首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT Three isolates of the bipartite begomovirus Pepper golden mosaic virus (PepGMV) were characterized for genomic and biological properties. The complete nucleotide sequences of the DNA-A and DNA-B components were determined from infectious clones of PepGMV-Serrano (PepGMV-Ser), PepGMV-Mosaic (PepGMV-Mo), and PepGMV-Distortion (PepGMV-D). Nucleotide sequence identity among PepGMV components ranged from 91 to 96% for DNA-A and from 84 to 99% for DNA-B, with each PepGMV component most closely related to the corresponding component of Cabbage leaf curl virus (CaLCV). However, phylogenetic relationships among begomovirus components were incongruent because DNA-A of PepGMV and CaLCV share an inferred evolutionary history distinct from that of DNA-B. The cloned components of PepGMV-Ser, -Mo, and -D were infectious by biolistic inoculation to pepper but differed in symptom expression: PepGMV-Ser exhibited a bright golden mosaic, PepGMV-Mo produced a yellow-green mosaic, and PepGMV-D caused only a mild mosaic and foliar distortion followed by a "recovery" phenotype in which leaves developing after initial symptom expression appeared normal. Differences in symptoms also were observed on tomato, tobacco, and Datura stramonium. Progeny virus derived from clones of PepGMV-Ser and -Mo were transmitted from pepper to pepper by the B biotype of Bemisia tabaci; progeny virus derived from PepGMV-D clones was not transmissible by the B biotype. Reassortant genomes derived from heterologous DNA components of the three isolates were infectious in all possible pairwise combinations, with symptom phenotype in pepper determined by the DNA-B component. Collectively, these results indicate that the three virus isolates examined may be considered distinct strains of PepGMV that have the capacity to exchange genetic material.  相似文献   

2.
Euphorbia mosaic virus (EuMV), a tentative species within the genus Begomovirus, was isolated from Euphorbia heterophylla plants growing in the Yucatan Peninsula, Mexico. The complete bipartite genome was cloned from total DNA extracts and the nucleotide (nt) sequence was determined. The DNA-A sequence of the EuMV-Yucatan Peninsula (EuMV-YP) isolate shared 95% nt identity with the partially characterized type EuMV isolate from Puerto Rico. The EuMV-YP genome organization was like that of other New World, bipartite begomoviruses. The DNA-A component was 2613 nt in size, while the DNA-B component was 2602 nt long. The 165-nt common region (CR) sequence for the DNA-A and DNA-B components shared a lower than expected nt identity of 86%. The organization and iterons of the putative AC1 binding site of EuMV-YP were similar to those of begomoviruses in the Squash leaf curl virus (SLCV) clade. Characteristic disease symptoms were reproduced in E. heterophylla plants inoculated at the seedling stage using the cloned viral DNA-A and DNA-B components, confirming disease aetiology. Results of an experimental host-range study for EuMV-YP indicated that it infected at least five species in three plant families, including the Euphorbiaceae ( E. heterophylla ), Solanaceae ( Datura stramonium , pepper, tomato) and Fabaceae (bean). Phylogenetic analysis of the DNA-A and DNA-B components indicated that EuMV-YP is a New World begomovirus and that it is a new member of the SLCV clade.  相似文献   

3.
Idris AM  Brown JK 《Phytopathology》2004,94(10):1068-1074
ABSTRACT The bipartite DNA genome of Cotton leaf crumple virus (CLCrV), a whitefly-transmitted begomovirus from the Sonoran Desert, was cloned and completely sequenced. The cloned CLCrV genome was infectious when biolistically delivered to cotton or bean seedlings and progeny virus was whitefly-transmissible. Koch's postulates were completed by the reproduction of characteristic leaf crumple symptoms in cotton seedlings infected with cloned CLCrV DNA, thereby verifying the etiology of leaf crumple disease, which has been known in the southwestern United States since the 1950s. Sequence comparisons confirmed that CLCrV has a genome organization typical of yet sufficiently divergent from all other bipartite begomoviruses to justify recognition as a distinct species. Phylogenetic analyses indicated that CLCrV has a complex evolutionary history probably involving both recombination and reassortment. The relatively low nucleotide sequence identity (77%) of the common region shared by the CLCrV DNA-A and DNA-B components and the distinct phylogenetic relationships of each component are consistent with component reassortment. Sequence analyses indicated that the CLCrV DNA-A component was likely derived by recombination among ancestors of two divergent clades (e.g., the Squash leaf curl virus [SLCV] clade and the Abutilon mosaic virus clade) of Western Hemisphere begomoviruses. The CLCrV DNA-B component also may have originated by recombination among an ancestor of the SLCV clade and another distantly related but unknown Western Hemisphere begomovirus.  相似文献   

4.
ABSTRACT The biological and molecular properties of Tomato leaf curl Gujarat virus from Varanasi, India (ToLCGV-[Var]) were characterized. ToLCGV-[Var] could be transmitted by grafting and through whitefly transmission in a persistent manner. The full-length genome of DNA-A and DNA-B of ToLCGV-[Var] was cloned in pUC18. Sequence analysis revealed that DNA-A (AY190290) is 2,757 bp and DNA-B (AY190291) is 2,688 bp in length. ToLCGV-[Var] could infect and cause symptoms in tomato, pepper, Nicotiana benthamiana, and N. tabacum when partial tandem dimeric constructs of DNA-A and DNA-B were co-inoculated by particle bombardment. DNA-A alone also is infectious, but symptoms were milder and took longer to develop. ToLCGV-Var virus can be transmitted through sap inoculation from infected tomato plants to the above-mentioned hosts causing the same symptoms. Open reading frames (ORFs) in both DNA-A and DNA-B are organized similarly to those in other begomoviruses. DNA-A and DNA-B share a common region of 155 bp with only 60% sequence identity. DNA-B of ToLCGV-[Var] shares overall 80% identity with DNA-B of Tomato leaf curl New Delhi virus-Severe (ToLCNDV-Svr) and 75% with ToLCNDV-[Lucknow] (ToLCNDV-[Luc]). Comparison of DNA-A sequence with different begomoviruses indicates that ToLCGV-[Var] shares 84% identity with Tomato leaf curl Karnataka virus (ToLCKV) and 66% with ToLCNDV-Svr. ToLCGV-[Var] shares a maximum of 98% identity with another isolate of the same region (ToLCGV-[Mir]; AF449999) and 97% identity with one isolate from Gujarat (ToLCGV-[Vad]; AF413671). All three viruses belong to the same species that is distinct from all the other geminivirus species described so far in the genus Begomovirus of the family Geminiviridae. The name Tomato leaf curl Gujarat virus is proposed because the first sequence was taken from an isolate of Gujarat, India.  相似文献   

5.
ABSTRACT Cucurbit leaf curl virus (CuLCV), a whitefly-transmitted geminivirus previously partially characterized from the southwestern United States and northern Mexico, was identified as a distinct bipartite begomovirus species. This virus has near sequence identity with the previously partially characterized Cucurbit leaf crumple virus from California. Experimental and natural host range studies indicated that CuLCV has a relatively broad host range within the family Cucurbitaceae and also infects bean and tobacco. The genome of an Arizona isolate, designated CuLCV-AZ, was cloned and completely sequenced. Cloned CuLCV-AZ DNA A and B components were infectious by biolistic inoculation to pumpkin and progeny virus was transmissible by the whitefly vector, Bemisia tabaci, thereby completing Koch's postulates. CuLCV-AZ DNA A shared highest nucleotide sequence identity with Squash leaf curl virus-R (SLCV-R), SLCV-E, and Bean calico mosaic virus (BCaMV) at 84, 83, and 80%, respectively. The CuLCV DNA B component shared highest nucleotide sequence identity with BCaMV, SLCV-R, and SLCV-E at 71, 70, and 68%, respectively. The cis-acting begomovirus replication specificity element, GGTGTCCTGGTG, in the CuLCV-AZ origin of replication is identical to that of SLCV-R, SLCV-E, and BCaMV, suggesting that reassortants among components of CuLCV-AZ and these begomoviruses may be possible. Reassortment experiments in pumpkin demonstrated that both reassortants of CuLCV-AZ and SLCV-E A and B components were viable. However, for CuLCV-AZ and SLCV-R, only one reassortant (SLCV-R DNA A/CuLCV-AZ DNA B) was viable on pumpkin, even though the cognate component pairs of both viruses infect pumpkin. These results demonstrate that reassortment among sympatric begomovirus species infecting cucurbits are possible, and that, if generated in nature, could result in begomoviruses bearing distinct biological properties.  相似文献   

6.
The molecular and biological characterization of a begomovirus infecting the common weed Macroptilium lathyroides from Jamaica are reported. The virus showed 92% sequence identity to an isolate of Macroptilium yellow mosaic virus (MaYMV) from Cuba, but was distinct from the two other begomoviruses isolated from M. lathyroides , namely Macroptilium yellow mosaic Florida virus (80% identity) and Macroptilium mosaic Puerto Rico virus (68% identity). Hence, the Jamaican begomovirus was considered an isolate of MaYMV and called Macroptilium yellow mosaic virus -[Jamaica] (MaYMV-[JM]). In infectivity studies using cloned DNA-A and DNA-B genomic components, MaYMV-[JM] infected red kidney bean ( Phaseolus vulgaris ) and produced mild symptoms in Scotch Bonnet pepper ( Capsicum chinense ), but did not infect cabbage ( Brassica oleracea ). This information has implications for the development of strategies to control begomovirus diseases in Jamaica and elsewhere.  相似文献   

7.
ABSTRACT Tomato chlorotic mottle virus (ToCMoV) is an emerging begomovirus species widely distributed throughout tomato-growing regions of Brazil. ToCMoV appears to have expanded its geographic range recently, invading tomato-growing areas that were free of begomovirus infection before 2004. We have determined the first complete genome sequence of an infectious ToCMoV genome (isolate BA-Se1), which is the first begomovirus species isolated in the northeast of Brazil. When introduced by particle bombardment into tomato, the cloned ToCMoV-[BA-Se1] DNA-A and DNA-B components caused typical chlorotic mottle symptoms. The cloned virus was whitefly-transmissible and, although it was infectious in hosts such as Nicotiana benthamiana, pepper, tobacco, and Nicandra physaloides, it was unable to infect Arabidopsis thaliana, bean, N. glutinosa, and Datura metel. Sequence and biological analyses indicate that ToCMoV-[BA-Se1] is a typical New World begomovirus sp. requiring both DNA-A and DNA-B components to establish systemic infections. Although evidence of multiple recombination events was detected within the ToCMoV-[BA-Se1] DNA-A, they apparently occurred relatively long ago, implying that recombination probably has not contributed to the recent emergence of this species.  相似文献   

8.
Leaf samples (five) from brinjal/eggplant fields showing upward leaf curling symptoms were collected from Varanasi, Uttar Pradesh state, India. The full length genome of begomovirus and associated betasatellite were amplified by PCR, cloned and sequenced. Sequences of homologous DNA-A and its betasatellite in all samples were the same. The samples failed to amplify DNA-B, suggesting that the begomovirus associated with leaf curl disease of eggplant was monopartite. The complete genome (homologous of DNA-A) consists of 2758 nts, whereas the betasatellite has 1352 nts and the genome organization is typical of Old World begomoviruses. The sequence analysis showed high levels of nucleotide sequence identity (79.8–91.7%) of virus with Tomato leaf curl Joydebpur virus (ToLCJoV) infecting chilli in India, suggesting it as a strain of ToLCJoV based on the current ICTV taxonomic criteria for begomovirus strain demarcation. However, the betasatellite associated was identified as a variant of Tomato leaf curl Bangladesh betasatellite (ToLCBDB), with which it shared highest sequence identity of 84.7–94.8%. Phylogenetic analyses of the genome further supported the above results. The recombination analyses of both genome and betasatellite showed that a major part of genome sequences are derived from begomoviruses (ToLCJoV, ChiLCuV, AEV) infecting chilli, tomato, ageratum and betasatellite from PaLCuB as the foremost parents in evolution, suggesting this as a new recombinant virus strain. This is the first report of a monopartite begomovirus and a betasatellite molecule associated with the leaf curl disease of eggplant.  相似文献   

9.
ABSTRACT The complete nucleotide (nt) sequences of the cloned DNA-A (2644 nts) and DNA-B (2609 nts) components of Bean golden yellow mosaic virus (BGYMV-MX) from Chiapas, Mexico were determined. The genome organization of BGYMV-MX is similar to that of other Western Hemisphere bipartite geminiviruses (genus Begomovirus). Infectivity of the cloned BGYMV-MX DNA components in common bean (Phaseolus vulgaris) plants was demonstrated by particle bombardment and agroinoculation. BGYMV-MX was identified as a BGYMV (previously type II BGMV) isolate based on sequence analyses, sap-transmissibility, and pseudorecombination experiments with other bean-infecting begomoviruses. On the basis of differences in the DNA-B hypervariable region, symptom phenotype, and properties of infectious pseudorecombinants, BGYMV-MX may represent a distinct strain of BGYMV. Pseudorecombination experiments further established that BGYMV symptom determinants mapped to DNA-B, and that BGYMV-MX was most closely related to BGYMV from Guatemala. A Tomato leaf crumple virus (TLCrV) DNA-A/BGYMV-MX DNA-B pseudorecombinant was infectious in bean, establishing that a viable reassortant can be formed between begomovirus species from different phylogenetic clusters. Bean germ plasm representing the two major gene pools (Andean and Mesoamerican) was screened for response to BGYMV-MX with three methods of inoculation: sap-inoculation, particle bombardment, and agroinoculation. Andean germ plasm was very susceptible and similar results were obtained with all three methods, whereas Mesoamerican germ plasm showed resistance to BGYMV-MX, particularly with agroinoculation.  相似文献   

10.
Genomic characterization using nonradioactive probes, polymerase chain reaction with degenerate primers for whitefly transmitted geminiviruses and nucleotide sequencing were used to describe a new bipartite geminivirus, associated with dwarfing and leaf curling of tomatoes and peppers in Jamaica. Partial DNA-A and DNA-B clones were obtained. DNA sequence analysis showed that tomato and pepper samples have a similar geminivirus associated with them. Nucleotide sequence identity > 92% between the common regions of DNA-A and DNA-B confirmed the bipartite nature of the Jamaican geminivirus isolates. Nucleotide sequence comparisons of DNA-A and DNA-B with those of geminiviruses representing the major phylogenetic groups of Western Hemisphere geminiviruses showed the greatest similarity to potato yellow mosaic virus and members of the Abutilon mosaic virus cluster of geminiviruses. This new virus is given the name tomato dwarf leaf curl virus (TDLCV) because of the dwarfing and leaf curling symptoms associated with infected tomato plants. Polymerase chain reaction and Southern hybridization showed mixed infections of TDLCV with tomato yellow leaf curl virus from Israel in 16% of the field samples of tomatoes and peppers.  相似文献   

11.
Malvastrum leaf curl Guangdong virus is a distinct monopartite begomovirus   总被引:1,自引:0,他引:1  
Virus isolates GD6, GD7, GD8, GD9 and GD10 were obtained from Malvastrum coromandelianum showing leaf curl symptoms in Guangdong Province of China. A specific 500 bp product was consistently detected in total DNA extracts, amplified with universal primers specific for members of the genus Begomovirus. Analysis of their partial DNA sequences revealed that they are isolates of the same begomovirus species, sharing 92·8%–97·1% nucleotide sequence identity. The complete DNA sequences of both GD6 and GD9 were found to be 2767 nucleotides, with all the characteristic features of begomovirus genome organization. The two isolates have less than 85·2% nucleotide sequence identity with other reported begomoviruses. Consequently, GD6 and GD9 are considered to be isolates of a novel begomovirus species, for which the name Malvastrum leaf curl Guangdong virus (MLCuGdV) is proposed. Sequence analyses suggest that MLCuGdV may have arisen by recombination between viruses related to Papaya leaf curl China virus , Tomato leaf curl Philippines virus and other undiscovered virus ancestors. Neither the DNA-B component nor the DNAβ molecule associated with these begomovirus isolates was found. An infectious clone of GD6 was constructed. GD6 efficiently infected Nicotiana benthamiana , N. glutinosa and Petunia hybrida by agro-inoculation, and Malvastrum coromandelianum by whitefly transmission, inducing leaf curling, vein swelling and stunting symptoms. GD6 was also infectious in N. tabacum , but did not induce observable disease symptoms.  相似文献   

12.
ABSTRACT The genomes of two Watermelon chlorotic stunt virus (WmCSV) isolates, one from the Sudan and one from Iran, were cloned and sequenced. Sequence relationship with other geminiviruses characterizes WmCSV as a typical Eastern Hemisphere geminivirus with a bipartite genome. The two geographically distant WmCSV isolates from Africa and the Middle East share a very high overall sequence similarity: 98% between their DNA-A and 96% between their DNA-B components, and their respective capsid proteins are identical. A single amino acid change in the capsid protein (N131D) renders WmCSV whitefly nontransmissible. This region of the capsid is also implicated in transmission by Bemisia tabaci of Tomato yellow leaf curl virus.  相似文献   

13.
为明确南瓜叶片上卷、黄化的症状是否由病毒侵染引起,本研究采用小RNA深度测序对采集自陕西地区的南瓜叶片样品进行了鉴定。结果显示,侵染南瓜样品的病毒可能是中国南瓜曲叶病毒(squash leaf curl China virus, SLCCNV)。经PCR扩增并且克隆测序获得了病毒的DNA-A和DNA-B组分的全基因组序列。序列比对发现,所克隆的DNA-A组分与SLCCNV海南分离物(SLCCNV-Hn61)DNA-A的一致性最高,为99.1%;DNA-B组分与SLCCNV-Hn61和三亚分离物SLCCNV-SY的DNA-B组分一致性最高,为96.8%。系统进化树分析发现所克隆的DNA-A和DNA-B组分分别与SLCCNV-Hn61和SLCCNV-SY的亲缘关系最近。以上研究结果表明侵染陕西南瓜叶片的病毒是SLCCNV的分离物。这是首次报道SLCCNV在陕西地区的危害,研究结果为当地经济作物南瓜的病害防控提供参考。  相似文献   

14.
A viral complex causing golden mosaic and leaf distortion (rugosity) in tomato plants was obtained from viruliferous whiteflies, and named TGV-Ub1. This complex was sap-transmitted from tomato to Nicotiana benthamiana . PCR amplification using universal begomovirus primers yielded two distinct fragments for DNA-A, suggesting that the TGV-Ub1 complex comprised at least two distinct viruses. Clones corresponding to full-length viral genomes were obtained from tomato plants infected with TGV-Ub1. Comparisons of the complete sequences of clones pUb1-49 (DNA-A), pUb1-62 and pUb1-81 (both DNA-B) indicated that they constitute novel western hemisphere begomoviruses. Clones pUb1-49 and pUB1-81 have identical common regions, thus representing the cognate DNA-A and -B of a novel begomovirus, named Tomato rugose mosaic virus (ToRMV). Clone pUb1-62 has a distinct common region from ToRMV and all other geminiviruses. A cognate DNA-A for pUb1-62 was not found. Clones containing 1·8 copies of the genomic components were constructed. Infectivity assays of these clones in tomato and N. benthamiana demonstrated that the clones corresponding to ToRMV systemically infected both hosts. Symptoms were analogous to those observed when using the pure isolates obtained in this study. The combination of pUb1-49 and -62 did not result in systemic infection, indicating that these components do not form a viable virus. ToRMV was sap-transmitted from N. benthamiana to N. benthamiana , and by grafting to Solanum tuberosum and Datura stramonium . ToRMV-A and ToRMV-B were detected in plants of Nicandra physaloides and Phaseolus vulgaris , respectively, growing in nearby tomato fields, in association with distinct DNA components.  相似文献   

15.
During the spring of 2001, approximately 10 000 yellow passion flower plants, from two orchards in the county of Livramento de Nossa Senhora, Bahia State, Brazil, exhibited intense yellow mosaic symptoms and drastic reduction of the leaf lamina and plant development. A large population of whiteflies ( Bemisia tabaci ) was also found colonizing the plants. All field samples collected tested positive for Passion fruit woodiness virus in DAS-ELISA. Five out of 20 passion flower plants inoculated with adult whiteflies collected from diseased plants in the field developed symptoms 20–30 days after inoculation. Two of these plants gave a positive reaction in TAS-ELISA using antiserum against a begomovirus. Degenerated PCR primers amplified viral DNA fragments from the DNA-A and DNA-B components of a begomovirus infecting these plants. The fragment corresponding to the core region of the coat protein (DNA-A) was cloned and sequenced. A phylogenetic analysis placed this begomovirus isolated from passion flower in the same clade of the New World begomoviruses as several other species from Brazil. Based on the symptoms induced by this virus alone, the disease was tentatively named passion flower little leaf mosaic.  相似文献   

16.
Tomato plants showing symptoms of yellow mottle and leaf distortion, first observed in eastern Cuba in 2007, have been shown to be associated with the presence of a novel bipartite begomovirus (genus Begomovirus, family Geminiviridae) species, Tomato yellow leaf distortion virus (ToYLDV), for which the DNA-A has already been sequenced. Here, we present the completion of ToYLDV genome characterization by cloning and sequencing the DNA-B component. In addition, we constructed infectious clones that were used to inoculate tomato, soybean, Nicotiana tabacum and N. benthamiana plants by a biolistic procedure. Cloned ToYLDV reproduced the symptoms observed in tomato in the field, thus confirming that this begomovirus is the causal agent of the disease present in Cuba.  相似文献   

17.
Tomato leaf curl disease (ToLCD) affected 25% of the tomato crop in Chitrakoot, India and symptomatic leaves were collected for molecular assay. The complete sequences of bipartite begomovirus DNA-A and a betasatellite DNA were amplified. In a sequence analysis, begomovirus DNA-A and betasatellite shared highest sequence identity (91–99%) with Tomato leaf curl New Delhi virus (ToLCNDV) DNA-A and chili leaf curl betasatellite (ChLCB), respectively. The virus was transmitted by whitefly to tomato plants and caused ToLCD symptoms with 70% transmission rate. To our knowledge, this is the first report of the natural occurrence of ToLCNDV and ChLCB in India.  相似文献   

18.
ABSTRACT Tomato yellow leaf curl (TYLC) is one of the most devastating pathogens affecting tomato (Lycopersicon esculentum) worldwide. The disease is caused by a complex of begomovirus species, two of which, Tomato yellow leaf curl Sardinia virus (TYLCSV) and Tomato yellow leaf curl virus (TYLCV), are responsible for epidemics in Southern Spain. TYLCV also has been reported to cause severe damage to common bean (Phaseolus vulgaris) crops. Pepper (Capsicum annuum) plants collected from commercial crops were found to be infected by isolates of two TYLCV strains: TYLCV-Mld[ES01/99], an isolate of the mild strain similar to other TYLCVs isolated from tomato crops in Spain, and TYLCV-[Alm], an isolate of the more virulent TYLCV type strain, not previously reported in the Iberian Peninsula. In this work, pepper, Nicotiana benthamiana, common bean, and tomato were tested for susceptibility to TYLCV-Mld[ES01/99]and TYLCV-[Alm] by Agrobacterium tumefaciens infiltration, biolistic bombardment, or Bemisia tabaci inoculation. Results indicate that both strains are able to infect plants of these species, including pepper. This is the first time that infection of pepper plants with TYLCV clones has been shown. Implications of pepper infection for the epidemiology of TYLCV are discussed.  相似文献   

19.
20.
The virus causing horsegram (Macrotyloma uniflorum) yellow mosaic disease has been shown to be a typical Old World bipartite begomovirus. The viral origin of the disease has been established through agroinoculation of horsegram using partial tandem repeat clones of both DNA-A and DNA-B. The DNA-A genome shows less than 89% identity with the corresponding sequences of all the begomoviruses in the databases earlier to this sequence submission (AJ627904). Therefore Horsegram yellow mosaic virus (HgYMV-[IN:Coi]) can be considered to be a new species of the genus Begomovirus (family Geminiviridae). Phylogenetic analysis shows that this virus is part of the cluster of mungbean yellow mosaic viruses of legumes from South and South East Asia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号