首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xu XM  Ridout MS 《Phytopathology》1998,88(10):1000-1012
ABSTRACT A stochastic model that simulates the spread of disease over space and time was developed to study the effects of initial epidemic conditions (number of initial inocula and their spatial pattern), sporulation rate, and spore dispersal gradient on the spatio-temporal dynamics of plant disease epidemics. The spatial spread of disease was simulated using a half-Cauchy distribution with median dispersal distance mu (units of distance). The rate of temporal increase in disease incidence (beta(I), per day) was influenced jointly by mu and by the sporulation rate lambda (spores per lesion per day). The relationship between beta(I) and mu was nonlinear: the increase in beta(I) with increasing mu was greatest when mu was small (i.e., when the dispersal gradient was steep). The rate of temporal increase in disease severity of diseased plants (beta(S)) was affected mainly by lambda: beta(S) increased directly with increasing lambda. Intraclass correlation (kappa(t)), the correlation of disease status of plants within quadrats, increased initially with disease incidence, reached a peak, and then declined as disease incidence approached 1.0. This relationship was well described by a power-law model that is consistent with the binary form of the variance power law. The amplitude of the model relating kappa(t) to disease incidence was affected mainly by mu: kappa(t) decreased with increasing mu. The shape of the curve was affected mainly by initial conditions, especially the spatial pattern of the initial inocula. Generally, the relationship of spatial autocorrelation (rho(t,k)), the correlation of disease status of plants at various distances apart, to disease incidence and distance was well described by a four-parameter power-law model. rho(t,k) increased with disease incidence to a maximum and then declined at higher values of disease incidence, in agreement with a power-law relationship. The amplitude of rho(t,k) was determined mainly by initial conditions and by mu: rho(t,k) decreased with increasing mu and was lower for regular patterns of initial inocula. The shape of the rho(t,k) curve was affected mainly by initial conditions, especially the spatial pattern of the initial inocula. At any level of disease incidence, autocorrelation declined exponentially with spatial lag; the degree of this decline was determined mainly by mu: it was steeper with decreasing mu.  相似文献   

2.
Using a previously developed stochastic simulation model for plant disease epidemics, the relationship of the SADIE aggregation statistic I a with initial epidemic conditions, spore dispersal distance, sampling quadrat size and other spatial statistics was investigated. Most variation in I a was attributable to the initial spatial pattern of infected plants and sampling quadrat size. The importance of initial spatial pattern on SADIE clustering indices (for patches and gaps) was also demonstrated using a number of selected data sets. Correlation of I a with clustering indices was close to 1·0. Epidemics arising from the regular and random initial patterns resulted in the smallest and greatest I a values, respectively, at sampling times after disease spread had occurred. Furthermore, the variability in I a between simulation runs also varied greatly with initial patterns, being lowest and greatest for the clumped and random initial patterns, respectively. I a increased initially and then decreased with increasing incidence, especially for the clumped and random initial patterns. Overall, the effect of median spore dispersal distance on I a was very small, especially for the random initial pattern. The correlation between I a and intraclass correlation was generally small and varied greatly between initial patterns. However, there was a high positive correlation between I a and a parameter describing the rate of decline of autocorrelation over spatial lags, indicating that I a, clustering indices and autocorrelations measure some common properties of patterns.  相似文献   

3.
Sackett KE  Mundt CC 《Phytopathology》2005,95(9):992-1000
ABSTRACT The velocity of expansion of focal epidemics was studied using an updated version of the simulation model EPIMUL, with model parameters relevant to wheat stripe rust. The modified power law, the exponential model, and Lambert's general model were fit to primary disease gradient data from an artificially initiated field epidemic of stripe rust and employed to describe dispersal in simulations. The exponential model, which fit the field data poorly (R (2) = 0.728 to 0.776), yielded an epidemic that expanded as a traveling wave (i.e., at a constant velocity), after an initial buildup period. Both the modified power law and the Lambert model fit the field data well (R(2) = 0.962 to 0.988) and resulted in dispersive epidemic waves (velocities increased over time for the entire course of the epidemic). The field epidemic also expanded as a dispersive wave. Using parameters based on the field epidemic and modified power law dispersal as a baseline, life cycle components of the pathogen (lesion growth rate, latent period, infectious period, and multiplication rate) and dispersal gradient steepness were varied within biologically reasonable ranges for this disease to test their effect on dispersive wave epidemics. All components but the infectious period had a strong influence on epidemic velocity, but none changed the general pattern of velocity increasing over time.  相似文献   

4.
Point pattern analysis (fitting of the beta-binomial distribution and binary form of power law) was used to describe the spatial pattern of natural take-all epidemics (caused by Gaeumannomyces graminis var. tritici ) on a second consecutive crop of winter wheat in plots under different cropping practices that could have an impact on the quantity and spatial distribution of primary inoculum, and on the spread of the disease. The spatial pattern of take-all was aggregated in 48% of the datasets when disease incidence was assessed at the plant level and in 83% when it was assessed at the root level. Clusters of diseased roots were in general less than 1 m in diameter for crown roots and 1–1·5 m for seminal roots; when present, clusters of diseased plants were 2–2·5 m in diameter. Anisotropy of the spatial pattern was detected and could be linked to soil cultivation. Clusters did not increase in size over the cropping season, but increased spatial heterogeneity of the disease level was observed, corresponding to local disease amplification within clusters. The relative influences of autonomous spread and inoculum dispersal on the size and shape of clusters are discussed.  相似文献   

5.
滴灌定额对棉花株型、产量及纤维品质的影响   总被引:1,自引:0,他引:1  
在膜下滴灌条件下,以新陆早45号为试验材料,设5个滴灌定额处理(W1:600 m3·hm-2,W2:540 m3·hm-2;W3:480 m3·hm-2,W4:420 m3·hm-2,W5:360 m3·hm-2),研究棉花农艺性状、成铃模式、产量及纤维品质对滴灌定额的响应。结果表明:随滴灌定额的减少,棉花株高表现为W2>W1>W3>W4>W5,果枝台数和蕾花铃总数(8月10日)均以W1处理最大,分别为9台和13.8个,W5处理最小,分别为8.75台和10.2个,其中W1与W2处理上、中、下部铃数及铃重均无显著差异。棉花籽棉和皮棉产量均以W1处理最高,达到6 431 kg·hm-2和2 520 kg·hm-2,但与W2处理间均无显著差异。棉纤维长度、整齐度、断裂比在W1和W2处理间无显著差异,W3、W4、W5处理棉纤维长度、整齐度较W1处理分别低0.4、1.1、1.6 mm和0.5%、0.7%、0.9%。因此,控制滴灌定额在540 m3·hm-2,可在不显著降低棉花产量和纤维品质的前提下,提高水资源利用效率。  相似文献   

6.
ABSTRACT A continuous-time and deterministic model was used to characterize plant virus disease epidemics in relation to virus transmission mechanism and population dynamics of the insect vectors. The model can be written as a set of linked differential equations for healthy (virus-free), latently infected, infectious, and removed (postinfectious) plant categories, and virus-free, latent, and infective insects, with parameters based on the transmission classes, vector population dynamics, immigration/emigration rates, and virus-plant interactions. The rate of change in diseased plants is a function of the density of infective insects, the number of plants visited per time, and the probability of transmitting the virus per plant visit. The rate of change in infective insects is a function of the density of infectious plants, the number of plants visited per time by an insect, and the probability of acquiring the virus per plant visit. Numerical solutions of the differential equations were used to determine transitional and steady-state levels of disease incidence (d*); d* was also determined directly from the model parameters. Clear differences were found in disease development among the four transmission classes: nonpersistently transmitted (stylet-borne [NP]); semipersistently transmitted (foregut-borne [SP]); circulative, persistently transmitted (CP); and propagative, persistently transmitted (PP), with the highest disease incidence (d) for the SP and CP classes relative to the others, especially at low insect density when there was no insect migration or when the vector status of emigrating insects was the same as that of immigrating ones. The PP and CP viruses were most affected by changes in vector longevity, rates of acquisition, and inoculation of the virus by vectors, whereas the PP viruses were least affected by changes in insect mobility. When vector migration was explicitly considered, results depended on the fraction of infective insects in the immigration pool and the fraction of dying and emigrating vectors replaced by immigrants. The PP and CP viruses were most sensitive to changes in these factors. Based on model parameters, the basic reproductive number (R(0))-number of new infected plants resulting, from an infected plant introduced into a susceptible plant population-was derived for some circumstances and used to determine the steady-state level of disease incidence and an approximate exponential rate of disease increase early in the epidemic. Results can be used to evaluate disease management strategies.  相似文献   

7.
In 1998–2000, the relationship was investigated between the time of bolting of shoots and the percentage of germinability in seeds from individual plants of Rumex obtusifolius . Each year, the date of bolting of shoots was recorded in 30–108 plants, which were then grown intact until maturation, and their seeds were collected before dispersal. The proportion of germinable seeds increased with the date on which the shoots bolted. The timing of shoot bolting and seed germinability for individual plants persisted over the years of observation. To discriminate between the effect of mother plant and timing of seed maturation, shoot bolting of another 40 (1998) and 50 (1999) plants was recorded, and their shoots were then cut in late June The shoots of cut plants regrew and matured nearly simultaneously, later than in intact plants, whereas overall seed germinability decreased. In individual plants, the seed germinability was still significantly correlated with the date when plants originally bolted.  相似文献   

8.
Cherry spruce rust causes huge yield losses in Norway spruce seed production in Fennoscandia. The causal agent, Thekopsora areolata, has three types of spores that disperse during spring: basidiospores are produced on basidia that grow out from teliospores in overwintered bird cherry leaf litter to infect new pistillate spruce cones, aeciospores are released from old diseased spruce cones to infect bird cherry leaves, and urediniospores are produced from new bird cherry leaves for reinfection. No study has examined the dispersal of T. areolata spores, including the basidiospores that cause primary infection in spruce cones. In this study, teliospores of T. areolata were germinated in the laboratory and the morphology of basidiospores was described. T. areolata spores were sampled in Ultuna, Sweden and Joutsa, Finland with 21 spore traps at each site. Peaks in aeciospores were observed from 11 to 25 May and from 2 to 8 June at the Finnish site, and from 4 to 18 May at the Swedish site. Urediniospores were first observed 2–3 weeks after the peaks in aeciospores and they were mainly distributed within 10 m from the bird cherry trees. Peaks of 1–2 weeks in basidiospore detection coincided with multiple rain events. The basidiospore peak overlapped with the spruce pollen peak in Finland but not in Sweden. The quantities of basidiospores from different spore traps within 100 m from the spore source had no gradient. Information on spatial and temporal spore release is important for making decisions on disease management strategies.  相似文献   

9.
为了明确聚块大小对茶园双斑长跗萤叶甲空间分布的影响,为确定最佳样方面积提供科学依据。用聚块样方方差分析方法和聚集强度指数法研究两种茶园两年双斑长跗萤叶甲空间分布的规律性,聚集格局的差异和种群聚集均数变化。不同大小聚块的均方差均出现1~2个峰值,聚块中有1~8个基本样方(K)时,随着K的增大,聚集格局的扩散系数C和种群聚集均数λ都不断增大,其他格局时C和λ不断变小,聚块内基本样方数K为2、4、8时与K为1时的聚集程度|w|值均小于|w|_(0.05)。茶园双斑长跗萤叶甲存在1~2种不同尺度的聚集空间,空间分布具有规律性,个体群占据最小范围为2个基本样方,即4 m~2,为最佳样方的选择提供了科学依据。  相似文献   

10.
Most mathematical models of plant disease epidemics ignore the growth and phenology of the host crop. Unfortunately, reports of disease development are often not accompanied by a simultaneous and commensurate evaluation of crop development. However, the time scale for increases in the leaf area of field crops is comparable to the time scale of epidemics. This simultaneous development of host and pathogen has many ramifications on the resulting plant disease epidemic. First, there is a simple dilution effect resulting from the introduction of new healthy leaf area with time. Often, measurements of disease levels are made pro rata (per unit of host leaf area or total root length or mass). Thus, host growth will reduce the apparent infection rate. A second, related effect, has to do with the so-called "correction factor," which accounts for inoculum falling on already infected tissue. This factor accounts for multiple infection and is given by the fraction of the host tissue that is susceptible to disease. As an epidemic develops, less and less tissue is open to infection and the initial exponential growth slows. Crop growth delays the impact of this limiting effect and, therefore, tends to increase the rate of disease progress. A third and often neglected effect arises when an increase in the density of susceptible host tissue results in a corresponding increase in the basic reproduction ratio, R(0), defined as the ratio of the total number of daughter lesions produced to the number of original mother lesions. This occurs when the transport efficiency of inoculum from infected to susceptible host is strongly dependent on the spatial density of plant tissue. Thus, crop growth may have a major impact on the development of plant disease epidemics occurring during the vegetative phase of crop growth. The effects that these crop growth-related factors have on plant disease epidemics spread by airborne spores are evaluated using mathematical models and their importance is discussed. In particular, plant disease epidemics initiated by the introduction of inoculum during this stage of development are shown to be relatively insensitive to the time at which inoculum is introduced.  相似文献   

11.
ABSTRACT Natural potato late blight epidemics were studied to assess the relative impact of various inoculum sources of Phytophthora infestans in Southern Flevoland (the Netherlands) from 1994 through 1996. Disease surveys were combined with characterization of isolates for mating type and DNA fingerprint pattern using probe RG57. Seventy-four percent of the commercial potato fields with early foci were clearly associated with nearby infested refuse piles. Characterization of isolates from refuse piles and fields confirmed the association. Infected seed tubers, volunteer plants, and infested allotment gardens appeared to be of minor importance for late blight development in potato fields. Several foci in refuse piles, potato fields, and allotment gardens contained more than one genotype. Due to favorable weather in August 1994, infested organic potato fields became major inoculum sources, resulting in the spread of P. infestans to adjacent conventional potato fields. Analyses of disease gradients, both at the field and regional levels, confirmed the role of the organic fields as mid-season infection sources. The mean slope of field gradients downwind of refuse piles (point sources) was significantly steeper (100-fold difference) than the mean slope of field gradients downwind of organic fields (area sources). The genotypic composition of the P. infestans populations along the gradient and of the source populations in the organic potato crops did not differ significantly. Analysis of the region gradient revealed genotype-specific disease gradients. Control measures are recommended.  相似文献   

12.
The importance of the spatial aspect of epidemics has been recognized from the outset of plant disease epidemiology. The objective of this study was to determine if the host spatial structure influenced the spatio-temporal development of take-all disease of wheat, depending on the inoculum spatial structure. Three sowing patterns of wheat (broadcast sowing, line sowing and sowing in hills) and three patterns of inoculum (uniform, aggregated and natural infestation) were tested in a field experiment, repeated over 2 years. Disease (severity, root disease incidence, plant disease incidence and, when applicable, line and hill incidences) was assessed seven times during the course of each season and the spatial pattern was characterized with incidence-incidence relationships. In the naturally infested plots, disease levels at all measurement scales were significantly higher in plots sown in hills, compared to plots sown in line, which were in turn significantly more diseased than plots with broadcast sowing. Disease aggregation within roots and plants was stronger in line and hill sowing than in broadcast sowing. Analysis of the disease gradient in the artificially infested plots showed that the disease intensified (local increase of disease level) more than it extensified (spatial spread of the disease), the effect of the introduced inoculum was reduced by 95% at a distance of 15 cm away from the point of infestation. Yield was not significantly affected by sowing pattern or artificial infestation.  相似文献   

13.
Chondrilla juncea is one of the most serious introduced weed species in Australia. Successful biological control has been achieved by the release of the rust fungus Puccinia chondrillina. Although P. chondrillina is thought to reduce the competitive ability of C. juncea by reducing plant size, the precise mechanism by which the pathogen controls its host is poorly understood. In this experiment, we examined the effect of P. chondrillina TU 788 infection on individual plant size, and size variability, in two genotypes (one resistant, one susceptible) of C. juncea. Exposure to P. chondrillina significantly reduced the average size of susceptible C. juncea plants, a reduction apparent in both roots and shoots. Plant size variability of the susceptible C. juncea genotype was also reduced by P. chondrillina. Plant size, and plant size variability of the resistant genotype were unaffected by exposure to rust, or association with rust‐affected plants. The effect of P. chondrillina on plant size in rust‐susceptible C. juncea plants shows how effective bio‐control of this weed may occur in field populations.  相似文献   

14.
以‘云烟87’为供试品种,研究了11种植物诱导剂对烤烟病毒病的防控作用以及对烟株的农艺性状和烟叶产量品质的影响。结果显示,阿泰灵、碧护、烟望素和抗病丰等4种药剂对病毒病的相对防效超过35%,其余7种植物诱导剂对病毒的防效稍差。各种植物诱导剂均在一定程度上促进了烟株生长,烤烟农艺性状指标均有所提高,烤后烟叶外观质量总体较好,部分诱导剂能够提高烟叶上中等烟比例和产量,提高了收购均价和产值。同时,烟叶成分有所改变,除融地美、阿泰灵外,其余9种植物诱导剂处理后中部叶片烟碱含量均低于清水对照,其中彩特美细胞酶叶面营养剂处理的中部叶片烟碱含量最低,为3.27%,糖碱比均优于清水对照,烟叶的钾、氯含量均较适宜。研究结果表明,对烤烟喷施植物诱导剂能够抗病、增产、改善品质。  相似文献   

15.
Silk infection by Fusarium verticillioides is caused by conidia produced on maize crop residues and results in kernel infection and consequent accumulation of fumonisins. Studies were carried out in both controlled and field conditions to understand the dynamics of sporulation on maize residues. The effect of temperature (5°C to 45°C) and incubation time (3 to 41 days) on spore production on maize meal agar was described by a logistic model that accounted for 85% of variability. The rate parameter depended on the length of incubation and the asymptote on temperature. Maximum sporulation occurred at 27°C, with a progressive increase between 5°C and 27°C and then a rapid decline, with no sporulation at 45°C. Fusarium verticillioides strains from different geographic origins showed different sporulation capabilities, with similar optimum temperatures. Pieces of stalk residues inoculated with F. verticillioides and placed above the soil between rows of maize crops, in 2003 to 2005, produced conidia continuously and abundantly for some weeks, particularly during the period after silk emergence, with an average of 1.59 × 107 conidia g−1 of stalk, over a wide range of environmental conditions. Sixty-seven percent of variability of the spore numbers found on stalks was accounted for by a multiple regression model. Precipitation (rain or overhead irrigation) in the 14 days before stalk sampling decreased the number of spores, whilst the number of days with conducive conditions of moisture (i.e. days with rainfall, average relative humidity >85% or vapour pressure deficit <4 hPa) and greater degree-days (base 0°C) in the 14 and 3 days before sampling, respectively, increased sporulation.  相似文献   

16.
Alfalfa, maize, sorghum and sugarbeet plants were inoculated with zoospores ofPhytophthora andPythium species in order to assess the effects of inoculum density, plant age and temperature on disease severity. Seedlings were grown axenically in test tubes and inoculated with zoospore suspensions. Disease severity was assessed by measuring the root growth and discoloration of treated and control seedlings. The incremental root length of all plants decreased and root discoloration increased as inoculum concentration of the pathogen increased. Changes were more intensive among low levels of zoospore concentrations and no significant differences in disease severity were found for inoculum densities higher than 104 zoospores ml-1. Disease severity was negatively related to plant age. Disease development on sugarbeet seedlings infected withPythium andPhytophthora species was affected by temperature, but the pattern of response was determined by the pathogen’s temperature preferences. The incremental root length decreased as temperature increased up to 25°C. The effect ofPythium dissimile andPhytophthora cactorum on root length was significantly lower at 35°C than at 25°C, whereasPythium aphanidermatum andPhytophthora nicotianae caused significant damage to roots even at 35°C. http://www.phytoparasitica.org posting Dec. 3, 2001.  相似文献   

17.
The invasive ability of Cynodon dactylon is dependent on self dispersal and on cultivation practices. Tillage can seriously change patch biomass and spatial structure, spreading vegetative propagules of the weed. The objectives of this study were: (i) to quantify the effect on non‐inversion tillage on dispersal, establishment and colonization of C. dactylon and (ii) to propose a simple model considering soil cultivation effects and light availability on spatial growth of weed patches. Two experiments were carried out, exploring different soils and environmental conditions. Spatial distribution of vegetative units differed when tillage was conducted with different non‐inversion implements and could be described by simple functions. A minimum patch biomass seems necessary before vegetative structures are vulnerable to movement by cultivation. Only a small proportion of the biomass dispersed from original patches was able to establish. However, simulation showed that the area colonized by C. dactylon mostly increased by means of tillage dispersal, both with and without crop competition, in one growing cycle. It appears sensible to consider changing cultivation practices to reduce weed dispersal and to use crop competition for light to create unsuitable habitats limiting weed colonization.  相似文献   

18.
To reduce the use of pesticides, innovative studies have been developed to introduce the plant as the centre of the crop protection system. The aim of this paper is to explain how architectural traits of plants and canopies induce a more or less severe epidemic and how they may be modified in order to reduce disease development. In particular, it focuses on three key questions: i) which processes linked to epidemics can be influenced by architecture ii) how can architecture be characterized relative to these modes of action, and iii) how can these effects be explored and exploited? The roles of plant/canopy architecture on inoculum interception, on epidemic development via the microclimate and on tissue receptivity are discussed. In addition, the concepts of disease avoidance, canopy porosity and an ideotype unfavourable for disease development are described. This paper shows that many advances have already been made, but progress is still required in four main fields: microclimatology, mathematical modelling of plants, molecular genetics and ideotype conception.  相似文献   

19.
Wheat yield losses caused by powdery mildew were computed based on effects of the disease on leaf photosynthesis. Powdery mildew was introduced in a crop model of wheat by quantification of five parameters, taking the vertical and horizontal distribution of mildew in the crop into account. The most important parameters were those of the mildew intensity, the distribution of mildew in the crop, and the effect of mildew on assimilation at light saturation. Measured mildew epidemics in field experiments in three different years, were used to compute yield losses. Computed losses were compared to measured losses. On average, computed yield loss approached measured, but measured yield loss was underestimated, especially in early mildew epidemics due to the computation of partitioning and reallocation of assimilates. Other processes which may cause an underestimation are described. The use of crop models as a method to upgrade disease management systems is discussed.Samenvatting Opbrengstderving van wintertarwe werd berekend aan de hand van het effect dat meeldauw heeft op de blad-fotosynthese. Een rekenmodel voor de gewasgroei van tarwe werd uitgebreid met meeldauw. Met inachtneming van de vertikale en horizontale verdeling van meeldauw in het gewas, werd meeldauw in het model gekwantificeerd door vijf parameters. De belangrijkste parameters waren die van de meeldauwintensiteit, de verdeling van meeldauw in het gewas en het effect van meeldauw op de assimilatie bij een overvloed aan licht. Epidemieën van meeldauw, gemeten in veldproeven in drie verschillende jaren, werden gebruikt om opbrengstdervingen te berekenen. Gemiddeld kwam deze redelijk overeen met de in de veldproeven gemeten opbrengstderving. De gemeten opbrengstderving werd echter onderschat, vooral bij vroege epidemieën van meeldauw door de wijze waarop de (her)verdeling van assimilaten wordt berekend. Andere mechanismen, die een onderschatting van opbrengstderving kunnen veroorzaken worden besproken. Of deze modellen als methode gebruikt kunnen worden om systemen voor de geleide bestrijding van ziekten te verbeteren wordt bediscussieerd.  相似文献   

20.
This paper describes a simple experimental test of the theoretical relationship between raindrop diameter and maximum splash height proposed by Walklate (1989). This relationship contains two empirical parameters to model the characteristics of a splash target that limits upward movement of splash droplets. These parameters are estimated by fitting the proposed relationship to measurements of the maximum height of splashing from a variety of targets including leaves, straw and water films on horizontal plane surfaces. The experimental technique provides a simple and meaningful way to characterize the behaviour of splashing from plant material. This information can be applied to describe the upward movement of inoculum in crop canopies during rainfall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号