首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
A Chitinase from Tex6 Maize Kernels Inhibits Growth of Aspergillus flavus   总被引:2,自引:0,他引:2  
ABSTRACT The maize inbred Tex6 has resistance to colonization and aflatoxin accumulation by Aspergillus flavus. A protein inhibitory to growth of A. flavus has been identified from aqueous extracts of mature Tex6 seeds. This study reports the purification of a chitinase associated with this inhibitory activity to electrophoretic homogeneity and the further characterization of its properties. The inhibitory protein, which has an M(r) of 29,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, is an endochitinase that is also capable of exochitinase activity. The enzyme has an optimal pH of 5.5 and a temperature optimum of 45 degrees C. Chitinase activity in maize kernels peaked approximately 36 days after pollination. The Tex6 chitinase purified in this study is capable of inhibiting the growth of A. flavus by 50% at a concentration of 20 mug/ml. Our data indicate that chitinase activity in Tex6 kernels makes a major contribution to the antifungal activity in this maize genotype. Partial peptide sequence of the chitinase showed it to differ from previously reported chitinases.  相似文献   

2.
Huang Z  White DG  Payne GA 《Phytopathology》1997,87(6):622-627
ABSTRACT This study reports the presence of two fractions from corn seeds inhibitory to aflatoxin formation. Using a sensitive laboratory assay that can measure both inhibition of fungal growth and inhibition of aflatoxin biosynthesis, we examined aqueous extracts from seeds of Tex6, a corn inbred shown to be highly resistant to aflatoxin accumulation in field and laboratory evaluations. In these extracts, we identified two biologically active fractions. One inhibited growth of Aspergillus flavus and, thus, aflatoxin accumulation, and the other inhibited aflatoxin formation with little effect on fungal growth. The compounds responsible for these activities appear to be proteaceous, as they are water soluble, heat labile, and sensitive to proteinase K treatment. The compounds were partially purified by ultrafiltration and chromatography. The estimated molecular mass of the growth inhibitor is approximately 28 kDa, and that of the aflatoxin biosynthesis inhibitor appears to be greater than 100 kDa. Partially purified preparations of the growth inhibitor and aflatoxin biosynthesis inhibitor cause 50% inhibition at 26 and 75 mug of protein/ml, respectively. The presence of these compounds in Tex6 may explain its resistance to aflatoxin accumulation.  相似文献   

3.
ABSTRACT Aspergillus flavus is the causal agent of an ear and kernel rot in maize. In this study, we characterized an alpha-amylase-deficient mutant and assessed its ability to infect and produce aflatoxin in wounded maize kernels. The alpha-amylase gene Amy1 was isolated from A. flavus, and its DNA sequence was determined to be nearly identical to Amy3 of A. oryzae. When Amy1 was disrupted in an aflatoxigenic strain of A. flavus, the mutant failed to produce extracellular alpha-amylase and grew 45% the rate of the wild-type strain on starch medium. The mutant produced aflatoxin in medium containing glucose but not in a medium containing starch. The alpha-amylase-deficient mutant produced aflatoxin in maize kernels with wounded embryos and occasionally produced aflatoxin only in embryos of kernels with wounded endosperm. The mutant strain failed to produce aflatoxin when inoculated onto degermed kernels. In contrast, the wild-type strain produced aflatoxin in both the endosperm and embryo. These results suggest that alpha-amylase facilitates aflatoxin production and growth of A. flavus from a wound in the endosperm to the embryo. A 14-kDa trypsin inhibitor associated with resistance to A. flavus and aflatoxin in maize also inhibited the alpha-amylase from A. flavus, indicating that it is a bifunctional inhibitor. The inhibitor may have a role in resistance, limiting the growth of the fungus in the endosperm tissue by inhibiting the degradation of starch.  相似文献   

4.
ABSTRACT Corn genotypes resistant or susceptible to Aspergillus flavus were extracted for protein analysis using a pH 2.8 buffer. The profile of protein extracts revealed that a 14-kDa protein is present in relatively high concentration in kernels of seven resistant corn genotypes, but is absent or present only in low concentration in kernels of six susceptible ones. The N-terminal sequence of this 14-kDa protein showed 100% homology to a corn trypsin inhibitor. The 14-kDa protein purified from resistant varieties also demonstrated in vitro inhibition of both trypsin activity and the growth of A. flavus. This is the first demonstration of antifungal activity of a corn 14-kDa trypsin inhibitor protein. The expression of this protein among tested genotypes may be related to their difference in resistance to A. flavus infection and subsequent aflatoxin contamination.  相似文献   

5.
ABSTRACT Russin, J. S., Guo, B. Z., Tubajika, K. M., Brown, R. L., Cleveland, T. E., and Widstrom, N. W. 1997. Comparison of kernel wax from corn genotypes resistant or susceptible to Aspergillus flavus. Phytopathology 87: 529-533.Kernels of corn genotype GT-MAS: gk are resistant to Aspergillus flavus. Earlier studies showed that this resistance is due in part to kernel pericarp wax. Experiments were conducted to compare wax from GTMAS: gk kernels with that from kernels of several susceptible commercial hybrids. GT-MAS: gk had more pericarp wax than did the susceptible hybrids. Scanning electron microscopy revealed that GT-MAS: gk kernels appeared rough and showed abundant wax deposits on kernel surfaces. Susceptible kernels appeared much more smooth and lacked the abundant surface deposits observed in GT-MAS: gk. In vitro bioassays showed that kernel wax from GT-MAS: gk reduced A. flavus colony diameter by 35%. Colony diameters on a medium amended with wax from susceptible kernels did not differ from those of controls. Thin-layer chromatography and analyses of chromatograms using NIH Image software showed a distinctive composition for GT-MAS: gk kernel wax. Chromatograms of wax from GT-MAS: gk contained a peak unique to this genotype, but also lacked a peak common to all susceptible hybrids. This is the first report of specific kernel factors involved in resistance to A. flavus in corn.  相似文献   

6.
ABSTRACT Botrytis blight (gray mold), caused by Botrytis cinerea, is one of the most widely distributed diseases of ornamental plants. In geranium plants, gray mold is responsible for important losses in production. The mold Aspergillus giganteus is known to produce and secrete a basic low-molecular-weight protein, the antifungal protein (AFP). Here, the antifungal properties of the Aspergillus AFP against various B. cinerea isolates obtained from naturally infected geranium plants were investigated. AFP strongly inhibited mycelial growth as well as conidial germination of B. cinerea. Microscopic observations of fungal cultures treated with AFP revealed reduced hyphal elongation and swollen hyphal tips. Washout experiments in which B. cinerea was incubated with AFP for different periods of time and then washed away revealed a fungicidal activity of AFP. Application of AFP on geranium plants protected leaves against Botrytis infection. Cecropin A also was active against this pathogen. An additive effect against the fungus was observed when AFP was combined with cecropin A. These results are discussed in relation to the potential of the afp gene to enhance crop protection against B. cinerea diseases.  相似文献   

7.
ABSTRACT Aflatoxins are toxic, highly carcinogenic secondary metabolites of Aspergillus flavus and A. parasiticus, which when produced during fungal infection of a susceptible crop in the field or after harvest contaminate food and feed and threaten human and animal health. Although there are several management strategies that may reduce aflatoxin contamination of corn, the preeminent strategy for elimination of aflatoxin is to develop preharvest host resistance to aflatoxin accumulation. This strategy has gained even greater prominence due to recent discoveries of natural resistance in corn that can be exploited in plant-breeding strategies. The ability to identify resistant corn genotypes has been enhanced by the development of a laboratory kernel-screening assay and by a strain of A. flavus genetically engineered to produce beta-glucuronidase, an enzyme whose activity can be monitored to assess the degree of fungal infection in kernels. Investigations of resistant corn genotypes have associated kernel pericarp wax characteristics with resistance, identified kernel proteins associated with resistance to and inhibition of fungal growth or aflatoxin biosynthesis, and identified chromosome regions associated with resistance to Aspergillus ear rot and aflatoxin production. Such research advances could lead, in the near future, to commercially available, agronomically acceptable corn lines with multiple preharvest resistances to aflatoxin contamination.  相似文献   

8.
拮抗菌B-FS06的鉴定及其发酵产物对黄曲霉的抑制作用   总被引:4,自引:0,他引:4  
从油菜地分离到一株细菌B-FS06,其表现出对黄曲霉的拮抗作用。根据该细菌的理化性质、微观结构及16SrDNA序列的进化树分析,鉴定菌株B-FS06为枯草芽孢杆菌。细菌发酵液经20%、40%、60%、80%硫酸铵饱和度分级沉淀均表现出抑制黄曲霉活性。采用96孔板法测得该菌胞外蛋白粗提液对黄曲霉的最低抑菌浓度为31.2μg/ml。蛋白粗提液经121℃高压灭菌20min后对黄曲霉抑制率为91.3%。  相似文献   

9.
10.
ABSTRACT Aflatoxin biosynthesis was induced by compounds in filtrates (EF) obtained from cultures consisting of ground maize kernels colonized by Aspergillus flavus. The inducing activity increased to a maximum at 4 days of incubation and then decreased. Amylase activity was detected in the EF, suggesting that the inducers are products of starch degradation (glucose, maltose, and maltotriose). Analysis of the enzyme by isoelectric focusing electrophoresis indicated a single alpha-amylase with a pI of 4.3. No maltase or amyloglucosidase was detected in the EF. High-pressure liquid chromatography analysis of the EF indicated the presence of glucose, maltose, and maltotriose in near-equal molar concentrations (about 15 mM). With a beta-glucuronidase (GUS) reporter assay consisting of A. flavus transformed with an aflatoxin gene promoter-GUS reporter gene fusion to monitor induction of aflatoxin biosynthesis, the minimum concentration of glucose, maltose, or maltotriose that induced measurable GUS activity was determined to be 1 mM. These results support the hypothesis that the best inducers of aflatoxin biosynthesis are carbon sources readily metabolized via glycolysis. They also suggest that alpha-amylase produced by A. flavus has a role in the induction of aflatoxin biosynthesis in infected maize kernels.  相似文献   

11.
ABSTRACT Infection of peanut (Arachis hypogaea) seed by Aspergillus flavus and A. parasiticus is a serious problem that can result in aflatoxin contamination in the seed. Breeding resistant cultivars would be an effective approach to reduce aflatoxin accumulation. The objective of this study was to investigate the expression of the pathogenesis-related (PR) protein beta-1,3-glucanase and the isoform patterns in peanut seed inoculated with A. flavus. Peanut genotypes GT-YY9 and GT-YY20 (both resistant to A. flavus infection) and Georgia Green and A100 (both susceptible to A. flavus infection) were used in this study. The activities of beta-1,3-glucanase were similar in the uninfected seed of all genotypes, but increased significantly in the resistant genotypes after inoculation in comparison with the susceptible genotypes. An in-gel (native polyacrylamide gel electrophoresis [PAGE]) enzymatic activity assay of beta-1,3-glucanase revealed that there were more protein bands corresponding to beta-1,3-glucanase isoforms in the infected seed of resistant genotypes than in the infected seed of susceptible genotypes. Both acidic and basic beta-1,3-glucanase isoforms were detected in the isoelectric focusing gels. Thin-layer chromatography analysis of the hydrolytic products from the reaction mixtures of the substrate with the total protein extract or individual band of native PAGE revealed the presence of enzymatic hydrolytic oligomer products. The individual bands corresponding to the bands of beta-1,3-glucanase isoforms Glu 1 to 5 were separated on the sodium dodecyl sulfate-PAGE, resulting in two bands of 10 and 13 kDa, respectively. The sequences of fragments of the 13-kDa major protein band showed a high degree of homology to conglutin, a storage protein in peanut seed. Conglutin is reported as a peanut allergen, Ara h2. Our data provide the first evidences for peanut having beta-1,3-glucanase activities and the association with the resistance to A. flavus colonization in peanut seed. We have not directly demonstrated that conglutin has beta-1,3-glucanase activity.  相似文献   

12.
ABSTRACT A hydrophobic 19.7-kDa amylase inhibitor (AI) was purified from corn kernels by 95% ethanol extraction and anionic exchange chromatography. The AI has an isoelectric point of 3.6 and was very stable at different pH values and high temperatures, maintaining 47.6% activity after heating to 94 degrees C for 60 min. Amino acid analysis indicated high valine, leucine, glycine, alanine, and glutamic acid/glutamine content, and especially high valine content (41.2 mol%). This inhibitor is not a glycoprotein. It required 30-min preincubation to maximize complex enzyme-inhibitor formation when the amylase from Fusarium verticillioides was tested. The optimal pH of interaction was 6.5. It showed broad-spectrum activity including the following amylases: human saliva, porcine pancreas, F. verticillioides, as well as those from some insects of agricultural importance (Acanthoscelides obtectus, Zabrotes subfasciatus, Sitophilus zeamais, and Prostephanus truncatus). This novel hydrophobic protein not only inhibited the amylase from F. verticillioides but also decreased the conidia germination. Thus, this protein represents an approach to decrease the production of fumonisin in corn, either by using it as a molecular marker to detect fungal resistance or through genetic engineering.  相似文献   

13.
ABSTRACT Aflatoxins are carcinogens produced mainly by Aspergillus flavus during infection of susceptible crops such as maize (Zea mays). Previously, embryo proteins from maize genotypes resistant or susceptible to A. flavus infection were compared using proteomics, and resistance-associated proteins were identified. Here, we report the comparison of maize endosperm proteins from five resistant and five susceptible genotypes, and the identification of additional resistance-associated proteins using the same approach. Ten protein spots were upregulated twofold or higher in resistant lines compared with susceptible ones. Peptide sequencing of these proteins identified them as a globulin-2 protein, late embryogenesis abundant proteins (LEA3 and LEA14), a stress-related peroxiredoxin antioxidant (PER1), heat-shock proteins (HSP17.2), a cold-regulated protein (COR), and an antifungal trypsin-inhibitor protein (TI). The gene encoding one such upregulated protein, PER1, was cloned and overexpressed in Escherichia coli. The overexpressed PER1 protein demonstrated peroxidase activity in vitro. In addition, per1 expression was significantly higher in the resistant genotype Mp420 than in the susceptible genotype B73 during the late stage of kernel development, and was significantly induced upon A. flavus infection, suggesting that it may play an important role in enhancing kernel stress tolerance and aflatoxin resistance. The significance of other identified proteins to host resistance and stress tolerance also is discussed.  相似文献   

14.
Atoxigenic strains of Aspergillus flavus have been used as aflatoxin management tools on over 50,000 hectares of commercial crops since 2000. To assess treatment efficacy, atoxigenic strain incidence is routinely monitored by vegetative compatibility analyses (VCA) that require culturing, generation of auxotrophs, and complementation with tester mutants. Two pyrosequencing assays (PA) that require no culturing were developed for monitoring incidences of atoxigenic strains on ginned cottonseed. The assays, which quantify frequencies of characteristic single nucleotide polymorphisms (SNPs) in the aflR and pksA genes, were validated against standard VCA on cottonseed collected from commercial gins in South Texas, Arizona, and Southern California where the atoxigenic strain AF36 is used to manage aflatoxin contamination. Cottonseed washings were subjected to both VCA and PA. PA was performed directly on DNA isolated from particulates pelleted from the wash water by centrifugation. Addition of CaCl(2) and diatomaceous earth prior to pelleting increased the amount of DNA isolated. Accuracy and reproducibility of the PA were contrasted with those for the VCA that has been used for over a decade. Correlation coefficients between VCA and PA indicated good correspondence between the results from the two assays (r = 0.91 for aflR assay and r = 0.80 for pksA assay). PAs were highly variable for samples with low incidences of A. flavus due to variability in the initial polymerase chain reaction step. This held for both DNA isolated from cottonseed washes and for mixtures of purified DNA. For samples yielding low quantities of A. flavus DNA, averaging of results from 4 to 5 replicates was required to achieve acceptable correlations with VCA. Pyrosequencing has the potential to become a powerful tool for monitoring atoxigenic strains within complex A. flavus communities without limitations imposed by traditional culturing methods.  相似文献   

15.
Garber RK  Cotty PJ 《Phytopathology》1997,87(9):940-945
ABSTRACT Aspergillus flavus can be divided into the S and L strains on the basis of sclerotial morphology. On average, S strain isolates produce greater quantities of aflatoxins than do L strain isolates. Sclerotia of the S strain were observed in commercial seed cotton from western Arizona. Greenhouse tests were performed to better define sclerotial formation in developing bolls. Eight S strain isolates were inoculated into developing bolls via simulated pink bollworm exit holes. All eight isolates formed sclerotia on locule surfaces, and seven of eight isolates produced sclerotia within developing seed. Boll age at inoculation influences formation of sclerotia. More sclerotia formed within bolls that were less than 31 days old at inoculation than in bolls older than 30 days at inoculation. Frequent formation of sclerotia during boll infection may both favor S strain success within cotton fields and increase toxicity of A. flavus-infected cottonseed. Atoxigenic A. flavus L strain isolate AF36 reduced formation of both sclerotia and aflatoxin when coinoculated with S strain isolates. AF36 formed no sclerotia in developing bolls and was more effective at preventing S strain isolates than L strain isolates from contaminating developing cottonseed with aflatoxins. The use of atoxigenic L strain isolates to prevent contamination through competitive exclusion may be particularly effective where S strain isolates are common. In addition to aflatoxin reduction, competitive exclusion of S strain isolates by L strain isolates may result in reduced overwintering by S strain isolates and lower toxicity resulting from sclerotial metabolites.  相似文献   

16.
 作者征集了本院玉米育种组选育和生产上推广的玉米杂交种及部分亲本,研究玉米对玉米小斑病菌的抗病性与其叶内过氧化物酶活力的关系,为玉米抗病育种提供抗病性鉴定的依据。此外,初步探索玉米叶内过氧化物酶活力增强的诱导因素。  相似文献   

17.
为了强化植物天然产物抗稻瘟活性和减少使用剂量,进行了菌丝生长和孢子萌发抑制活性测定、配伍药效模型多植物提取物活性级分组方,结果显示:木荷叶、无患子果皮、广玉兰叶、油茶叶、苦槠叶、雪松叶等材料醇级分抑制稻瘟病菌活性较强,抑制菌丝生长的中有效浓度(EC 50)/最小抑菌浓度(MIC)分别为:0.08/0.60、0.08/0.80、0.17/1.00、0.22/0.60、0.35/1.50、0.16/1.00㎎/mL,抑制孢子萌发的最小浓度(MIC)分别为:1.6、1.7、2.9、3.1、2.9、4.6㎎/mL.70%乙醇提取物组方抑菌效果表明:对菌丝生长抑制,两两组合时无患子和广玉兰的协同作用最强,木荷和雪松的拮抗作用最强;多组合时木荷、无患子、广玉兰取高剂量时可以获得最大的抑制效果.对孢子的抑制情况,两两组合时均能加强抑制稻瘟病菌孢子的萌发,多组合时木荷、无患子、广玉兰、油茶、苦槠组方时可以获得最好的抑制效果.本文所选用的组方药效模型具有预测值与实测值相关性好,可预测性强的特点,适用于开发植物源杀菌剂的多组分组方优选.  相似文献   

18.
一株对金龟子类幼虫具有杀虫活性的苏云金杆菌新分离株   总被引:19,自引:4,他引:15  
从河北省土壤中分离获得一株苏云金杆菌新分离株HBF-1,对其基本生物学特性和知性进行了研究。结果表明,该菌株对黄褐丽金龟幼虫具有特异高杀虫活性,对铜绿丽金电幼虫也表现出较高的杀虫活性。但对棉铃虫和玉米螟等鳞翅目幼虫,以及鞘翅目叶甲科的柳叶甲无杀虫活性。该菌株不产生β-外毒素。其生长对氨基酸需求的测定结果表明,异亮氨酸可抑制缬氨酸和亮氨酸的生物合成代谢,在异亮氨酸的存在下,该菌株对缬氨酸和亮氨酸具有  相似文献   

19.
研究了分离自棉花根际土壤的短短芽孢杆菌A57菌株对棉花立枯病菌、枯萎病菌和黄萎病菌的拮抗作用,在PDA平板上对峙培养,平均抑制率分别是33.5%、39.5%、29.5%。通过显微镜观察,发现拮抗细菌的主要拮抗机理是通过产生拮抗物质能够造成病原真菌菌丝体断裂、扭曲、畸形,抑制分生孢子的萌发,造成孢子畸形。以枯萎病菌为指示菌,研究了该菌株表现最佳拮抗活性时的菌液发酵条件,结果表明,A57适宜培养基为LB培养基,pH8,好气条件下抑菌活性最好。用硫酸铵沉淀法提取A57菌株的粗提蛋白,对供试的病原菌仍具有较高的拮抗活性,70%浓度时其拮抗活性最大,A57粗提蛋白对枯萎病原菌的最大抑制率为23.7%,同时该菌经硫酸铵沉淀后获得的粗体蛋白的上清液对病原指示菌仍具有一定的拮抗活性,说明A57拮抗细菌起拮抗作用的不仅有大分子蛋白类物质还有小分子拮抗物质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号