,RdRp)在氨基酸水平上与已知乙型线状病毒科(Betaflexiviridae)成员具有35.87% ~ 46.74%的序列一致性。系统发育分析表明,该新病毒与香石竹潜隐病毒属(Carlavirus)的杨树花叶病毒(poplar mosaic virus,PopMV)亲缘关系最近。发生率调查显示该新病毒在北京地区分布较为广泛。根据Betaflexiviridae的划分标准,该病毒是Carlavirus的一个新种,暂时命名为月季C病毒(rose virus C)。  相似文献   

16.
A serologically and cytologically distinct gloxinia tospovirus (HT-1) previously isolated from a gloxinia plant infected with Impatiens necrotic spot virus (INSV) when propagated in a high-temperature environment was characterized. Rabbit antisera produced for INSV and Tomato spotted wilt virus (TSWV) nucleocapsids (N) failed to react with HT-1 proteins in western blot analysis. The HT-1 antibodies reacted strongly with homologous antigen but failed to react with INSV and TSWV. However, the HT-1 antiserum reacted in ELISA with Watermelon silver mottle virus (WSMV) from Taiwan and in western blot analysis with the WSMV N protein. A reciprocal test showed that the antiserum prepared against the N protein of WSMV also reacted with the HT-1 N protein in both ELISA and western blot analysis. DNA probes derived from the N gene of HT-1 or WSMV hybridized to RNAs prepared from plants infected with either virus. Stronger signals were obtained with homologous than with heterologous reactions. Neither probe detected INSV or TSWV. The M and S RNAs of HT-1 were sequenced. The M RNA contains two open reading frames (ORF) ; one in the sense orientation encoding a nonstructural (NSm) protein of 308-amino-acids (aa) and the other in the ambisense orientation, a 1122-aa precursor of Gl and G2 glycoproteins. The S RNA also contains two ORFs ; one in the sense orientation encoding a nonstructural (NSs) protein of 439 aa and the other in the ambisense orientation, an N protein of 277 aa. HT-1 is distantly related to INSV and TSWV as shown by low nucleotide (40–52%) and amino acid (28–48%) similarities in the four ORF sequences. The HT-1 virus shares high nucleotide (76–81%) and amino acid (85–92%) similarities with WSMV and peanut bud necrosis virus (PBNV). Based on the serological properties and sequence data, we propose that HT-1 is a distinct species of serogroup IV in the genus Tospovirus. This is the first time that a tospovirus similar to those found in the Far East and in Southeast Asia has been identified in the US. Received 16 October 1999/ Accepted in revised form 20 December 1999  相似文献   

17.
18.
19.
本研究根据番茄斑萎病毒(TSWV)S RNA上的核衣壳蛋白(N)基因保守序列设计特异性引物,比较了4种检测方法的灵敏度。结果表明,特异性引物可扩增出397bp的片段,序列和已发表的TSWV核苷酸序列同源性高达99%,可用于常规PCR和荧光定量RT-PCR(qRT-PCR)检测。qRT-PCR的灵敏度比快速检测试纸条、双抗体夹心酶联免疫吸附法(DAS-ELISA)和常规PCR分别高出15 625倍、3 125倍和125倍,且能够准确定量;常规PCR灵敏度较高,但不能准确定量;DAS-ELISA方法适用于批量定性测定,但检测时间较长;试纸条法检测速度最快,但灵敏度最低,使用时可根据症状程度和试验条件选择适宜的检测方法。  相似文献   

20.
甘蔗黄叶病毒外壳蛋白基因克隆及其实时荧光RT-PCR检测   总被引:1,自引:0,他引:1  
 甘蔗黄叶病毒(Sugarcane yellow leaf virus, SCYLV)引起的甘蔗黄叶病是一种新的全球性病毒病害。本文以YLSCPF1和YLSCPR591为引物,采用RT-PCR方法克隆了甘蔗黄叶病毒福建分离物(CHN-FJ1)外壳蛋白(CP)基因,编码196个氨基酸。分析不同地理来源的SCYLV病毒分离物cp基因核苷酸及其推导编码的氨基酸序列,同源性达95%以上。根据cp基因的保守序列,设计1对特异性引物和TaqMan探针,建立了SCYLV的TaqMan实时荧光RT-PCR方法。结果表明,检测下限为初始质粒模板DNA 1 000拷贝/μL(约3.61 fg/μL),比常规PCR方法的灵敏度提高100倍。检测甘蔗花叶病毒、宿根矮化病菌和黑穗病菌,没有典型的扩增曲线和无Ct值。应用实时荧光RT-PCR、常规RT-PCR和组织印迹免疫杂交(TBIA)对田间甘蔗叶片样品进行检测,阳性检出率分别为100%、61.5%和69.2%,表明该方法比常规RT-PCR和TBIA具有更高的灵敏度,适合于对SCYLV的检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号