首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
ABSTRACT A serious vine decline of cucurbits known as cucurbit yellow vine disease (CYVD) is caused by rod-shaped bacteria that colonize the phloem elements. Sequence analysis of a CYVD-specific polymerase chain reaction (PCR)-amplified 16S rDNA product showed the microbe to be a gamma-proteobacterium related to the genus Serratia. To identify and characterize the bacteria, one strain each from watermelon and zucchini and several noncucurbit-derived reference strains were subjected to sequence analysis and biological function assays. Taxonomic and phylogenetic placement was investigated by analysis of the groE and 16S rDNA regions, which were amplified by PCR and directly sequenced. For comparison, eight other bacterial strains identified by others as Serratia spp. also were sequenced. These sequences clearly identified the CYVD strains as Serratia marcescens. However, evaluation of metabolic and biochemical features revealed that cucurbit-derived strains of S. marcescens differ substantially from strains of the same species isolated from other environmental niches. Cucurbit strains formed a distinct cluster, separate from other strains, when their fatty acid methyl ester profiles were analyzed. In substrate utilization assays (BIOLOG, Vitek, and API 20E), the CYVD strains lacked a number of metabolic functions characteristic for S. marcescens, failing to catabolize 25 to 30 compounds that were utilized by S. marcescens reference strains. These biological differences may reflect gene loss or repression that occurred as the bacterium adapted to life as an intracellular parasite and plant pathogen.  相似文献   

2.
Brenneria quercina has been reported as one of the causal agents of oak decline in Spain. To investigate the bacterial variability of this pathogen from different Spanish oak forests, a collection of 38 bacterial isolates from seven geographic locations and from different oak species was analysed by sequencing 16S rDNA and rep-PCR fingerprinting. All Spanish isolates of B. quercina were grouped by rep-PCR into a homogenous cluster that differed significantly from B. quercina reference strains from California. 16S rDNA analysis revealed that 34 out of 38 isolates were Brenneria . However, four isolates belonged to the genus Serratia , suggesting that this bacterium could cause cankers in oak trees. The information obtained by rep-PCR fingerprint analysis was used to develop PCR primers for the sensitive and specific detection of B. quercina from infected plant tissues. Pathogenicity tests performed with Brenneria and Serratia isolates showed that both were able to grow and cause cankers in oak trees.  相似文献   

3.
ABSTRACT A comprehensive classification framework was developed that refines the current Xanthomonas classification scheme and provides a detailed assessment of Xanthomonas diversity at the species, subspecies, pathovar, and subpathovar levels. Polymerase chain reaction (PCR) using primers targeting the conserved repetitive sequences BOX, enterobacterial repetitive intergenic consensus (ERIC), and repetitive extragenic palindromic (REP) (rep-PCR) was used to generate genomic fingerprints of 339 Xanthomonas strains comprising 80 pathovars, 20 DNA homology groups, and a Stenotrophomonas maltophilia reference strain. Computer-assisted pattern analysis of the rep-PCR profiles permitted the clustering of strains into distinct groups, which correspond directly to the 20 DNA-DNA homology groups(genospecies) previously identified. Group 9 strains (X. axonopodis) were an exception and did not cluster together into a coherent group but comprised six subgroups. Over 160 strains not previously characterized by DNA-DNA hybridization analysis, or not previously classified, were assigned to specific genospecies based on the classification framework developed. The rep-PCR delineated subspecific groups within X. hortorum, X. arboricola, X. axonopodis, X. oryzae, X. campestris, and X. translucens. Numerous taxonomic issues with regard to the diversity, similarity, redundancy, or misnaming were resolved. This classification framework will enable the rapid identification and classification of new, novel, or unknown Xanthomonas strains that are pathogenic or are otherwise associated with plants.  相似文献   

4.
Northern Iran has one of the largest and most diverse populations of cultivated crucifers in Iran. Symptoms of black rot disease were observed in 40 % of fields. To assess the genetic diversity of Xanthomonas campestris pv. campestris (Xcc) strains, associated with black rot disease, 40 strains were isolated from infected samples of crucifers such as cabbage, radish, cauliflower, turnip and kohlrabi, and were collected from different geographic regions of northern Iran including West and East Azarbayjan and Ardabil provinces. Bacterial strains were characterized by their morphological, biochemical and physiological features and pathogenicity tests. Four races were found in northern Iran (1, 4, 5 and 6) and the majority of the tested strains belonged to either race 4 (45 %) or race 6 (20 %). To examine the distribution of dispersed repetitive DNA, Enterobacterial Repetitive Intergenic Consensus (ERIC), BOX, Repetitive Extragenic Palindromic (REP) and random amplified polymorphic DNA (RAPD) sequences in the genome of Xcc using conserved primers. The different markers produced characteristic banding patterns and the similarity matrices from binary banding data was derived with the similarity for qualitative data program (SIMQUAL). On the basis of the fingerprint patterns generated by the combination data set of both rep-PCR and RAPD, the Xcc strains were differentiated into seven clusters (A–G) at 76 % similarity level. The geographical origin of the Iranian strains does not seem to be correlated with the RAPD and rep-PCR clusters. The clusters seem to be more related to the race of the strains. This is the first study on genetic diversity of Xcc strains inducing black rot disease of crucifers in Iran.  相似文献   

5.
Bacterial leaf streak (BLS), caused by Xanthomonas translucens pv. undulosa, has become more prevalent recently in North Dakota and neighboring states. From five locations in North Dakota, 226 strains of X. translucens pv. undulosa were collected and evaluated for pathogenicity and then selected strains were inoculated on a set of 12 wheat cultivars and other cereal hosts. The genetic diversity of all strains was determined using repetitive sequence-based polymerase chain reaction (rep-PCR) and insertion sequence-based (IS)-PCR. Bacterial strains were pathogenic on wheat and barley but symptom severity was greatest on wheat. Strains varied greatly in aggressiveness, and wheat cultivars also showed differential responses to several strains. The 16S ribosomal DNA sequences of the strains were identical, and distinct from those of the other Xanthomonas pathovars. Combined rep-PCR and IS-PCR data produced 213 haplotypes. Similar haplotypes were detected in more than one location. Although diversity was greatest (≈92%) among individuals within a location, statistically significant (P ≤ 0.001 or 0.05) genetic differentiation among locations was estimated, indicating geographic differentiation between pathogen populations. The results of this study provide information on the pathogen diversity in North Dakota, which will be useful to better identify and characterize resistant germplasm.  相似文献   

6.
ABSTRACT Diversity in host range, pathogenicity, phenotypic characteristics, repetitive extragenic palindromic polymerase chain reaction (rep-PCR) profiles, and sequence of the 16S-23S rDNA spacer region was examined among 44 Xanthomonas strains isolated from lettuce. Forty-two of the strains were divided into two groups, designated A and B. Seventy percent were Group A, and most of the remaining strains including a reference strain (LMG 938) were Group B. Group A strains induced both local and systemic symptoms, whereas Group B strains caused only distinct necrotic spots. Two strains, including the X. campestris pv. vitians type strain, were distinct from the Group A and B strains and were not pathogenic on lettuce. Analysis of fatty acid profiles, serotype, carbon substrate utilization patterns, and protein fingerprints confirmed this grouping. The Group A and B strains also formed two unique clusters (I and II) by rep-PCR profiling that corresponded to the two groups. Direct sequencing of a PCR-amplified DNA fragment (680 bp) from the 16S-23S rDNA spacer region of four representative strains, however, did not differentiate these groups. Serology and rep-PCR fingerprinting can be used to diagnose and identify X. campestris pv. vitians strains, while the other analyses evaluated are useful for strain characterization.  相似文献   

7.
ABSTRACT Streptomyces soil rot is a destructive disease of sweetpotato (Ipomoea batatas) that causes yield loss resulting from decay of the feeder root system and reduced quality due to the presence of necrotic lesions on the storage roots. It is managed by the use of resistant cultivars, but variability of the pathogen has not been previously assessed. This study compared 36 strains of the pathogen Streptomyces ipomoeae from different locations in the United States and Japan. The strains could be separated into three groups on the basis of their ability to inhibit the growth of one another in in vitro assays. Although some strains contained plasmids of approximately 18, 42, or 270 kb in size, plasmid profiles did not correspond to inhibition grouping. Fingerprinting by repetitive element-based polymerase chain reaction (rep-PCR) using outwardly facing primers for the BOX, enterobacterial repetitive intergenic consensus (ERIC), and repetitive extragenic palindromic (REP) sequences indicated relatively high genomic homogeneity within S. ipomoeae. However, cluster analysis of similarity coefficients among strains using rep-PCR data revealed clusters that correlated with the inhibition grouping. The neotype strain of S. ipomoeae had lower similarity values by rep-PCR than any of the other strains and could not be grouped by inhibitory interactions.  相似文献   

8.
Restriction fragment length polymorphisms (RFLP) were used to assess genetic diversity of mitochondrial DNA (mtDNA) among 184 isolates of Fusarium proliferatum recovered from maize, asparagus, palms and reed. All strains were cross-fertile with standard mating type tester strains of Gibberella intermedia. Sixteen mitochondrial haplotypes were identified following digestion of DNAs with HaeIII, with seven, seven, five and six different haplotypes from maize, asparagus, palms and reed, respectively. Four haplotypes (I, III, IV and VII) were found on more than one host. Of these four, haplotype I was dominant on maize, representing 71% of the isolates. The banding patterns for haplotypes III and IV were >90% similar to the banding pattern of haplotype I. Haplotypes I, III and IV accounted for 87% of the isolates from maize, but were less common on the other hosts, accounting for 70%, 52% and 33% of the isolates from asparagus, palms and reed, respectively. Thirteen of the 16 haplotypes were recovered from only a single host plant species. When comparing the banding patterns and frequencies of these haplotypes, at least five were recovered at a higher frequency from one host relative to the others. Our results suggest that mtDNA RFLP analysis is a useful indicator of genetic divergence in Fusarium proliferatum.  相似文献   

9.
Black rot, caused by Xanthomonas campestris pv. campestris (Xcc), is a major disease constraint to cabbage production by smallholder farmers in Africa. Variability exists within the pathogen, and yet differentiation of Xcc strains from other closely-related xanthomonads attacking crucifers is often difficult. The Biolog system, fatty acid methyl ester analysis using microbial identification system (MIS), rep-PCR and pathogenicity tests were used to identify and characterise Xcc strains from Tanzania. Great diversity was observed among Xcc strains in their Biolog and rep-PCR profiles. Specific rep-PCR genomic fingerprints were linked to some geographical areas in the country. Most of the Xcc strains were clustered in two groups based on their fatty acid profiles and symptom expression in cabbage although some deviant strains were found. Each of the methods allowed a degree of identification from species, pathovar to the strain level. Biolog and MIS identified all Xcc strains at least to the genus level. Additionally, Biolog identified 47% of Xcc strains to the pathovar and 43% to strain level, whereas MIS identified 43% of the strains to pathovar level. In the absence of a database, the utility of rep-PCR for routine diagnosis of strains was limited, although the procedure was good for delineation of Xcc to the strain level. These findings indicate the existence of Xcc strains in Tanzania that are distinct from those included in Biolog and MIS databases. The limitations noticed warrant continued improvement of databases and inclusion of pathogenicity testing, using universally susceptible cultivars, as an integral part of strain identification.  相似文献   

10.
ABSTRACT DNA samples from Magnaporthe grisea isolates were fingerprinted by using repetitive element-based polymerase chain reaction (rep-PCR) with two outwardly directed primer sequences from Pot2, an element found in approximately 100 copies in the fungal genome. Variable length fragments, defining the sequences lying between these elements, were generated, and fingerprint patterns specific for individual strains were established. "Long PCR" conditions, including higher pH (9.2) and increased extension time (10 min) were used to amplify DNA fragments ranging from 400 bp to longer than 23 kb. Polymorphisms specific to M. grisea strains were generated, allowing inference of their genetic relationships. Segregation analysis was used to confirm single-locus inheritance for the fragments amplified by rep-PCR. Cluster analysis revealed robust groupings that corresponded to previously determined MGR586 restriction fragment length polymorphism lineages of the rice-infecting strains of the pathogen. We have also demonstrated the utility of rep-PCR to differentiate isolates that infect rice from those that infect nonrice hosts. DNA fingerprinting by Pot2 rep-PCR provides an efficient means to monitor the population dynamics of the blast pathogen. Because of the method's low cost and ease in application, it is now feasible to conduct large-scale population studies to understand the impact of host genotypes on pathogen evolution.  相似文献   

11.
采用ERIC-PCR,BOX-PCR和ITS的分析方法,对分离自我国内蒙古自治区5个市的21个糖甜菜叶斑病菌菌株进行多样性分析,并与其他12种病原细菌进行比较。ERIC-PCR揭示,在相似性80%上所有参试菌株分为26簇,而BOX-PCR只得到20个簇,暗示这两种短重复序列在基因组中的分布不同;将两者电泳图谱结合,得到介于上述两者间的结果,分为23个簇;在相似率达87%时,ITS分析将21个糖甜菜叶斑病菌菌株分成7簇。3种分析方法相互验证,均说明内蒙古糖甜菜叶斑病菌基因组存在显著多样性。ERIC和BOX聚类证明了糖甜菜叶斑病菌与短小杆菌属(Curtobacterium)亲缘关系较近,与其他属细菌亲缘关系较远。研究证明,ERIC和BOX扩增基因组DNA指纹比ITS图谱具有更强的多样性。  相似文献   

12.
ABSTRACT Bacterial leafspot of lettuce (BLS), caused by Xanthomonas campes-tris pv. vitians, has become more prevalent in many lettuce-growing areas of the world over the past decade. To gain insight into the nature of these outbreaks, the genetic variation in X. campestris pv. vitians strains from different geographical locations was examined. All strains were first tested for pathogenicity on lettuce plants, and then genetic diversity was assessed using (i) gas-chromatographic analysis of bacterial fatty acids, (ii) polymerase chain reaction analysis of repetitive DNA sequences (rep-PCR), (iii) DNA sequence analysis of the internal transcribed spacer region 1 (ITS1) of the ribosomal RNA, (iv) restriction fragment length polymorphism (RFLP) analysis of total genomic DNA with a repetitive DNA probe, and (v) detection and partial characterization of plasmid DNA. Fatty acid analysis identified all pathogenic strains as X. campestris, but did not consistently identify all the strains as X. campestris pv. vitians. The rep-PCR fingerprints and ITS1 sequences of all pathogenic X. campestris pv. vitians strains examined were identical, and distinct from those of the other X. campestris pathovars. Thus, these characteristics did not reveal genetic diversity among X. campestris pv. vitians strains, but did allow for differentiation of X. campestris pathovars. Genetic diversity among X. campestris pv. vitians strains was revealed by RFLP analysis with a repetitive DNA probe and by characterization of plasmid DNA. This diversity was greatest among strains from different geographical regions, although diversity among strains from the same location also was detected. The results of this study suggest that these X. campestris pv. vitians strains are not clonal, but comprise a relatively homogeneous group.  相似文献   

13.
ABSTRACT Common bacterial blight (CBB), caused by Xanthomonas campestris pv. phaseoli and X. campestris pv. phaseoli var. fuscans, is one of the most important diseases of common bean (Phaseolus vulgaris) in East Africa and other bean-growing regions. Xanthomonad-like bacteria associated with CBB in Malawi and Tanzania, East Africa, and in Wisconsin, U.S., were characterized based on brown pigment production, pathogenicity on common bean, detection with an X. campestris pv. phaseoli- or X. campestris pv. phaseoli var. fuscans-specific PCR primer pair, and repetitive element polymerase chain reaction (rep-PCR) and restriction fragment length polymorphism (RFLP) analyses. The common bean gene pool (Andean or Middle American) from which each strain was isolated also was determined. In Malawi, X. campestris pv. phaseoli and X. campestris pv. phaseoli var. fuscans were isolated predominantly from Andean or Middle American beans, respectively. In Tanzania, X. campestris pv. phaseoli var. fuscans was most commonly isolated, irrespective of gene pool; whereas, in Wisconsin, only X. campestris pv. phaseoli was isolated from Andean red kidney beans. Three rep-PCR fingerprints were obtained for X. campestris pv. phaseoli strains; two were unique to East African strains, whereas the other was associated with strains collected from all other (mostly New World) locations. RFLP analyses with repetitive DNA probes revealed the same genetic diversity among X. campestris pv. phaseoli strains as did rep-PCR. These probes hybridized with only one or two fragments in the East African strains, but with multiple fragments in the other X. campestris pv. phaseoli strains. East African X. campestris pv. phaseoli strains were highly pathogenic on Andean beans, but were significantly less pathogenic on Middle American beans. In contrast, X. campestris pv. phaseoli strains from New World locations were highly pathogenic on beans of both gene pools. Together, these results indicate the existence of genetically and geographically distinct X. campestris pv. phaseoli genotypes. The rep-PCR fingerprints of X. campestris pv. phaseoli var. fuscans strains from East African and New World locations were indistinguishable, and were readily distinguished from those of X. campestris pv. phaseoli strains. Genetic diversity among X. campestris pv. phaseoli var. fuscans strains was revealed by RFLP analyses. East African and New World X. campestris pv. phaseoli var. fuscans strains were highly pathogenic on Andean and Middle American beans. Breeding for CBB resistance in East African beans should utilize X. campestris pv. phaseoli var. fuscans and New World X. campestris pv. phaseoli strains in order to identify germ plasm with the highest levels of resistance.  相似文献   

14.
为明确粘质沙雷氏菌Serratia marcescens S-JS1与杀虫剂对灰飞虱的联合作用,以及S-JS1对灰飞虱解毒酶和保护酶活性的影响,以灰飞虱3龄若虫为对象,采用喷雾法比较了S-JS1与5种杀虫剂 (螺虫乙酯、噻虫嗪、吡虫啉、啶虫脒和毒死蜱) 单用,以及菌、药混用对灰飞虱的杀虫活性,测定了灰飞虱取食经S-JS1处理的水稻后,虫体内羧酸酯酶 (CarE)、谷胱甘肽-S-转移酶 (GSTs)、过氧化物酶 (POD) 和超氧化物歧化酶 (SOD) 的活性变化。结果表明:粘质沙雷氏菌S-JS1分别与不同浓度杀虫剂混用,均可提高杀虫剂对灰飞虱的致死率。其中,109 cfu/mL的S-JS1与1.25 mg/L的噻虫嗪混用处理3 d,或与25 mg/L的螺虫乙酯混用处理5 d,灰飞虱的死亡率分别为65.58%和76.27%,均显著高于同浓度杀虫剂单用的处理 (噻虫嗪单用时致死率为44.24%,螺虫乙酯为49.22%),表现为增效作用 (χ2 > 3.84,实测死亡率 – 预期死亡率 > 0);其他各混用处理均为相加作用 (χ2 < 3.84)。灰飞虱取食经粘质沙雷氏菌处理的水稻苗后12和24 h,其CarE活性与对照组间无显著性差异,GSTs活性呈先降低后升高趋势,POD和SOD活性均低于对照组。研究表明,粘质沙雷氏菌S-JS1可能降低了灰飞虱对杀虫剂的抵抗力。本研究可为探索昆虫病原细菌与杀虫剂间的联合应用提供参考,为灰飞虱的有效防治提供新思路。  相似文献   

15.
Genetic diversity among 51 isolates of Rhizoctonia solani AG-3, representing potato and tobacco populations, was inferred from the sequences of the internal transcribed spacer (ITS) and 5.8S ribosomal RNA (rRNA) gene. The 5.8S rDNA sequence was completely conserved not only in AG-3, but across all the AG isolates examined, whereas the rDNA-ITS sequence was found to be variable among the isolates. The nucleotide sequence similarity in the ITS 1 region was high (96-100%) for isolates within each of the two populations, but was 91-92% for isolates from different populations. The AG-3 isolates had 56 to 91% sequence similarities in the ITS 1 region with R. solani isolates of the other AGs. Phylogenetic analysis based on the ITS-5.8S rDNA sequence data indicated that the different populations in AG-3 are distantly related to each other. Genetic divergence between the two populations was also supported by the results of DNA-DNA hybridization studies. This study suggests that AG-3 consists of two genetically isolated groups corresponding to separate subgroups: AG-3 PT (potato type) and AG-3 TB (tobacco type). Specific primer sets for the detection of the two AG-3 subgroups were developed from the aligned rDNA-ITS sequences. Received 22 April 1999/ Accepted in revised form 2 July 1999  相似文献   

16.
Twenty different strains of Pectobacterium carotovorum (Pcc) were recovered from vegetable-growing fields of Vadodara, Gujarat (India) using a plant host enrichment approach during the years 2006–9. The isolated strains, based on differences in physiological and biochemical features, were classified into five different biovars, and then identified as Pectobacterium carotovorum (Pcc) by species-specific PCR and 16S rDNA sequences. Moreover, these Pcc strains were also differentiated based on virulence traits, plant cell wall degrading enzymes production and phylogenetic analysis of 16S rDNA sequence and Repetitive extragenic palindromic—PCR (rep-PCR). High genetic variability, independent of their pathogenicity, was revealed among these Pcc strains by rep-PCR typing using four different primer sets . Factors other than the plant host specificity seem to correlate with genetic variability of these economically important Pcc strains. Significantly, polyphasic characterization of the Pcc strains clearly reveals the heterogeneity among them. The present studies can be considered as useful epidemiological surveillance (or distribution) of soft rot causing Pcc in the semi arid region of India.  相似文献   

17.
ABSTRACT Forty bacterial strains isolated from leek blight (Allium porrum) in France and other countries were studied by conventional biochemical methods, serological reactions, numerical taxonomy, DNA-DNA hybridization, and ice nucleation activity, as well as by pathogenicity on leek and other host plants. They were compared with reference strains of Pseudomonas, mainly pathotype strains of P. syringae pathovars and strains of P. syringae pv. syringae isolated from various host plants including onions. Leek strains sorted with P. syringae species (sensu lato) by LOPAT tests (production of levan-sucrase, oxidase, pectinase, arginine dihydrolase, and hypersensitive reaction on tobacco). Leek strains were pathogenic to leek and produced symptoms identical to those observed in the field. They were the only strains in our study that could cause blight of leek. Thus, our results justify the creation of a new pathovar. Leek strains constituted a highly homogeneous DNA group and a discrete phenon by numerical taxonomy, and they belonged to O-serogroup POR. The name of P. syringae pv. porri is proposed for the bacterium causing leek blight. Criteria for routine identification are presented and taxonomic status is discussed.  相似文献   

18.
ABSTRACT The genomic DNA fingerprinting technique known as repetitive-sequence-based polymerase chain reaction (rep-PCR) was evaluated as a tool to differentiate subspecies of Clavibacter michiganensis, with special emphasis on C. michiganensis subsp. michiganensis, the pathogen responsible for bacterial canker of tomato. DNA primers (REP, ERIC, and BOX), corresponding to conserved repetitive element motifs in the genomes of diverse bacterial species, were used to generate genomic fingerprints of C. michiganensis subsp. michiganensis, C. michiganensis subsp. sepedonicus, C. michiganensis subsp. nebraskensis, C. michiganensis subsp. tessellarius, and C. michiganensis subsp. insidiosum. The rep-PCR-generated patterns of DNA fragments observed after agarose gel electrophoresis support the current division of C. michiganensis into five subspecies. In addition, the rep-PCR fingerprints identified at least four types (A, B, C, and D) within C. michiganensis subsp. michiganensis based on limited DNA polymorphisms; the ability to differentiate individual strains may be of potential use in studies on the epidemiology and host-pathogen interactions of this organism. In addition, we have recovered from diseased tomato plants a relatively large number of naturally occurring avirulent C. michiganensis subsp. michiganensis strains with rep-PCR fingerprints identical to those of virulent C. michiganensis subsp. michiganensis strains.  相似文献   

19.
We assessed the geographic distribution, biovar, phylotype, DNA fingerprints (rep-PCR), and/or endoglucanase sequence of potato bacterial wilt pathogen, Ralstonia solanacearum (Rs), in Japan. Rs has been isolated from potato fields in southwestern, warm, temperate regions. Of the 188 isolates, 74 belonged to biovar N2 (39%), 44 to biovar 3 (24%), and 70 to biovar 4 (37%). Biovars N2 and 4 strains were widely distributed, from northern (Hokkaido) to southern (Okinawa) Japan. Based on the results of multiplex-PCR analysis, every potato strains belonged to either phylotype I or IV. Phylotype I comprised both biovars 3 and 4 strains. On the other hand, phylotype IV included biovar N2 strains. None of the strains belonged to phylotype II or III or biovar 1 or 2. Phylogenetic analysis based on DNA fingerprints and endoglucanase gene sequences clarified the genetic diversity of the Japanese potato strains and the close genetic relationship between the Japanese strains and the Asian strains in phylotypes I and IV.  相似文献   

20.
Erwinia amylovora, the causal agent of fire blight, is genetically very homogeneous, and current methodologies provide insufficient or contradictory information about the probable dispersal routes of the pathogen. With the final aim to obtain specific and reliable molecular markers for different lineages of the pathogen, we studied the molecular basis of rep-polymerase chain reaction (PCR) polymorphism using seven different arbitrary primers to fingerprint 93 E. amylovora strains from different countries, including Spain. Polymorphism was very low, and was displayed by only 11 E. amylovora strains, which produced 22 polymorphic bands. Five of 11 polymorphic bands cloned contained DNA that was present in more than 85% of the strains, whereas six bands were due to DNA present exclusively in the strains producing the rep-PCR polymorphism. Also, five of the polymorphic bands were due to the possession of either the ubiquitous plasmid pEA29, of plasmid pEU30, which was exclusively found in strains from North America, or of a 35-kb cryptic plasmid, present only in 28 strains from Northern Spain. We designed primer pairs from several cloned polymorphic bands that allowed the specific identification of the strains producing the polymorphism. Our results indicate that rep-PCR is not adequate for constructing genealogies of E. amylovora, although the strategy illustrated here, as well as the designed primers, can be used effectively in epidemiological studies with this pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号