首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT Microplots experiments were carried out at Córdoba, southern Spain, from 1986 to 1989 to determine the effects of sowing date in the management of Fusarium wilt of chickpea as influenced by virulence of the pathogen race and by cultivar susceptibility. A total of 108 epidemics of the disease were described, analyzed, and compared to assess the degree of disease control. The epidemics were characterized by five curve elements: final disease intensity index (DII), standardized area under DII progress curve, time to epidemic onset, time to inflection point (t(ip)), and the DII value at t(ip), the last two parameters being estimates from the Richards function adjusted by nonlinear regression analysis. The structure of Fusarium wilt epidemics was examined by conducting multivariate principal components and cluster analyses. From these analyses, three factors accounting for 98 to 99% of the total variance characterized the DII progress curves and provided plausible epidemiological interpretations. The first factor included the t(ip) and the time to disease onset and can be interpreted as a positional factor over time. This factor accounted for the largest proportion of the total variance and may, therefore, be considered as the main factor for analysis of Fusarium wilt epidemics. The second factor concerns the standardized area under DII progress curves and the final DII of the epidemics. The third factor identified the uniqueness of the estimated value for the point of inflection of the DII progress curve over time. Our results indicate that for each year of experiment epidemic development was related mainly to the date of sowing. Thus, for chickpea crops in southern Spain, advancing the sowing date from early spring to early winter can slow down the development of Fusarium wilt epidemics, delay the epidemic onset, and minimize the final amount of disease. However, the net effect of this disease management practice may also be influenced, though to a lesser extent, by the susceptibility of the chickpea cultivar and the virulence and inoculum density of the Fusarium oxysporum f. sp. ciceris race.  相似文献   

2.
Fusarium wilt of chickpea caused by Fusarium oxysporum f. sp. ciceris can be managed by risk assessment and use of resistant cultivars. A reliable method for the detection and quantification of F. oxysporum f. sp. ciceris in soil and chickpea tissues would contribute much to implementation of those disease management strategies. In this study, we developed a real-time quantitative polymerase chain reaction (q-PCR) protocol that allows quantifying F. oxysporum f. sp. ciceris DNA down to 1 pg in soil, as well as in the plant root and stem. Use of the q-PCR protocol allowed quantifying as low as 45 colony forming units of F. oxysporum f. sp. ciceris per gram of dry soil from a field plot infested with several races of the pathogen. Moreover, the q-PCR protocol clearly differentiated susceptible from resistant chickpea reactions to the pathogen at 15 days after sowing in artificially infested soil, as well as the degree of virulence between two F. oxysporum f. sp. ciceris races. Also, the protocol detected early asymptomatic root infections and distinguished significant differences in the level of resistance of 12 chickpea cultivars that grew in that same field plot infested with several races of the pathogen. Use of this protocol for fast, reliable, and cost-effective quantification of F. oxysporum f. sp. ciceris in asymptomatic chickpea tissues at early stages of the infection process can be of great value for chickpea breeders and for epidemiological studies in growth chambers, greenhouses and field-scale plots.  相似文献   

3.
ABSTRACT A 3-year experiment was conducted in field microplots infested with Fusarium oxysporum f. sp. ciceris race 5 at Córdoba, Spain, in order to assess efficacy of an integrated management strategy for Fusarium wilt of chickpea that combined the choice of sowing date, use of partially resistant chickpea genotypes, and seed and soil treatments with biocontrol agents Bacillus megaterium RGAF 51, B. subtilis GB03, nonpathogenic F. oxysporum Fo 90105, and Pseudomonas fluorescens RG 26. Advancing the sowing date from early spring to winter significantly delayed disease onset, reduced the final disease intensity (amount of disease in a microplot that combines disease incidence and severity, expressed as a percentage of the maximum possible amount of disease in that microplot), and increased chickpea seed yield. A significant linear relationship was found between disease development over time and weather variables at the experimental site, with epidemics developing earlier and faster as mean temperature increased and accumulated rainfall decreased. Under conditions highly conducive for Fusarium wilt development, the degree of disease control depended primarily on choice of sowing date, and to a lesser extent on level of resistance of chickpea genotypes to F. oxysporum f. sp. ciceris race 5, and the biocontrol treatments. The main effects of sowing date, partially resistant genotypes, and biocontrol agents were a reduction in the rate of epidemic development over time, a reduction of disease intensity, and an increase in chickpea seedling emergence, respectively. Chickpea seed yield was influenced by all three factors in the study. The increase in chickpea seed yield was the most consistent effect of the biocontrol agents. However, that effect was primarily influenced by sowing date, which also determined disease development. Effectiveness of biocontrol treatments in disease management was lowest in January sowings, which were least favorable for Fusarium wilt. Sowing in February, which was moderately favorable for wilt development, resulted in the greatest increase in seed yield by the biocontrol agents. In March sowings, which were most conducive for the disease, the biocontrol agents delayed disease onset and increased seedling emergence. B. subtilis GB03 and P. fluorescens RG 26, applied either alone or each in combination with nonpathogenic F. oxysporum Fo 90105, were the most effective treatments at suppressing Fusarium wilt, or delaying disease onset and increasing seed yield, respectively. The importance of integrating existing control practices, partially effective by themselves, with other control measures to achieve appropriate management of Fusarium wilt and increase of seed yield in chickpea in Mediterranean-type environments is demonstrated by the results of this study.  相似文献   

4.
ABSTRACT In the Mediterranean Basin, Fusarium oxysporum f. sp. ciceris and the root-knot nematode Meloidogyne artiellia coinfect chickpea. The influence of root infection (after inoculation with 20 nematode eggs and second-stage juveniles per gram of soil) by two M. artiellia populations, from Italy and Syria, on the reaction of chickpea lines and cultivars with partial resistance to Fusarium wilt (CA 252.10.1.OM, CA 255.2.5.0, CPS 1, and PV 61) and with complete resistance to F. oxysporum f. sp. ciceris race 5 (CA 334.20.4, CA 336.14.3.0, ICC 14216 K, and UC 27) was investigated under controlled conditions. In genotypes with partial resistance, infection by M. artiellia significantly increased the severity of Fusarium wilt, irrespective of the fungal inoculum density (3,000 or 30,000 chlamydospores per gram of soil), except in cultivar CPS 1 at the lower fungal inoculum density. In genotypes with complete resistance to Fusarium wilt, infection by M. artiellia overcame the resistance to F. oxysporum f. sp. ciceris race 5 in CA 334.20.4 and CA 336.14.3.0 but not in ICC 14216 K, irrespective of the fungal inoculum density, and overcame the resistance in UC 27 only at the higher inoculum density. Infection by the nematode significantly increased the number of propagules of F. oxysporum f. sp. ciceris race 5 in root tissues of genotypes with complete resistance to Fusarium wilt, compared with roots that were not inoculated with the nematode, irrespective of the fungal inoculum density, except in ICC 14216 K, in which this effect occurred only at the higher inoculum density. Reproduction of an M. artiellia population from Syria in the absence of F. oxysporum f. sp. ciceris race 5 was significantly higher than that of a population from Italy in all tested chick-pea genotypes except ICC 14216 K. However, there was no significant difference between the reproduction rates of the two nematode populations in plants infected with F. oxysporum f. sp. ciceris race 5, irrespective of the fungal inoculum density and the reaction of the genotypes to the fungus.  相似文献   

5.
Fusarium oxysporum f. sp. ciceris, and the root-knot nematode Meloidogyne artiellia, coinfect chickpea crops in several countries of the Mediterranean Basin. The influence of root infection by M. artiellia on the reactions of chickpea genotypes with different reaction to infection with F. oxysporum f. sp. ciceris races 0, 1A, and 2 was investigated under controlled environmental conditions. Results demonstrated that co-infection of chickpea genotypes resistant to specific fungal races by M. artiellia did not influence the Fusarium wilt reaction of the plant, irrespective of the F. oxysporum f. sp. ciceris race assayed. However, in some of the assayed combinations, coinfection by both pathogens significantly affected the level of colonization by the fungus or reproduction of the nematode in the root system. Thus, coinfection of chickpea plants with Foc-0 and M. artiellia significantly decreased the level of colonization of the root system by F. oxysporum f. sp. ciceris in genotypes 'CA 336.14.3.0' and 'PV 61', but not in 'ICC 14216 K' and 'UC 27'. Similarly, the nematode reproduction index was also significantly reduced by coinfection with Foc-0 in the four chickpea genotypes tested and inoculated with this race. Conversely, coinfection of chickpea plants with Foc-1A and M. artiellia significantly increased colonization of the root system by the fungus in all genotypes inoculated with this race, except for line BG 212. Altogether, we confirmed the complete resistance phenotype of 'UC 27' and 'ICC 14216 K' to Foc-0, and of 'ICC 14216 K' to Foc-1A and Foc-2, and demonstrated that this resistance was not modified by coinfection of the resistant plant with M. artiellia.  相似文献   

6.
Fusarium oxysporum f. sp. ciceris (Foc), the causal agent of fusarium wilt of chickpea, consists of two pathotypes (yellowing and wilting) and eight races (races 0, 1B/C, 1A and 2–6) of diverse geographical distribution. Six Foc isolates, one each of races 0, 1B/C, 1A, 4, 5 and 6, representing the two pathotypes and the geographical range of the pathogen, showed identical sequences in introns of the genes for translation elongation factor 1α ( EF1 α), β-tubulin, histone 3, actin and calmodulin. Eleven additional Foc isolates representative of all races, pathotypes and geographical range, and three isolates of F. oxysporum (Fo) nonpathogenic to chickpea were further analysed for sequence variation in the EF1 α gene. All isolates pathogenic to chickpeas shared an identical EF1 α gene sequence, which differed from that shared by the three Fo isolates nonpathogenic to chickpea. EF1 α gene sequences from the 17 Foc isolates and the three Fo isolates were compared with 24 EF1 α gene sequences in GenBank from isolates of 11 formae speciales of F. oxysporum by parsimony analysis. Foc isolates formed a grouping distinct from other formae speciales and nonpathogenic isolates. These results indicate that F. oxysporum f. sp. ciceris is monophyletic.  相似文献   

7.
ABSTRACT Fusarium oxysporum f. sp. ciceris and the root-lesion nematode Pratylenchus thornei coinfect chickpeas in southern Spain. The influence of root infection by P. thornei on the reaction of Fusarium wilt-susceptible (CPS 1 and PV 61) and wilt-resistant (UC 27) chickpea cultivars to F. oxysporum f. sp. ciceris race 5 was investigated under controlled and field conditions. Severity of Fusarium wilt was not modified by coinfection of chickpeas by P. thornei and F. oxysporum f. sp. ciceris, in simultaneous or sequential inoculations with the pathogens. Root infection with five nematodes per cm(3) of soil and 5,000 chlamydospores per g of soil of the fungus resulted in significantly higher numbers of propagules of F. oxysporum f. sp. ciceris with the wilt-susceptible cultivar CPS 1, but not with the wilt-resistant one. However, infection with 10 nematodes per cm(3) of soil significantly increased root infection by F. oxysporum f. sp. ciceris in both cultivars, irrespective of fungal inoculum densities (250 to 2,000 chlamydospores per g of soil). Plant growth was significantly reduced by P. thornei infection on wilt-susceptible and wilt-resistant chickpeas in controlled and field conditions, except when shorter periods of incubation (45 days after inoculation) were used under controlled conditions. Severity of root necrosis was greater in wilt-susceptible and wilt-resistant cultivars when nematodes were present in the root, irrespective of length of incubation time (45 to 90 days), densities of nematodes (5 and 10 nematodes per cm(3) of soil), fungal inocula, and experimental conditions. Nematode reproduction on the wilt-susceptible cultivars, but not on the wilt-resistant one, was significantly increased by F. oxysporum f. sp. ciceris infections under controlled and field conditions.  相似文献   

8.
The effects of temperature and inoculum density of Fusarium oxysporum f. sp. ciceris race 5 on suppression of Fusarium wilt in chickpea (Cicer arietinum) cv. PV 61 by seed and soil treatments with rhizobacteria isolated from the chickpea rhizosphere were studied in a model system. Disease development over a range of temperatures (20, 25, and 30 degrees C) and inoculum densities (25 to 1,000 chlamydospores per gram of soil) was described by the Gompertz model. The Gompertz relative rate of disease progress and final amount of disease increased exponentially and monomolecularly, respectively, with increasing inoculum densities. Disease development was greater at 25 degrees C compared with 20 and 30 degrees C. At 20 and 30 degrees C, disease development was greater at 250 to 1,000 chlamydospores per gram of soil compared with 25 to 100 chlamydospores per gram of soil. At 25 degrees C, increasing inoculum densities of the pathogen did not influence disease. Nineteen Bacillus, Paenibacillus, Pseudomonas, and Stenotrophomonas spp. out of 23 bacterial isolates tested inhibited F. oxysporum f. sp. ciceris in vitro. Pseudomonas fluorescens RGAF 19 and RG 26, which did not inhibit the pathogen, showed the greatest Fusarium wilt suppression. Disease was suppressed only at 20 or 30 degrees C and at inoculum densities below 250 chlamydospores per gram of soil. Bacterial treatments increased the time to initial symptoms, reduced the Gompertz relative rate of disease progress, and reduced the overall amount of disease developed.  相似文献   

9.
ABSTRACT Specific primers and polymerase chain reaction (PCR) assays that identify Fusarium oxysporum f. sp. ciceris and each of the F. oxysporum f. sp. ciceris pathogenic races 0, 1A, 5, and 6 were developed. F. oxysporum f. sp. ciceris- and race-specific random amplified polymorphic DNA (RAPD) markers identified in a previous study were cloned and sequenced, and sequence characterized amplified region (SCAR) primers for specific PCR were developed. Each cloned RAPD marker was characterized by Southern hybridization analysis of Eco RI-digested genomic DNA of a subset of F. oxysporum f. sp. ciceris and nonpathogenic F. oxysporum isolates. All except two cloned RAPD markers consisted of DNA sequences that were found highly repetitive in the genome of all F. oxysporum f. sp. ciceris races. F. oxysporum f. sp. ciceris isolates representing eight reported races from a wide geographic range, nonpathogenic F. oxysporum isolates, isolates of F. oxysporum f. spp. lycopersici, melonis, niveum, phaseoli, and pisi, and isolates of 47 different Fusarium spp. were tested using the SCAR markers developed. The specific primer pairs amplified a single 1,503-bp product from all F. oxysporum f. sp. ciceris isolates; and single 900- and 1,000-bp products were selectively amplified from race 0 and race 6 isolates, respectively. The specificity of these amplifications was confirmed by hybridization analysis of the PCR products. A race 5-specific identification assay was developed using a touchdown-PCR procedure. A joint use of race 0- and race 6-specific SCAR primers in a single-PCR reaction together with a PCR assay using the race 6-specific primer pair correctly identified race 1A isolates for which no RAPD marker had been found previously. All the PCR assays described herein detected up to 0.1 ng of fungal genomic DNA. The specific SCAR primers and PCR assays developed in this study clearly identify and differentiate isolates of F. oxysporum f. sp. ciceris and of each of its pathogenic races 0, 1A, 5, and 6.  相似文献   

10.
ABSTRACT Plant pathogens often exhibit variation in virulence, the ability to cause disease on host plants with specific resistance, evident from the diversity of races observed within pathogen species. The evolution of races in asexual fungal pathogens has been hypothesized to occur in a stepwise fashion, in which mutations to virulence accumulate sequentially in clonal lineages, resulting in races capable of overcoming multiple host plant resistance genes or multiple resistant cultivars. In this study, we demonstrate a simple stepwise pattern of race evolution in Fusarium oxysporum f. sp. ciceris, the fungus that causes Fusarium wilt of chickpeas. The inferred intraspecific phylogeny of races in this fungus, based on DNA fingerprinting with repetitive sequences, shows that each of the eight races forms a monophyletic lineage. By mapping virulence to each differential cultivar (used for defining races) onto the inferred phylogeny, we show that virulence has been acquired in a simple stepwise pattern, with few parallel gains or losses. Such a clear pattern of stepwise evolution of races, to our knowledge, has not been demonstrated previously for other pathogens based on analyses of field populations. We speculate that in other systems the stepwise pattern is obscured by parallel gains or losses of virulence caused by higher mutation rates and selection by widespread deployment of resistant cultivars. Although chickpea cultivars resistant to Fusarium wilt are available, their deployment has not been extensive and the stepwise acquisition of virulence is still clearly evident.  相似文献   

11.
ABSTRACT Development of Fusarium wilt in upland cotton (Gossypium hirsutum) usually requires infections of plants by both Meloidogyne incognita and Fusarium oxysporum f. sp. vasinfectum. In this study, the soil densities of M. incognita and F. oxysporum f. sp. vasinfectum and the incidence of Fusarium wilt in three field sites were determined in 1982-1984. Multiple regression analysis of percent incidence of Fusarium wilt symptoms on population densities of M. incognita and F. oxysporum f. sp. vasinfectum yielded a significant fit (R (2) = 0.64) only on F. oxysporum f. sp. vasinfectum. Significant t-values for slope were also obtained for the interaction of M. incognita and F. oxysporum f. sp. vasinfectum, but densities of M. incognita and F. oxysporum f. sp. vasinfectum were also related on a log(10) scale. The physiological time of appearance of first foliar symptoms of Fusarium wilt, based on a degree-days threshold of 11.9 degrees C (53.5 degrees F), was used as a basis for determining disease progress curves and the phenology of cotton plant growth and development. Effects of Fusarium wilt on plant height and boll set were determined in three successive years. Increases in both of these plant characteristics decreased or stopped before foliar symptoms were apparent. Seed cotton yields of plant cohorts that developed foliar wilt symptoms early in the season (before 2,000 F degree-days) were variable but not much different in these years. This contrasted with cohorts of plants that first showed foliar symptoms late in the season (after 2,400 F degree-days) and cohorts of plants that showed no foliar symptoms of wilt. Regression analyses for 1982-1984 indicated moderate to weak correlations (r = 0.16-0.74) of the time of appearance of the first foliar symptoms and seed cotton yields.  相似文献   

12.
DNA restriction fragment length polymorphisms (RFLPs) among 46 isolates of Fusarium oxysporum from Dianthus spp., representing the known range of pathogenicity in carnation, were determined using total DNA digested with the restriction enzyme Hind III and a previously described probe, D4. Distinct multiple band RFLP patterns were found, which delineated RFLP groups as follows: (i) F. oxysporum f.sp. dianthi races I and 8; (ii) F. oxysporum f.sp. dianthi races 2, 5 and 6; (iii) F. oxysporum f.sp. dianthi race 4; (iv) a recently described race of F. oxysporum f.sp. dianthi (wilt-causing isolates from D. caryophyllus formerly classified as F. redolens); (v) wilt-causing isolates from D. barbatus formerly classified as F. redolens and (vi), (vii) and (viii), three further recently described races of F. oxysporum f.sp. dianthi. Isolate groups derived from analysis of RFLPs were consistent with existing and recently described vegetative compatibility groups (VCGs) in F. oxysporum f.sp. dianthi , but not in all cases with races. Isolates of F. oxysporum and F. proliferatum not associated with wilt disease had simpler RFLP patterns (with one exception) that were not associated with VCGs.  相似文献   

13.
ABSTRACT Fusarium wilt of cotton is a serious fungal disease responsible for significant yield losses throughout the world. Evolution of the causal organism Fusarium oxysporum f. sp. vasinfectum, including the eight races described for this specialized form, was studied using multigene genealogies. Partial sequences of translation elongation factor (EF-1alpha), nitrate reductase (NIR), phosphate permase (PHO), and the mitochondrial small subunit (mtSSU) rDNA were sequenced in 28 isolates of F. oxysporum f. sp. vasinfectum selected to represent the global genetic diversity of this forma specialis. Results of a Wilcoxon Signed-Ranks Templeton test indicated that sequences of the four genes could be combined. In addition, using combined data from EF-1alpha and mtSSU rDNA, the phylogenetic origin of F. oxysporum f. sp. vasinfectum within the F. oxysporum complex was evaluated by the Kishino-Hasegawa likelihood test. Results of this test indicated the eight races of F. oxysporum f. sp. vasinfectum appeared to be nonmonophyletic, having at least two independent, or polyphyletic, evolutionary origins. Races 3 and 5 formed a strongly supported clade separate from the other six races. The combined EF-1alpha, NIR, PHO, and mtSSU rDNA sequence data from the 28 isolates of F. oxysporum f. sp. vasinfectum recovered four lineages that correlated with differences in virulence and geographic origin: lineage I contained race 3, mostly from Egypt, and race 5 from Sudan; lineage II contained races 1, 2, and 6 from North and South America and Africa; lineage III contained race 8 from China; and lineage IV contained isolates of races 4 and 7 from India and China, respectively.  相似文献   

14.
甜瓜枯萎病菌(Fusarium oxysporum)专化型的初步研究   总被引:1,自引:0,他引:1  
本研究获得的甜瓜枯萎病病株9株分离物(南通市6株,新疆3株),经PDA培养性状发现,其在菌落颜色、质地和生长速率方面存在差异,大型分生孢子的大小为(19.54~41.11)μm×(4.90~8.16)μm,与西瓜枯萎病菌的大型分生孢子有较大差异。胚根法成株期致病性测定结果发现,本研究的甜瓜枯萎病菌分离物在不同鉴别寄主和鉴别品种上致病性存在专化型和生理小种方面的差异,但分离物中不存在西瓜枯萎病菌。利用核糖体转录间隔区保守序列设计引物,PCR检测也证明本研究甜瓜枯萎病菌不同分离物中不存在西瓜枯萎病菌。  相似文献   

15.
Germinated seeds of 'kabuli' chickpea cv. ICCV 4 were inoculated with a conidial suspension of the incompatible race 0 of Fusarium oxysporum f.sp. ciceris (Foc) or of nonhost F. oxysporum resistance 'inducers', and 3 days later were challenged by root dip with a conidial suspension of highly virulent Foc race 5. Prior inoculation with inducers delayed the onset of symptoms and/or significantly reduced the final amount of fusarium wilt caused by race 5. However, the extent of disease suppression varied with the nature of the inducing agent; the nonhost isolates of F. oxysporum were more effective at disease suppression than the incompatible Foc race 0. Inoculation with the inducers gave rise to synthesis of maackiain and medicarpin phytoalexins in inoculated seedlings; these did not accumulate in plant tissues but were released into the inoculum suspension. Inoculation with inducers also resulted in accumulation of chitinase, β-1,3-glucanase and peroxidase activities in plant roots. These defence-related responses were induced more consistently and intensely by nonhost isolates of F. oxysporum than by incompatible Foc race 0. The phytoalexins and, to a lesser extent, the antifungal hydrolases, were also induced after challenge inoculation with Foc race 5. However, in this case the defence responses were induced in both preinduced and noninduced plants infected by the pathogen. It is concluded that the suppression of fusarium wilt in this study possibly involved an inhibitory effect on the pathogen of preinduced plant defences, rather than an increase in the expression of defence mechanisms of preinduced plants following a subsequent challenge inoculation.  相似文献   

16.
ABSTRACT A total of 106 isolates of Fusarium oxysporum obtained from diseased cucumber plants showing typical root and stem rot or Fusarium wilt symptoms were characterized by pathogenicity, vegetative compatibility, and random amplified polymorphic DNA (RAPD). Twelve isolates of other formae speciales and races of F. oxysporum from cucurbit hosts, three avirulent isolates of F. oxysporum, and four isolates of Fusarium spp. obtained from cucumber were included for comparison. Of the 106 isolates of F. oxysporum from cucumber, 68 were identified by pathogenicity as F. oxysporum f. sp. radicis-cucumerinum, 32 as F. oxysporum f. sp. cucumerinum, and 6 were avirulent on cucumber. Isolates of F. oxysporum f. sp. radicis-cucumerinum were vegetatively incompatible with F. oxysporum f. sp. cucumerinum and the other Fusarium isolates tested. A total of 60 isolates of F. oxysporum f. sp. radicis-cucumerinum was assigned to vegetative compatibility group (VCG) 0260 and 5 to VCG 0261, while 3 were vegetatively compatible with isolates in both VCGs 0260 and 0261 (bridging isolates). All 68 isolates of F. oxysporum f. sp. radicis-cucumerinum belonged to a single RAPD group. A total of 32 isolates of F. oxysporum f. sp. cucumerinum was assigned to eight different VCGs and two different RAPD groups, while 2 isolates were vegetatively self-incompatible. Pathogenicity, vegetative compatibility, and RAPD were effective in distinguishing isolates of F. oxysporum f. sp. radicis-cucumerinum from those of F. oxysporum f. sp. cucumerinum. Parsimony and bootstrap analysis of the RAPD data placed each of the two formae speciales into a different phylogenetic branch.  相似文献   

17.
Katan T  Shlevin E  Katan J 《Phytopathology》1997,87(7):712-719
ABSTRACT Plants exhibiting symptoms of wilt and xylem discoloration typical of Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici were observed in greenhouses of cherry tomatoes at various sites in Israel. However, the lower stems of some of these plants were covered with a pink layer of macroconidia of F. oxysporum. This sign resembles the sporulating layer on stems of tomato plants infected with F. oxysporum f. sp. radicis-lycopersici, which causes the crown and root rot disease. Monoconidial isolates of F. oxysporum from diseased plants were assigned to vegetative compatibility group 0030 of F. oxysporum f. sp. lycopersici and identified as belonging to race 1 of F. oxysporum f. sp. lycopersici. The possibility of coinfection with F. oxysporum f. sp. lycopersici and F. oxysporum f. sp. radicis-lycopersici was excluded by testing several macroconidia from each plant. Airborne propagules of F. oxysporum f. sp. lycopersici were trapped on selective medium in greenhouses in which plants with a sporulating layer had been growing. Sporulation on stems was reproduced by inoculating tomato plants with races 1 and 2 of F. oxysporum f. sp. lycopersici. This phenomenon has not been reported previously with F. oxysporum f. sp. lycopersici and might be connected to specific environmental conditions, e.g., high humidity. The sporulation of F. oxysporum f. sp. lycopersici on plant stems and the resultant aerial dissemination of macroconidia may have serious epidemiological consequences. Sanitation of the greenhouse structure, as part of a holistic disease management approach, is necessary to ensure effective disease control.  相似文献   

18.
ABSTRACT Races 0 (Foc-0) and 5 (Foc-5) of Fusarium oxysporum f. sp. ciceris differ in virulence and induce yellowing or wilting syndrome, respectively, in chickpea. We modeled the combined effects of soil temperature and inoculum density of Foc-0 and Foc-5 on disease developed in chickpea cvs. P-2245 and PV-61 differing in susceptibility to those races, using quantitative nonlinear models. Disease development over time in the temperature range of 10 to 30 degrees C and inoculum densities between 6 and 8,000 chlamydospores g(1) of soil was described by the Weibull function. Four response variables (the reciprocal incubation period, the final disease intensity, the standardized area under the disease progress curve, and the intrinsic rate of disease development) characterized the disease development. Response surface models that expressed the combined effect of inoculum density and temperature were developed by substituting the intrinsic rate of disease development in the Weibull or exponential functions with a beta function describing the relationship of response variables to temperature. The models estimated 22 to 26 degrees C as the most favorable soil temperature for infection of cvs. P-2245 and PV-61 by Foc-5, and 24 to 28 degrees C for infection of cv. P-2245 by Foc-0. At 10 degrees C, no disease developed except in cv. P-2245 inoculated with Foc-5. At optimum soil temperature, maximum disease intensity developed with Foc-5 and Foc-0 at 6 and 50 chlamydospores g(1) of soil respectively, in cv. P-2245, and with Foc-5 at 1,000 chlamydospores g(1) of soil in cv. PV-61. The models were used to construct risk threshold charts that can be used to estimate the potential risk of Fusarium wilt epidemics in a geographical area based on soil temperature, the race and inoculum density in soil, and the level of susceptibility of the chickpea cultivar.  相似文献   

19.
European Journal of Plant Pathology - Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici (FOL) is one of the main diseases affecting tomato plants. Three races (races 1, 2 and 3) of the...  相似文献   

20.
香蕉假茎细胞对枯萎病菌不同小种及其粗毒素的病理反应   总被引:17,自引:0,他引:17  
 以香蕉枯萎病菌(Fusarium oxysporum f.sp.cubense)1号小种和4号小种及其粗毒素分别接种香牙蕉和粉蕉的组培苗及离体假茎后,用组织切片法观察香蕉假茎细胞的病理反应,以探明香蕉枯萎病菌不同小种及其粗毒素的致病作用。结果表明,枯萎病菌不同小种人工接种仅能感染相应的香蕉种类,但不同香蕉种类的离体假茎细胞用不同小种接种及其粗毒素处理,均产生褐变等病理反应,且病变程度不存在小种间的差异。表明枯萎病菌不同小种对香蕉不同种类的致病力差异可能与存在其它致病因子或专化性识别的因子有关。同时证实了病菌不同小种的毒素对蕉类不存在着选择毒性  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号