首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT Maturation and release of ascospores of Anisogramma anomala were monitored over a 6-year period (1988 to 1995) in European hazelnut orchards located in western Oregon. Perithecia of A. anomala were dissected from stromata collected monthly from September to May to determine spore maturation. Spore maturation began in late summer; by January, >90% of the spores were morphologically mature. Similarly, both the number of mature ascospores per perithecium and the proportion of ascospores that germinated increased through autumn. After January, the number of spores per perithecium declined until May, when few viable spores remained. Each of the 6 years, rain catch-type spore traps were placed under cankers in diseased trees from 15 September to 30 June. Based on spore collection periods of 1 to 4 weeks, three patterns for the seasonal release of A. anomala ascospores were observed: in the 1988-1989 season, >80% of the seasonal ascospore release occurred between September and January; in the 1989-1990 season, 32 to 42% of the seasonal ascospore release occurred after mid-April; and in the other 4 years, monthly releases of ascospores were relatively uniform over the 9-month seasonal period. Timing and amount of precipitation were the most important variables accounting for the differences among the yearly patterns of ascospore release. Over all years and sites, the cumulative proportion of total ascospores collected in each orchard was highly correlated (R(2) = 0.90) with cumulative precipitation. This relationship was confirmed in mist chamber experiments. A regression model was developed relating cumulative ascospore release to cumulative hours of precipitation. The model provides an estimate of the proportion of ascospores remaining to be released after budbreak, which coincides with the period of highest susceptibility to infection.  相似文献   

2.
ABSTRACT Greasy spot, caused by Mycosphaerella citri, produces a leaf spot disease affecting all citrus species in Florida and the Caribbean Basin. M. citri produces pseudothecia and ascospores, which are considered the principal source of inoculum, in decomposing leaves on the grove floor. In studies using a computer-controlled environmental chamber, a single rain event triggered release of most mature ascospores beginning 30 to 60 min after the rain event. Additional rain events did not bring about further release. High relative humidity without rain triggered release of low numbers of ascospores, but vibration and red/infrared irradiation had little or no effect on ascospore release. After three to four cycles of wetting and drying of leaves, all pseudothecia had matured and released their ascospores. In the field, ascospores were detectable starting about 2 h after the beginning of a rain or irrigation and most ascospores were released within 16 h. Ascospore release was greatest following rain events and somewhat less following irrigations, and low numbers of ascospores were detectable on days without precipitation. Ascospore numbers declined linearly with horizontal distance from the source and as a function of the logarithm of ascospore numbers with vertical distance. Low numbers of ascospores were detected 7.5 m above the ground and 90 m downwind from the grove. Ascospore release can be advanced by irrigating frequently during dry, nonconducive conditions to stimulate ascospore release when environmental conditions are unfavorable for infection, but the eventual effects on disease severity are uncertain.  相似文献   

3.
《EPPO Bulletin》2009,39(3):293-297

Specific scope

This standard describes diagnostic protocols for Anisogramma anomala 1 1 Use of brand names of chemicals or equipment in these EPPO Standards implies no approval of them to the exclusion of others that may also be suitable.
.

Specific approval and amendment

Approved in 2009‐09.
  相似文献   

4.
ABSTRACT Ophiosphaerella agrostis, the causal agent of dead spot of creeping bentgrass (Agrostis stolonifera), can produce prodigious numbers of pseudothecia and ascospores throughout the summer. The environmental conditions and seasonal timings associated with O. agrostis ascospore release are unknown. The objectives of this research were to (i) determine the influence of light and relative humidity on ascospore release in a controlled environment, (ii) document the seasonal and daily discharge patterns of ascospores in the field, and (iii) elucidate environmental conditions that promote ascospore release under field conditions. In a growth chamber, a sharp decrease (100 to approximately 50%; 25 degrees C) in relative humidity resulted in a rapid (1- to 3-h) discharge of ascospores, regardless of whether pseudothecia were incubated in constant light or dark. In the field, daily ascospore release increased between 1900 and 2300 h and again between 0700 and 1000 h local time. The release of ascospores occurred primarily during the early morning hours when relative humidity was decreasing and the canopy began to dry, or during evening hours when relative humidity was low and dew began to form. Few ascospores were released between 1100 and 1800 h when the bentgrass canopy was dry. The release of ascospores also was triggered by precipitation. Of the ascospores collected during precipitation events, 87% occurred within 10 h of the beginning of each event.  相似文献   

5.
ABSTRACT Mills' infection period table describes the number of hours of continuous leaf wetness required at temperatures from 6 to 25 degrees C for infection of apple leaves by ascospores of Venturia inaequalis and reports that conidia require approximately two-thirds the duration of leaf wetness required by ascospores at any given temperature. Mills' table also provides a general guideline that more than 2 days of wetting is required for leaf infection by ascospores below 6 degrees C. Although the table is widely used, infection times shorter than those in the table have been reported in lab and field studies. In 1989 a published revision of the table eliminated a potential source of error, the delay of ascospore release until dawn when rain begins at night, and shortened the times reported by Mills for ascospore infection by 3 h at all temperatures. Data to support the infection times below 6 degrees C were lacking, however. Our objective was to quantify the effects of low temperatures on ascospore discharge, ascospore infection, and infection by conidia. In two of three experiments at 1 degrees C, the initial release of ascospores occurred after 131 and 153 min. In the third experiment at 1 degrees C, no ascospores were detected during the first 6 h. The mean time required to exceed a cumulative catch of 1% was 143 min at 2 degrees C, 67 min at 4 degrees C, 56 min at 6 degrees C, and 40 min at 8 degrees C. At 4, 6, and 8 degrees C, the mean times required to exceed a cumulative catch of 5% were 103, 84, and 53 min, respectively. Infection of potted apple trees by ascospores at 2, 4, 6, and 8 degrees C required 35, 28, 18, and 13 h, respectively; substantially shorter times than previously were reported. In parallel inoculations of potted apple trees, conidia required approximately the same periods of leaf wetness as ascospores at temperatures from 2 to 8 degrees C, rather than the shorter times reported by Mills or the longer times reported in the revision of the Mills table. We propose the following revisions to infection period tables: (i) shorter minimum infection times for ascospores and conidia at or below 8 degrees C, and (ii) because both ascospores and conidia are often present simultaneously during the season of ascospore production and the required minimum infection times appear to be similar for both spore types, the adoption of a uniform set of criteria for ascosporic and conidial infection based on times required for infection by ascospores to be applied during the period prior to the exhaustion of the ascospore supply. Further revisions of infection times for ascospores may be warranted in view of the delay of ascospore discharge and the reduction of airborne ascospore doses at temperatures at or below 2 degrees C.  相似文献   

6.
苏云金杆菌小试生产发酵影响因子的研究   总被引:8,自引:0,他引:8  
利用 1 0L全自动发酵罐对苏云金杆菌小试生产的发酵条件进行了研究。结果显示 ,不同的温度、pH值、培养基成分及接种方式对发酵产量和发酵周期均有影响 ;在培养基配方中存在葡萄糖时 ,葡萄糖单独灭菌对提高苏云金杆菌发酵产量是重要的。初步生物测定显示 ,发酵上清中存在一些杀虫增效因子 ,建议配制苏云金杆菌制剂时尽可能加以利用。  相似文献   

7.
ABSTRACT Alternaria brown spot, caused by Alternaria alternata pv. citri, affects many tangerines and their hybrids, causing loss of immature leaves and fruit and reducing the marketability of the remaining fruit. Conidial production of A. alternata was greatest on mature leaves moistened and maintained at near 100% relative humidity (RH) for 24 h, whereas leaves that had been soaked or maintained at moderate RH produced few conidia. Conidial release from filter paper cultures and infected leaves was studied in a computer-controlled environmental chamber. Release of large numbers of conidia was triggered from both substrates by sudden drops in RH or by simulated rainfall events. Vibration induced release of low numbers of conidia, but red/infrared irradiation had no effect. In field studies from 1994 to 1996, air sampling with a 7-day recording volumetric spore trap indicated that conidia were present throughout the year with periodic large peaks. The number of conidia captured was not closely related to rainfall amounts or average wind speed, but was weakly related to the duration of leaf wetness. Likewise, disease severity on trap plants placed in the field weekly during 1995 to 1996 was not closely related to conidial numbers or rainfall amounts, but was weakly related to leaf wetness duration. Sufficient inoculum appears to be available to allow infection to occur throughout the year whenever susceptible host tissue and moisture are available.  相似文献   

8.
Microbe-Mediated Germination of Ascospores of Monosporascus cannonballus   总被引:1,自引:0,他引:1  
ABSTRACT Ascospores of Monosporascus cannonballus germinated readily in the rhizosphere of cantaloupe plants growing in field soil. However, little or no germination occurred in the rhizosphere of melon plants growing in field soil that was autoclaved prior to infestation with ascospores. The latter data suggested that root exudates alone do not stimulate ascospore germination and that the soil microflora may be involved in the induction of ascospore germination. Amending field soil with streptomycin (which inhibits gram-negative microorganisms) did not suppress ascospore germination in the rhizosphere of cantaloupe plants. However, amending the soil with penicillin (which inhibits gram-positive microorganisms) did suppress ascospore germination. Pentachloronitrobenzene (PCNB), which inhibits the gram-positive actinomycetes but does not inhibit gram-positive or gram-negative bacteria, also suppressed ascospore germination. These results suggest that actinomycetes, either directly or indirectly, are involved in the induction of ascospore germination in field soil in the presence of exudates from cantaloupe roots. Optimum germination occurred at temperatures ranging from 25 to 35 degrees C, and data indicate that a high percentage (>/=72%) of the ascospore population within 500 mum of a root are capable of germination and subsequent penetration of cantaloupe roots.  相似文献   

9.
当前,基于正积温的度日模型广泛应用于冰川消融研究中,该模型的核心参数是度日因子。根据印度河上游Sachen、Gharko、Barpu冰川2014-2016年的物质平衡和气温实测资料,计算得到消融期内各冰川研究区的度日因子,并分析了度日因子的时空变化特征及影响因素。研究结果显示:Sachen、Gharko、Barpu冰川度日因子均值分别为2. 83 mm·d^-1·℃-1、3. 74 mm·d^-1·℃^-1、3. 91 mm·d^-1·℃^-1;各冰川度日因子皆随着海拔升高而递增,海拔递增率分别为0. 003 7 mm·d^-1·℃^-1·m^-1、0. 007 4 mm·d^-1·℃^-1·m^-1、0. 004 1 mm·d^-1·℃^-1·m^-1;对于同一观测点而言,度日因子不是一个常数,会随着时间的变化而改变,冰川度日因子随着年际变化呈增加的趋势;度日因子受表碛影响显著,度日因子整体上随着表碛厚度的增加而递减。然而表碛厚度低于2 cm时,表碛的覆盖作用促进了冰川的消融,表碛覆盖区冰川度日因子大于裸露区冰川;冰川朝向的变化对度日因子产生了一定的影响,面向阳坡的冰川度日因子随海拔递增率大于阴坡。  相似文献   

10.
当前,基于正积温的度日模型广泛应用于冰川消融研究中,该模型的核心参数是度日因子。根据印度河上游Sachen、Gharko、Barpu冰川2014—2016年的物质平衡和气温实测资料,计算得到消融期内各冰川研究区的度日因子,并分析了度日因子的时空变化特征及影响因素。研究结果显示:Sachen、Gharko、Barpu冰川度日因子均值分别为2.83 mm?d-1?℃-1、3.74 mm?d-1?℃-1、3.91 mm?d-1?℃-1;各冰川度日因子皆随着海拔升高而递增,海拔递增率分别为0.003 7 mm?d-1?℃-1?m-1、0.007 4 mm?d-1?℃-1?m-1、0.004 1 mm?d-1?℃-1?m-1;对于同一观测点而言,度日因子不是一个常数,会随着时间的变化而改变,冰川度日因子随着年际变化呈增加的趋势;度日因子受表碛影响显著,度日因子整体上随着表碛厚度的增加而递减。然而表碛厚度低于2 cm时,表碛的覆盖作用促进了冰川的消融,表碛覆盖区冰川度日因子大于裸露区冰川;冰川朝向的变化对度日因子产生了一定的影响,面向阳坡的冰川度日因子随海拔递增率大于阴坡。  相似文献   

11.
新疆棉花产量构成要素分析   总被引:16,自引:3,他引:16  
本文分析了近 5 0年新疆棉花的种植面积与单产的变化情况 ,以及对新疆棉花产量的相对影响率 ;简要讨论社会因素 (技术中肥料与电力 )和气候因素对棉花单产的影响。分析结果表明 ,近 5 0年来 ,新疆棉花总产中单产的平均作用 (占 45 % )略小于面积的平均作用 (占 5 0 % )。社会经济因素对棉花单产的平均作用为 30 % ,气候因素为 70 % ,但不同时期各因素的相对作用不同。技术进步对单产提高具有明显的促进作用。但 1991年以后 ,化肥和电力的增产作用有所降低 ,即化肥和电力的边际棉花产量逐渐减少。  相似文献   

12.
影响链格孢菌生长及产孢的因子   总被引:13,自引:0,他引:13  
在实验室研究了影响稗草病原真菌链格孢生长及产孢的因子.链格孢菌可在较宽的温度范围内生长、繁殖;连续黑暗、空气充足条件下有利于产孢;该菌在4种不同的植物产品上培养可产生大量的孢子,最多的无芒稗籽上每克干物质产孢量达3.59×108个,这些培养物在首次产孢收获后均可直接培养作二次产孢利用.固体(菌块)和液体(菌悬液)接种培养物均能成功产孢.但培养量大时液体接种优于固体接种,产孢量与接种菌悬液浓度呈正相关.  相似文献   

13.
沙尘暴发生的条件和影响因素   总被引:30,自引:16,他引:30  
以历史时期沙尘暴活动的资料为依据,论证了沙尘暴成生条件和影响因素。特定时期的寒潮是沙尘暴发生的动力,它与处在特定状态的粉尘相结合是沙尘暴发生的必要条件。温度和降水量对沙尘暴的生成有重要影响。虽然沙尘暴的活动与冷空气活动有关,但最寒冷的冬季沙尘暴活动弱,温度适中的春季沙尘暴活动强。在沙尘来源区,沙尘暴主要活动期的温度比年均温高2℃-3℃。在沙尘堆积区,沙尘暴主要活动期的温度比当地年平均温低1℃-2℃。降水少,沙尘暴活动强。然而沙尘暴主要不是形成于降水最少的冬季,而是主要形成于降水量较少的春季。沙尘暴活动期的降水量一般比同一地区年平均降水量低约30%。  相似文献   

14.
新疆艾比湖湖面面积变化分析   总被引:4,自引:0,他引:4  
利用遥感资料和文献,研究艾比湖湖面面积的年际和月际变化。利用最小二乘法求参数,进行线性回归,寻求湖面变化和降水因子的相关性,得出降水量和湖面面积的相关系数为0.706 43,经显著性检验,并用大量的数据及事实分析了湖面面积和其他自然因素及人类活动因子的相关性。根据以上研究可以大致预测艾比湖湖面的变化趋势,为决策层制定防治对策提供科学依据。  相似文献   

15.
ABSTRACT Apple scab (Venturia inaequalis) causes important economic losses in many apple production areas of the world. The disease is controlled by numerous fungicide applications regardless of the presence of ascospores in the orchard. Airborne ascospore concentration (AAC) can be measured in real time to time fungicide applications. However, the level of heterogeneity of the AAC in commercial orchards was unknown. Consequently, the spatial distribution of V. inaequalis ascospores was studied in a commercial apple orchard of 0.43 ha. The potential ascospore dose (PAD) and AAC were measured in 40 quadrats each of 108 m(2). In each quadrat, the AAC was monitored during the major rain events in spring 1999 and 2000 using spore samplers. The variance-to-mean ratio for the PAD and for most of the AAC sampling dates was >1, indicating an aggregated pattern of distribution. None of the frequency distributions of the most important ascospore ejection events followed the Poisson probability distribution, indicating that the pattern of distribution was not random. For all events, AAC had an aggregated pattern of distribution as suggested by the negative binomial distribution. The PAD followed neither the Poisson nor the negative binomial distribution. Geostatistical analyses confirmed the aggregated pattern of distribution. The cultivars had an effect on the PAD and AAC distribution pattern, but both PAD and AAC were not uniformly distributed within a block of the same cultivar. Therefore, the number, location, and height of samplers required to estimate AAC in orchards need to be investigated before using information on AAC for decision making.  相似文献   

16.
基于大同市1960-2007年的地面太阳辐射和日照时数观测资料,采用线性倾向估计、累积滤波器以及M ann-Kendall检验等方法,分析大同市光能资源的变化特征;选择云量并结合近几年的环境监测资料,探讨引起大同市光能资源变化的可能原因。结果表明:大同市年、季太阳辐射呈减少趋势,近几年有增加的趋势,冬季较为明显。年日照时数呈减少趋势,并伴有较大幅度的波动;各季日照时数也呈减少趋势,但春季不显著,冬季日照时数的波动变化导致年日照时数的波动。大同市年、季光能资源的变化主要与空气中污染物浓度有关。采取环保措施改善大气质量是近几年大同市光能资源呈现增加趋势的主要原因。  相似文献   

17.
18.
ABSTRACT Experiments to identify the factors affecting survival of Bremia lactucae sporangia after deposition on lettuce leaves were conducted in growth chambers and outdoors under ambient conditions. Lettuce seedlings at the four-leaf stage were inoculated with B. lactucae sporangia under dry conditions. Sporangia deposited on lettuce seedlings were incubated at different temperature and relative humidity (RH) combinations, exposed to 100, 50, 25, and 0% sunlight in the second experiment, and exposed to different artificial lights in wavelength ranges of UVA (315 to 400 nm), UVB (280 to 315 nm), or fluorescent light in the third experiment. After exposure for 0 to 48 h in the first experiment and 0 to 12 h in the second and third experiments, seedlings in two pots were sampled for each treatment, and sporangia were washed from 15 leaves excised from the sampled seedlings. Germination of sporangia was determined in water after incubation in the dark at 15 degrees C for 24 h. The sampled seedlings with remaining leaves were first transferred to optimal conditions for infection (24 h), for the development of downy mildew, and then assessed for disease after 9 days. Sporangia survived much longer at 23 degrees C (>12 h) than at 31 degrees C (2 to 5 h), regardless of RH (33 to 76%). Germination percentage was significantly reduced after exposure to 50 and 100% sunlight. UVB significantly reduced sporangium viability, while fluorescent light and UVA had no effect relative to incubation in the dark. Infection of seedlings followed a pattern similar to germination of sporangia. Solar radiation is the dominant factor determining survival of B. lactucae sporangia, while temperature and RH have small, insignificant effects in coastal areas of California. This suggests that infections by sporangia that survived a day are probable only on cloudy days or on leaves that are highly shaded.  相似文献   

19.
1997年田间调查时,发现一种寄生于棉铃虫的微孢子虫,对棉铃虫具有很强的致病力。为明确环境因子对该微孢子虫及其致病力的影响,测定了温度与紫外线对该微孢子虫及其杀虫效果的影响。结果表明,该微孢子虫孢子耐受温度范围较宽,最高温度上限为55℃。温度对其致病力有显著影响,在一定温度范围内,随着生境温度的升高,微孢子虫对棉铃虫幼虫致病力增强。该微孢子虫对紫外线较敏感,在紫外线照射下易失活而丧失致病力。  相似文献   

20.
为深入认识西藏参考作物蒸散量(ET_0)的变化特征,采用联合国粮农组织1998年推荐的Penman-Monteith公式计算西藏37个气象站点32 a(1981—2012年)的逐日ET_0,通过联合国防治荒漠化公约提出的全球干旱指数(UNEP)进行气候评价,利用空间插值及Mann-Kendall趋势检验法对西藏及各气候区ET_0时空变化特征进行分析,并通过偏相关分析法对其主要影响因素进行探讨,结果表明:西藏共分为特干旱、干旱、半干旱、干旱半湿润、湿润半湿润和湿润气候区,主要为半干旱气候区。近32 a参考作物蒸散量整体呈减小趋势,变化趋势为-1.508 mm·a~(-1),可将32 a分为3个时段,1981—1989年处于高蒸散阶段,1989年后处于低蒸散阶段,2005年起又持续回升。西藏西部到东部,年际ET_0呈减小趋势。各气候区气象因子的影响基本符合平均气温日照时数平均风速相对湿度,且平均气温、日照时数及平均风速在干旱区的影响较湿润区更为显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号