首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
ABSTRACT Amplified fragment length polymorphisms (AFLPs) were used to estimate phylogenetic relationships within Magnaporthe grisea and determine the genetic structure of M. grisea populations associated with tall fescue and St. Augustinegrass in Georgia. Sixteen clonal lineages were identified in a sample population of 948 isolates. Five lineages were isolated from tall fescue (E, G1, G2, G4, and H), with lineage G4 comprising 90% of the population. Isolates from tall fescue were closely related to those from perennial ryegrass, weeping lovegrass, and wheat. Two M. grisea lineages were isolated from St. Augustinegrass (C and K), with lineage C comprising 99.8% of the population. Populations from crabgrass were dominated (98%) by lineage K, but also contained a single lineage C isolate. Haplotype diversity indices ranged from 0.00 to 0.29 in tall fescue populations and from 0.00 to 0.04 in St. Augustinegrass populations. Selection due to host species was the primary factor determining population structure according to analysis of molecular variance; host cultivar and geographical region had no significant effect. The host range of M. grisea lineages from turfgrasses was determined in growth chamber experiments and supports the prominent role of host species in determining the genetic structure of M. grisea populations from turfgrasses in Georgia.  相似文献   

2.
Gray leaf spot (GLS) disease of perennial ryegrass (Lolium perenne) and kikuyugrass (Pennisetum clandestinum) in golf courses in California was first noted in 2001 and 2003, respectively, and within 5 years had become well established. The causal agent of the disease is the fungus Magnaporthe grisea, which is known to consist primarily of clonal lineages that are highly host specific. Therefore, our objective was to investigate host specificity and population dynamics among isolates associated primarily from perennial ryegrass and kikuyugrass since the disease emerged at similar times in California. We also obtained isolates from additional hosts (tall fescue, St. Augustinegrass, weeping lovegrass, and rice) and from the eastern United States for comparative purposes. A total of 38 polymorphic amplified fragment length polymorphism makers were scored from 450 isolates which clustered by host with high bootstrap support (71 to 100%). Genetic structure between kikuyugrass and perennial ryegrass isolates differed significantly. Isolates from kikuyugrass were genotypically diverse (n = 34), possessed both mating types, and some tests for random mating could not be rejected, whereas isolates from perennial ryegrass were less genotypically diverse (n = 10) and only consisted of a single mating type. Low genotypic diversity was also found among the other host specific isolates which also only consisted of a single mating type. This is the first study to document evidence for the potential of sexual reproduction to occur in M. grisea isolates not associated with rice (Oryza sativa). Moreover, given the significant host specificity and contrasting genetic structures between turfgrass-associated isolates, the recent emergence of GLS on various grass hosts in California suggests that potential cultural practices or environmental changes have become conducive for the disease and that the primary inoculum may have already been present in the state, despite the fact that two genotypes associated with perennial ryegrass and St. Augustinegrass in California were the same as isolates collected from the eastern United States.  相似文献   

3.
Farman ML 《Phytopathology》2002,92(3):245-254
ABSTRACT Gray leaf spot of perennial ryegrass (prg) (Lolium perenne), caused by the fungus Pyricularia grisea (teleomorph = Magnaporthe grisea), has rapidly become the most destructive of all turf grass diseases in the United States. Fungal isolates from infected prg were analyzed with several molecular markers to investigate their relationship to P. grisea strains found on other hosts. All of the molecular markers used in this study revealed that isolates from prg are very distantly related to those found on crabgrass. Fingerprinting with MGR586 (Pot3) revealed zero to three copies of this transposon in the prg pathogens, distinguishing them from isolates pathogenic to rice, which typically have more than 50 copies of this element. RETRO5, a newly identified retroelement in P. grisea, was present at a copy number of >50 in isolates from rice and Setaria spp. but only six to eight copies were found in the isolates from prg. The MAGGY retrotransposon was unevenly distributed in the prg pathogens, with some isolates lacking this element, some possessing six to eight copies, and others having 10 to 30 copies. These results indicated that the P. grisea isolates causing gray leaf spot are distinct from those found on crabgrass, rice, or Setaria spp. This conclusion was supported by an unweighted pair-group method with arithmetic average cluster analysis of single-copy restriction fragment length polymorphism haplo-types. Fingerprints obtained with probes from the Pot2 and MGR583 transposons revealed that the prg pathogens are very closely related to isolates from tall fescue, and that they share similarity with isolates from wheat. However, the wheat pathogens had fewer copies of these elements than those found on prg. Therefore, I conclude that P. grisea isolates commonly found on other host plant species did not cause gray leaf spot epidemics on prg. Instead, the disease appears to be caused by a P. grisea population that is specific to prg and tall fescue.  相似文献   

4.
Kilic-Ekici O  Yuen GY 《Phytopathology》2003,93(9):1103-1110
ABSTRACT Induced resistance was found to be a mechanism for biological control of leaf spot, caused by Bipolaris sorokiniana, in tall fescue (Festuca arundinacea) using the bacterium Lysobacter enzymogenes strain C3. Resistance elicited by C3 suppressed germination of B. sorokiniana conidia on the phylloplane in addition to reducing the severity of leaf spot. The pathogen-inhibitory effect could be separated from antibiosis by using heat-inactivated cells of C3 that retained no antifungal activity. Application of live or heat-killed cells to tall fescue leaves resulted only in localized resistance confined to the treated leaf, whereas treatment of roots resulted in systemic resistance expressed in the foliage. The effects of foliar and root applications of C3 were long lasting, as evidenced by suppression of conidial germination and leaf spot development even when pathogen inoculation was delayed 15 days after bacterial treatment. When C3 population levels and germination of pathogen conidia was examined on leaf segments, germination percentage was reduced on all segments from C3-treated leaves compared with segments from non-treated leaves, but no dose-response relationship typical of antagonism was found. Induced resistance by C3 was not host or pathogen specific; foliar application of heat-killed C3 cells controlled B. sorokiniana on wheat and also was effective in reducing the severity of brown patch, caused by Rhizoctonia solani, on tall fescue. Treatments of tall fescue foliage or roots with C3 resulted in significantly elevated peroxidase activity compared with the control.  相似文献   

5.
Ahn IP  Kim S  Kang S  Suh SC  Lee YH 《Phytopathology》2005,95(11):1248-1255
ABSTRACT Responses of rice to Magnaporthe grisea and Cochliobolus miyabeanus were compared. In Tetep, a rice cultivar resistant to both fungi, pathogen inoculation rapidly triggered the hypersensitive reaction (HR), resulting in microscopic cell death. In rice cv. Nakdong, susceptible to both pathogens, M. grisea did not cause HR, whereas C. miyabeanus caused rapid cell death similar to that associated with HR, which appeared similar to that observed in cv. Tetep, yet failed to block fungal ramification. Treatment with conidial germination fluid (CGF) from C. miyabeanus induced rapid cell death in both cultivars, suggesting the presence of phytotoxins in CGF. Pretreatment of cv. Nakdong with CGF significantly increased resistance to M. grisea, while the same treatment was ineffective against C. miyabeanus. Similarly, in cv. Nakdong, benzothiadiazole (BTH) significantly increased resistance to M. grisea, but was ineffective against C. miyabeanus. Methyl jasmonate (MeJA) treatment appeared to be ineffective against either fungus. Increased resistance of cv. Nakdong to M. grisea by BTH or CCF treatment was correlated with more rapid induction of three monitored PR genes. Application of MeJA resulted in the expression of JAmyb in cv. Nakdong being induced faster than in untreated plants in response to M. grisea infection. In contrast, the expression pattern of the PR and JAmyb genes in response to C. miyabeanus was nearly identical between cvs. Nakdong and Tetep, and neither BTH nor MeJA treatment significantly modified their expression patterns in response to C. miyabeanus infection. Our results suggest that rice employs distinct mechanisms for its defense against M. grisea versus C. miyabeanus.  相似文献   

6.
Park SY  Milgroom MG  Han SS  Kang S  Lee YH 《Phytopathology》2003,93(11):1378-1385
ABSTRACT Using isolates collected over 2 decades, we determined the population structure and dynamics of the rice blast fungus, Magnaporthe grisea, in Korea at both the genotypic and phenotypic levels. Pathotype analysis on 6,315 isolates collected from 328 rice cultivars from 1981 to 2000 revealed the presence of a total of 91 pathotypes. Among these 91 patho-types, nine dominated, comprising 76.5% of the isolates. The expected number of pathotypes (corrected for sample size) increased significantly during the course of this study. On average, six (ranging from 0 to 20) new commercial cultivars were introduced annually between 1981 and 1998. However, the overall cultivar diversity, estimated using the Shannon index, was low. Most of the new cultivars were not planted to a large area because the seven most common cultivars each year occupied over 70% of the rice-cultivated area. The frequencies of the nine dominant patho-types from these seven cultivars were highly correlated with those from the entire set of cultivars. To understand genetic diversity within and between pathotypes, 176 isolates collected from 1984 to 1999 were randomly sampled and analyzed by DNA fingerprinting. High similarities were observed among isolates; overall similarities were greater than 63% in combined MGR586 and MAGGY DNA fingerprints. Unlike most other populations of M. grisea, DNA fingerprints showed no clear lineage structure. No groups were supported by bootstrap values greater than 10%. Furthermore, there was no significant correlation between DNA fingerprint similarities and pathotypes. Genetic similarity was significantly greater (P < 0.001) within years than between years, although the difference was small. Our data suggest that M. grisea populations in Korea have been mostly dominated by a single clonal lineage. We cannot conclude from these data that selection by the host population has been a major force in the evolution of M. grisea in Korea.  相似文献   

7.
8.
ABSTRACT The application of silicon (Si) fertilizers reduces the severity of blast, caused by Magnaporthe grisea, in irrigated and upland rice; however, little research has been conducted to examine the epidemiological and etiological components of this reduction. Four cultivars of rice with differential susceptibilities to race IB-49 of M. grisea were fertilized with three rates of a calcium silicate fertilizer and inoculated with the pathogen to test the effects of Si on the following components of resistance to blast: incubation period, latent period, infection efficiency, lesion size, rate of lesion expansion, sporulation per lesion, and diseased leaf area. For each cultivar, the incubation period was lengthened by increased rates of Si, and the numbers of sporulating lesions, lesion size, rate of lesion expansion, diseased leaf area, and number of spores per lesion were reduced. Lesion size and sporulation per lesion were lowered by 30 to 45%, and the number of sporulating lesions per leaf and diseased leaf area were significantly reduced at the highest rate of Si. The net effect of Si on these components of resistance is an overall reduction in the production of conidia on plants infected with M. grisea, thereby slowing the epidemic rate of blast.  相似文献   

9.
Zhang Z  Yuen GY 《Phytopathology》1999,89(9):817-822
ABSTRACT Stenotrophomonas maltophilia strain C3 was evaluated for control of leaf spot on tall fescue (Festuca arundinacea) caused by Bipolaris sorokiniana. In growth chamber experiments, C3 inhibited conidial germination on leaf surfaces and reduced lesion frequency and percent diseased leaf area compared with nontreated controls. The amount of leaf spot suppression was related to the C3 dose applied. The highest dose tested, 10(9) CFU/ml, prevented nearly all B. sorokiniana conidia from germinating on treated leaf surfaces and provided nearly complete suppression of lesion development. When colloidal chitin was added to C3 cell suspensions of 10(7) or 10(8) CFU/ml, biocontrol efficacy was significantly increased over C3 applied alone, whereas addition of chitin to a C3 cell suspension of 10(9) CFU/ml had no effect. In field experiments, application of C3 to tall fescue turf resulted in significant reductions in infection frequency and disease severity compared with nontreated controls. Strain C3 applied at 10(9) CFU/ml was more effective than C3 applied at 10(7) CFU/ml, and amendment of the lower dose with colloidal chitin enhanced its efficacy. Populations sizes of C3 established on foliage in a growth chamber and in the field were directly related to dose applied. Chitin amendments did not affect C3 population size.  相似文献   

10.
Tall fescue (Lolium arundinaceum), an agronomically important forage grass, is typically associated with a mutualistic asexual fungus Neotyphodium coenophialum. Plant colonization is endophytic with no symptoms, and fungal growth is confined to the intercellular spaces. The endophyte enhances host fitness by providing protection from various abiotic and biotic stresses and by improving nutrient acquisition. By suppression subtractive hybridization (SSH) we identified 29 genes that are up-regulated or down-regulated in endophyte-infected tall fescue as compared to endophyte-free tall fescue. Of the genes that had matches to known genes present in the NCBI databases (approximately 50%), several had roles related to plant defense and stress tolerance. Differential expression of these genes was confirmed by semi-quantitative RT-PCR, competitive RT-PCR, and northern hybridization. Endophyte-associated changes in gene expression patterns were consistent among cultivars of tall fescue but differed in some other grass–endophyte associations. Our results indicate that both partners in this symbiosis are active participants, and that the endophyte may be suppressing at least one plant defense gene (putatively encoding PR-10). Further analyses of the differentially expressed genes should aid in understanding the fundamental nature of this mutualistic symbiosis and provide insight into the mechanisms of documented endophyte-enhanced plant improvements.  相似文献   

11.
Qi M  Yang Y 《Phytopathology》2002,92(8):870-876
ABSTRACT Rice blast, caused by Magnaporthe grisea, is a serious fungal disease of rice worldwide. Currently, evaluation of the fungal pathogenicity and host resistance is mainly based on a disease rating or measurement of blast lesion number and size. However, these methods only provide visual estimation rather than accurate measurement of fungal growth in rice plants. In this study, DNA-based real-time polymerase chain reaction (PCR) and RNA-based northern blot/phosphoimaging analyses were evaluated to quantify M. grisea. Both methods were sensitive, specific, and reproducible and could accurately measure the relative growth and absolute biomass of M. grisea. The real-time PCR analysis showed that the growth of M. grisea in seedling leaves of susceptible cultivars (M201 and Wells) was approximately 46 to 80 times higher than that of a resistant cultivar (Drew) at 4 and 6 days after inoculation. The data obtained from the real-time PCR assays also were consistent with that from northern blot/ phosphoimaging analysis. However, the real-time PCR approach was much faster and more convenient in most cases. Therefore, it is an excellent tool for in planta quantification of M. grisea and can be used for reliable assessment of fungal pathogenicity and host resistance.  相似文献   

12.
Rice blast caused by the fungus Magnaporthe oryzae (anamorph Pyricularia grisea ) is one of the most devastating diseases of cultivated rice worldwide. In this study, a green fluorescent protein ( gfp )-expressing M. oryzae strain was generated and used to investigate the infection process in a commercial rice cultivar. Expression of the gfp gene did not affect the pathogenicity of the M. oryzae transformants. Confocal microscopy allowed in vivo imaging of this pathogen during infection of rice tissues. Magnaporthe oryzae pathogenicity was examined on both leaf and root tissues. In roots of wild-type plants, the fungus penetrated into epidermal and cortical cells, and colonized the central cylinder and xylem vessels. However, the dimorphic growth pattern typically observed during the biotrophic and necrotrophic stages of leaf colonization was not observed during colonization of root tissues. Furthermore, events occurring during infection of rice plants constitutively expressing the maize pathogenesis-related PRms gene were characterized and compared with those occurring during the interaction of this pathogen with untransformed rice plants. Fungal penetration was drastically reduced and delayed in tissues of PRms plants compared to untransformed plants. These results indicated that the gfp -expressing M. oryzae represents a strategic tool for the assessment of blast disease resistance in transgenic rice which can be also applied to the analysis of the M. oryzae interaction with other cultivars or mutants of important crop species.  相似文献   

13.
The concentrations of haloxyfop in nutrient solution required to reduce the total plant dry weight of soybean (Glycine max L. Merr. ‘Evans’), red fescue (Festuca rubra L. ‘Pennlawn’), and tall fescue (Festuca arundinacea Schreb. ‘Houndog’) by 50% (GR50) were determined. The GR50) values for soybean, red fescue and tall fescue were 76 μM, 3μM and 0.4 μM, respectively. The reduction in growth in roots and shoots of soybean was similar. In contrast, the relative reduction in root tissue weight was greater than that for foliar tissue in both grass species. The amount of 14C-haloxyfop in soybean roots or shoots was higher than in red fescue or tall fescue. Red fescue accumulated less haloxyfop in the foliage than in the roots. On the other hand, similar amounts of 14C-haloxyfop accumulated in both organs in both soybean and tall fescue. 14C-haloxyfop appeared to be actively absorbed by the roots of all species. Soybean absorbed more nutrient solution, but utilized it less on a per gram dry matter produced basis than the grass species. Differences in the uptake and translocation of haloxyfop by roots do not account for differences in tolerance between species. However, a higher level of retention of haloxyfop in the roots of red fescue than in tall fescue may provide the former with an additional selectivity advantage under conditions where there is significant root exposure to the herbicide.  相似文献   

14.
ABSTRACT A leaf spot disease with unknown etiology has become more pronounced in spring and winter barley in Germany in recent years. The symptoms are similar to net blotch and Ramularia leaf spots, but the causal agents of these diseases are not identified. The symptom expression varied much on cultivars. Cultivars most affected by the disease of both spring and winter barley showed a significantly higher level of superoxide (O(2) ) production and lipid peroxidation (malondialdehyde), but a lower level of antioxidant potential expressed as superoxide dismutase (SOD) activity, catalase activity, and integral water-soluble antioxidant capacity (ACW) than insensitive cultivars. A high positive correlation between O(2) production and leaf spot development between ear emergence and milk ripeness was established in the most sensitive winter barley cv. Anoa (r(2) = 0.9622) and spring barley cv. Barke (r(2) = 0.9434). Leaf H(2)O(2) levels increased with the severity of leaf spots. The histochemical localization of O(2) and H(2)O(2) in the tissues adjacent to leaf spots indicated that these two active oxygen species (AOS) are involved in the formation of leaf spots. Reduction of symptom severity by applying strobilurin and azole fungicides was always associated with elevated SOD activity and ACW content and suppressed O(2) production. However, peroxidase activities were significantly higher in sensitive cultivars and in more severely affected tissues and decreased by applying fungicides. Thus, it is assumed that a possible genetic mechanism based on the imbalanced AOS metabolism contributes to formation of physiological leaf spots.  相似文献   

15.
ABSTRACT Although several reports underscore the importance of silicon (Si) in controlling Magnaporthe grisea on rice, no study has associated this beneficial effect with specific mechanisms of host defense responses against this fungal attack. In this study, however, we provide evidence that higher levels of momilactone phytoalexins were found in leaf extracts from plants inoculated with M. grisea and amended with silicon (Si(+)) than in leaf extracts from inoculated plants not amended with silicon (Si(-) ) or noninoculated Si(+) and Si(-) plants. On this basis, the more efficient stimulation of the terpenoid pathway in Si(+) plants and, consequently, the increase in the levels of momilactones appears to be a factor contributing to enhanced rice resistance to blast. This may explain the lower level of blast severity observed on leaves of Si(+) plants at 96 h after inoculation with M. grisea. The results of this study strongly suggest that Si plays an active role in the resistance of rice to blast rather than the formation of a physical barrier to penetration by M. grisea.  相似文献   

16.
广东水稻品种抗性与稻瘟病菌生理小种变化动态的关系   总被引:12,自引:1,他引:11  
1991 ̄1995年对广东稻瘟病菌生理小种及部分主栽品种抗性的研究结果表明,广东稻瘟病菌小种分布及发生动态相对稳定,优势种群为ZB群,ZC群;优势小种为ZB13、ZB5、ZC13和ZB1,不同生态稻区优势小种有差异。品种间具有不同的抗性水平,本省育成推广的主栽品种对稻瘟病属中等的抗性水平,个别品种抗性偏低,属于中感至感。粳籼89等的抗病性逐年下降,这些主栽品种抗性丧失的主要原因,一方面是原有小种的  相似文献   

17.
Pennisetum clandestinum Hochst ex Chiov. (kikuyugrass) is a C4 grass that has become an invasive weed in temperate climates. We examined ecophysiological mechanisms that have allowed it to become a successful weed in these locations by comparing P. clandestinum and two other common turigrass species, Festuca arundinacea Schreb. (tall fescue cv. Mojave), a C3 cool-season grass, and Stenotaphrum secundatum (Walt.) Kuntze (St. Augustinegrass), a C4 warm-season grass, grown in a warm or cool growth regime. We measured rates of photosynthesis over a range of leaf temperatures and also measured growth rate parameters of these species. At leaf temperatures between 25^C and 40^C P. clandestinum maintained the highest rates of photosynthesis in both temperature regimes. Under warm temperatures, this species rapidly increased biomass and leaf area to a greater extent than either of the other two grasses. Theoretical whole plant photosynthesis (mean leaf area × mean photosynthetic rate) was higher for P. clandestinum than for the other two species in both growth regimes and over most leaf temperatures. Our results suggest that P. clandestinum is a successful weed in Mediterranean climates as a result of its capacity to photosynthesize over the full range of temperatures found in those climates, its rapid growth during warm weather and its apparent tolerance to moderately cool temperatures.  相似文献   

18.
水稻窄条斑病是浙江杭州地区的新病害,本研究从症状识别、种子传病及防治药剂测试三方面入手对该病害进行研究。结果表明,通过对光观察病斑透明度,观察有无菌脓及喷菌现象可有效地将水稻窄条斑病与水稻细菌性条斑病区分开;水稻窄条斑病种子可带菌传病,传病率因品种和种子来源不同而异;25%丙环唑EC和50%多菌灵WP对水稻窄条斑病均有较好防效,其中以25%丙环唑EC有效成分用量150g/hm2为最佳,防效达68.73%。  相似文献   

19.
 水稻和稻瘟病菌互作是研究植物与病原菌互作的模式体系。本文利用3个水稻抗稻瘟病近等基因品系(CO39、C101LAC和C101A51)和2个特异性菌株(M209和M210)构成不同亲和程度的互作关系,研究了稻瘟病菌对3个水稻信号传导途径关键酶合成基因、5个防御反应病程相关蛋白基因和1个防御反应转录因子调控基因诱导表达的作用。结果表明:稻瘟病菌诱导了各种互作关系中水稻OsLOXOsAOSOsPAL酶合成基因的表达,水稻启动了茉莉酸和水杨酸防御反应信号传导途径。在不亲和的互作反应中,稻瘟病菌能不同程度地诱导水稻OsPR1aOsPR2OsPR3-1OsPR3-2OsPR4基因的表达,从而有效激活了防御反应系统,使水稻植株表现为抗病;而在亲和的互作反应中,多数OsPR基因的表达水平低、时间短或没有表达,水稻植株表现为感病。OsMyb基因在各种互作关系中有不同的诱导表达。说明这些防御相关基因的诱导表达可能与水稻抗稻瘟病性相关。  相似文献   

20.
应用TaqMan探针实时荧光定量PCR技术早期检测稻瘟病   总被引:3,自引:1,他引:2  
 稻瘟病是一种严重危害水稻生产的真菌病害,早期监测和防治是关键。温室接种大田主栽品种合系39和感病水稻蒙古稻,定时观察发病症状。提取水稻病样总DNA,根据稻瘟菌28S rDNA基因序列,设计特异引物和TaqMan探针,进行荧光定量PCR检测。结果表明稻瘟菌在蒙古稻和大田主栽品种合系39上症状最初出现时间为接种后72 h,蒙古稻典型症状出现时间为接种后168 h,在合系39上出现典型症状的时间为接种后190 h以后。利用TaqMan探针荧光定量PCR技术,在接种12 h的蒙古稻和合系39上均能检测到稻瘟菌DNA,接种48 h,菌量拷贝数达到最高峰,接种72 h,菌量拷贝数开始下降。不同品种中病原菌拷贝数存在差别,在接种12 h的蒙古稻中稻瘟菌含量为7.2×103个拷贝数,在合系39中为4.9×103个拷贝数。本研究结果表明,应用实时荧光定量PCR技术可以在接种后12 h症状未显现之前检测到稻瘟菌,为稻瘟病流行监测和早期防治提供了科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号