共查询到20条相似文献,搜索用时 12 毫秒
1.
甘薯羽状斑驳病毒外壳蛋白基因的分子变异 总被引:4,自引:0,他引:4
应用单链构象多态性(single-strand conformation polymorphism,SSCP)技术结合核苷酸序列测定的方法,对我国甘薯主产区11个省份的甘薯羽状斑驳病毒(Sweet potato feathery mottle virus,SPFMV)外壳蛋白(CP)基因的分子变异情况进行了研究.结果表明,SPFMV CP基因的RT-PCR产物表现了较丰富的图谱类型,50个分离物共产生9种主要的SSCP带型;对显示不同带型的20个样品的CP基因进行了序列测定和进化树分析,CP基因核苷酸序列一致性为77.2%~99.9%.说明这些样品的SPFMV的CP基因存在较大的分子变异,可划分为EA、RC、O和C4个株系. 相似文献
2.
Abstract The distribution of two sweet potato potyviruses, FMV and SPLV, was assessed in three plants infected with both viruses and in one plant infected with FMV only. All leaves, the top and basal sections of the main stem, and branch sections were tested by ELISA. Both symptomless leaves and leaves showing symptoms including purple rings, chlorotic spots, mottle or discoloration were found to contain the viruses. However, neither could be detected in every leaf or stem piece. SPLV was found in a lower proportion of leaf and stem samples than FMV. This indicates that the two viruses are either very unevenly distributed within sweet potato plants or that the virus concentration in some parts is below the detectable level. Testing of each leaf is recommended for reliable virus indexing of small, meristem‐derived sweet potato plantlets, if the ELISA method is used. Additional indexing of all ELISA‐negative materials by grafting to susceptible indicator plants is nevertheless still necessary. 相似文献
3.
Yield reductions ofca 50% or more were observed in field plots infected with both sweet potato feathery mottle virus (SPFMV) and sweet potato sunken vein virus (SPSVV) (‘complex’), compared with plots planted with virus-free propagation stocks. No yield reductions were observed in a plot planted with SPFMV-infected cuttings. In plots infected with SPSVV alone, no significant effect on tuber yields was observed in one year, whereas in the second year there was aca 30% reduction in yield compared with virus-free control plants. Reinfection in the field, in the absence of introduced infection sources, was observed only with SPSVV. However, natural spread resulted when SPFMV-infected source plants were introduced. This implies that aphid vectors were present during the growing season, but that SPFMV infection sources were absent from the area. 相似文献
4.
Sweet potato feathery mottle virus (SPFMV, genus Potyvirus) is globally the most common pathogen of sweetpotato. An East African strain of SPFMV incites the severe 'sweetpotato virus disease' in plants co-infected with Sweet potato chlorotic stunt virus and threatens subsistence sweetpotato production in East Africa; however, little is known about its natural hosts and ecology. In all, 2,864 wild plants growing in sweetpotato fields or in their close proximity in Uganda were observed for virus-like symptoms and tested for SPFMV in two surveys (2004 and 2007). SPFMV was detected at different incidence in 22 Ipomoea spp., Hewittia sublobata, and Lepistemon owariensis, of which 19 species are new hosts for SPFMV. Among the SPFMV-positive plants, approximately 60% displayed virus-like symptoms. Although SPFMV incidence was similar in annual and perennial species, virus-like diseases were more common in annuals than perennials. Virus-like diseases and SPFMV were more common in the eastern agroecological zone than the western, central, and northern zones, which contrasted with known incidence of SPFMV in sweetpotato crops. The data on a large number of new natural hosts of SPFMV detected in this study provide novel insights into the ecology of SPFMV in East Africa. 相似文献
5.
6.
V. Doreste P. L. Ramos G. A. Enríquez R. Rodríguez R. Peral M. Pujol 《Phytoparasitica》2002,30(2):177-185
The gene coding for potato virus X (PVX) coat protein (CP) was expressed in transgenic potato plants obtained byAgrobacterium tumefaciens transformation. One hundred independent clones were analyzed in challenge experiments for resistance to PVX infection under
greenhouse conditions as a preliminary test. From this test, 16 clones with the best resistance results were selected for
a small-scale field trial. Clones 54, 60, 73 and 91 demonstrated the best values of resistance to PVX in the field. Statistical
analysis of the field trial showed significant differences between means of optical density obtained in ELISA from transgenic
clones and non-transformed plants (P<0.05). There was correspondence between resistance to virus infection and expression of the CP gene of PVX virus in the analyzed
clones.
http://www.phytoparasitica.org posting Jan. 21, 2002.
Corresponding author [e-mail: vivian.doreste@cigb.edu.cu]. 相似文献
7.
8.
9.
Brian Reavy Maria Sandgren Hugh Barker Pekka Heino Per Oxelfelt 《European journal of plant pathology / European Foundation for Plant Pathology》1997,103(9):829-834
Resistance tests were made on seedlings of transformed lines of Nicotiana benthamiana which contain a transgene encoding the coat protein (CP) gene of a Scottish isolate of potato mop-top virus (PMTV). This transgene has been reported to confer strong resistance to the PMTV isolate from which the transgene sequence was derived and also to a second Scottish isolate. Plants of lines of the transgenic N. benthamiana were as resistant to two Swedish and two Danish PMTV isolates as to a Scottish isolate, and of five lines tested, greater than 93.5% of transgenic plants were immune. The coat protein gene sequences of these four Scandinavian isolates were very similar to those of the two Scottish isolates. The greatest divergence between the isolates was three amino acid changes and there was less than 2% change in CP gene nucleotide sequence. It is concluded that the PMTV CP transgene used in these experiments could confer resistance against isolates from different geographical areas because it is becoming apparent that the CP genes of PMTV isolates are highly conserved. 相似文献
10.
正向和反向重复RNA介导的抗马铃薯Y病毒基因工程比较研究 总被引:20,自引:2,他引:20
RNA介导的病毒抗性与RNA沉默现象密切相关。反向重复cDNA序列(IR)的转录产物往往形成双链RNA结构,而双链RNA是诱发RNA沉默的有效因子。据此,本研究通过体外合成马铃薯Y病毒坏死株系衣壳蛋白基因(PVYN-CP)5'端反向重复cDNA序列和正向重复cDNA序列(DR),分别构建植物表达载体pROK-IR和pROK-DR,利用农杆菌介导方法转化烟草NC89,比较这2种转基因烟草在RNA介导抗病性方面的差异。抗病性检测表明,转化IR和DR的转基因烟草均可获得抗病程度达到免疫的植株,但转化IR序列可大大提高抗病植株在转基因植株中的比例。分析结果表明所获得的抗病性为RNA介导的抗病性,是RNA沉默的结果。这一研究结果为利用IR策略进行抗病毒遗传育种提供了理论依据,并为讲一步开展RNA介导抗病性的机制研究奠宗了基础。 相似文献
11.
ABSTRACT When Ipomoea nil was coinfected with Sweet potato feathery mottle virus (SPFMV), a member of the genus Potyvirus, and Potato virus X (PVX) typical symptoms caused by PVX were observed on those by SPFMV on the first upper true leaves at 14 days postinoculation (dpi). On the other hand, no PVX-induced symptoms were observed on the first upper true leaves at 14 dpi when plants were infected with PVX alone. In the case of coinfection with PVX and SPFMV, PVX RNA was detected not only in the inoculated cotyledonary leaves but also in the first upper true leaves at 14 dpi. In the case of single infection with PVX, PVX RNA was detected in the inoculated cotyledonary leaves but not in the first upper true leaves at 14 dpi. The accumulation of SPFMV remained unchanged, regardless of whether the inoculum consisted of SPFMV alone or a mixture of SPFMV and PVX. Although recombinant PVX engineered to express the helper component-proteinase (HC-Pro) of SPFMV (PVX.HC) enhanced symptoms severity in Nicotiana benthamiana, PVX.HC induced the synergism characterized by an enhanced viral movement in Ipomoea nil. Immunofluorescence microscopic examination revealed that the HC-Pro was present in phloem of SPFMV-infected I. nil. These results suggest that SPFMV HC-Pro acts as an enhancer of long distance movement for PVX in I. nil. 相似文献
12.
我国发现由甘薯褪绿矮化病毒和甘薯羽状斑驳病毒协生共侵染引起的甘薯病毒病害 总被引:12,自引:0,他引:12
甘薯病毒病害(Sweet potato virus disease,SPVD)是由毛形病毒属(Crinivirus)的甘薯褪绿矮化病毒(Sweet potato chlorotic stunt virus,SPCSV)和马铃薯Y病毒属(Potyvirus)的甘薯羽状斑驳病毒(Sweet potato feathery mottle virus,SPFMV)协生共侵染甘薯引起的病毒病害[1]. 相似文献
13.
为获得兼抗马铃薯X病毒(Potato virus X,PVX)、马铃薯Y病毒(Potato virus Y,PVY)、马铃薯卷叶病毒(Potato leaf roll virus,PLRV)和马铃薯潜隐花叶病毒(Potato virus S,PVS)4种病毒的转基因马铃薯新材料,分别以这4种病毒全长CP基因为模板,通过设计PCR引物和亚克隆获得4种病毒CP基因相对保守区段的基因片段,并将其拼接成融合基因,以载体pHANNIBAL和pBI121为基础,构建RNA干扰(RNA interference,RNAi)载体,利用农杆菌介导的转基因体系进行马铃薯遗传转化,并对获得的转基因马铃薯进行病毒抗性检测。结果表明,所获得的融合基因片段RH1和RH2,酶切鉴定分别得到长度为1 200 bp的条带,与预期片段相符;构建了含pdk内含子和RH1、RH2融合基因的RNAi植物表达载体,经Bam H I/Sac I双酶切,获得长度约3 200 bp的片段,表明RNAi植物表达载体pBI121-pRH构建成功;转化易感病毒马铃薯品种陇薯11号,PCR检测和PCRSouthern杂交分析表明融合基因已整合到陇薯11号马铃薯基因组中;抗病性检测显示4株转基因马铃薯植株对4种病毒均免疫。表明利用RNAi可筛选出抗多种病毒的转基因马铃薯新种质。 相似文献
14.
An antisense coat protein gene confers immunity to potato leafroll virus in a genetically engineered potato 总被引:2,自引:0,他引:2
Andrzej Pałucha Włodzimierz Zagórski Mirosława Chrzanowska Danuta Hulanicka 《European journal of plant pathology / European Foundation for Plant Pathology》1998,104(3):287-293
The Bzura commercial potato cultivar was transformed by sense or antisense constructs which included the coat protein gene of potato leafroll virus RNA. In the sense construct, the coat protein gene was preceded by a leader sequence shorter than that in the subgenomic RNA formed in infected cells. The antisense construct consisted of a sequence complementary to the first 2020 nucleotides of the subgenomic RNA. Selected transformants expressing viral RNA were resistant to virus challenge by viruliferous aphids. In one line, expression of the antisense RNA prevented virus infection even after grafting with scions from infected plants and therefore this transformant might be regarded as virus immune. 相似文献
15.
M. RAVELONANDRO R. SCORZA A. CALLAHAN J. CORDTS M. MONSION M. FUCHS R. DELBOS J. BACHELIER D. GONSALVES J. DUNEZ 《EPPO Bulletin》1994,24(3):713-719
Leaf discs of Nicotiana benthamiana plants were transformed with Agrobacterium tumefaciens and transgenic plants expressing plum pox potyvirus (PPV) coat protein (CP) were generated. Homozygous R2 progeny from these plants were inoculated with PPV. Plants were scored for the appearance of symptoms and tested for infection by DAS-ELISA. Various levels of resistance were obtained after an initial stage in which PPV was able to multiply in all the transgenic plants. Within 2–3 weeks after inoculation, the transgenic resistant plants fully recovered from virus infection. Conversely, control and susceptible transgenic lines developed severe symptoms and high virus titres. Prunus domestica (plum) was transformed by inoculating hypocotyl slices with A. tumefaciens containing a binary plasmid which included the NPTII, GUS, and PPV CP genes within its T-DNA region. Transgenic shoots were rooted and established in the glasshouse. Analysis of selected transformants by PCR showed that the engineered foreign genes had been integrated, including that for PPV CP. Histological assays on young leaves of these putative transformants gave a positive reaction. This suggests that all genes transferred are expressed in these transformed plums. 相似文献
16.
H. LECOQ M. RAVELONANDRO C. WIPF-SCHEIBEL M. MONSION B. RACCAH J. DUNEZ 《EPPO Bulletin》1994,24(3):555-559
Transgenic Nicotiana benthamiana plants expressing the coat protein of an aphid-transmissible strain of plum pox potyvirus (PPV-D) were infected with an aphid non-transmissible strain of another potyvirus, zucchini yellow mosaic potyvirus (ZYMV-NAT). Non-viruliferous Myzus persicae could acquire and transmit ZYMV-NAT from these plants but not from infected N. benthamiana control plants (not transformed, or transformed by the vector alone). Immunosorbent electron microscopy experiments using the decoration technique revealed that ZYMV-NAT virus particles in the infected transgenic plants expressing the PPV coat protein could be coated not only with ZYMV antibodies but also, on segments of the particles, with PPV antibodies. This suggests that aphid transmission of ZYMV-NAT occurred through heterologous encapsidation, and reveals a potential risk of releasing genetically engineered plants expressing viral coat proteins into the environment. 相似文献
17.
Two Serotypes of Sweetpotato feathery mottle virus in Uganda and Their Interaction with Resistant Sweetpotato Cultivars 总被引:1,自引:0,他引:1
ABSTRACT Isolates of Sweetpotato feathery mottle virus (SPFMV, genus Potyvirus, family Potyviridae) were obtained in several districts of Uganda from sweetpotato plants infected with the sweetpotato virus disease (SPVD), the most important disease of this crop in Africa. A monoclonal antibody (MAb 7H8) raised against the coat proteins (CP) of a mixture of the SPFMV strain C (United States) and the isolate SPV-I (West Africa) distinguished Ugandan SPFMV isolates into those detectable and not detectable by the MAb. These two serotypes differed in prevalence in different districts of Uganda and in two common sweetpotato cultivars. Both serotypes could be transmitted simultaneously by single aphids. The serotypes differed in their ability to systemically coinfect sweetpotatoes that were infected with Sweetpotato chlorotic stunt virus (SPCSV, genus Crinivirus), the virus required to induce SPVD in SPFMV-infected plants. One sweetpotato breeding line, resistant to SPFMV from the New World, was infected by graft-inoculation with all SPFMV isolates from Uganda. Another SPFMV-resistant sweetpotato line became infected with SPFMV and developed SPVD only following coinoculation with SPCSV. 相似文献
18.
19.
本研究对菜豆荚斑驳病毒大、小亚基编码的基因密码子进行了优化并人工合成了这两个基因,然后克隆到原核表达载体p ET-22b(+)中,通过转化大肠杆菌BL21(DE3)菌种并在IPTG的诱导下进行了成功表达,大亚基表达产物分子量为41 k D、小亚基表达产物分子量为22 k D,并制备出了大小亚基基因表达产物的抗血清。测试结果表明,优化后的CP的大、小亚基基因在37℃、1.0 mmol/L IPTG诱导下,3 h后得到了成功的表达,制备的两种抗血清特异性强、效价都达到1∶3.2×10~4,可以对BPMV CP 3个不同的区域同时进行检测,提高了检测的准确度。 相似文献
20.
甘薯病毒病害SPVD抗性鉴定方法及产量损失估计 总被引:2,自引:1,他引:2
为了建立规范、有效的甘薯病毒病害(sweet potato virus disease,SPVD)抗性鉴定方法,于2011—2012连续两年,利用田间人工嫁接病毒接穗的方法对12个甘薯品种进行抗性鉴定和产量损失测定。结果显示,嫁接接种后,接穗成活率接近100%,12个品种都有不同程度发病,病情指数在51.0~95.2之间;感染SPVD的甘薯植株叶绿素含量降低、蔓长缩短;单株薯块产量损失范围在55.1%~97.8%之间。研究表明,供试的12个甘薯主栽品种感染SPVD后均可引起严重的产量损失,且田间人工嫁接病毒接穗是一个有效的SPVD抗性鉴定方法。 相似文献