首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
从玉米和水稻根围分离到70株不同基因型的洋葱伯克氏菌,对这些菌株进行了拮抗植物病原菌的筛选,并对高拮抗菌株进行了潜在致病性和安全性分析。结果表明,有46株洋葱伯克氏菌对一种或多种病菌有较高的拮抗活性。在不同的洋葱伯克氏菌基因型内,以基因型Ⅴ内拮抗菌株占的比例最高,对所测5种病原真菌的平均拮抗菌株比率为80.0%,其中部分菌株表现出很强的拮抗活性。筛选出的4株高拮抗菌株对洋葱不具有致病性,同时也未检测到与人体致病相关的BCESM毒力基因。  相似文献   

2.
 从烟草根际土壤中分离到一株细菌菌株Lyc2,平皿对峙培养显示该菌可显著抑制多种植物病原真菌菌丝体的生长。温室盆栽试验表明,Lyc2对棉花苗期立枯病的防治效果达到48.8%;水培棉花苗试验表明,Lyc2能显著增加棉苗的鲜重和干重,但对株高的影响不显著。该菌经形态、生理生化试验测定及16S rDNA和ITS序列分析,初步确定为洋葱伯克霍尔德氏菌(Burkholderia cepacia);进一步通过种特异的recA基因序列分析,证明Lyc2菌株属于B. cepacia复合物中基因型IX,B.pyrrocinia。  相似文献   

3.
In 2001, a bacterial rot of onion (Allium cepa L.) bulbs was observed in Japan. The causal agent was identified as Bukholderia cepacia (Palleroni & Holmes 1981 ex Burhkolder 1950) Yabuuchi, Kosako, Oyaizu, Yano, Hotta, Ezaki, and Arakawa 1993. The identified bacteria were divided into two groups (Y and W) based on colony colors, and several phenotypic and genetic characteristics. Based on recA polymerase chain reaction assays, the strains of the Y and W groups belong to genomovar I (B. cepacia sensu stricto) and genomovar III (B. cenocepacia), respectively.The nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under the accession numbers AB162427 and AB162428  相似文献   

4.
香蕉枯萎病菌生理小种鉴定及其SCAR标记   总被引:8,自引:0,他引:8  
 通过室内人工接种蕉类鉴别寄主,对采集于广东蕉区的18个蕉类枯萎病菌菌株进行鉴定,KP021、KP022、GZ981和JL021 4个菌株属Racel,其余14个菌株属Race4,说明广东蕉区同时存在尖孢镰刀菌古巴专化型Race1和Race4。用RAPD技术对上述18个菌株进行分析,从200条随机引物中筛选出8条引物可产生生理小种RAPD标记12个,其中标记Racel的8个,标记Race4的4个。对这些RAPD标记带分别进行回收、克隆、测序,根据这些特异片段序列分别设计相应的SCAR引物,通过对18个菌株的PCR扩增检验,有4个RAPD标记成功地转化为SCAR标记,其中Race1-SCAR标记1个、Race4-SCAR标记2个、同时能鉴定出2个小种的SCAR标记1个。应用这4个SCAR标记同时对采自田间的9个病菌分离物进行检测,能够准确地鉴定出广东蕉区的尖孢镰刀菌古巴专化型Racel和Race4,这为下一步开展香蕉枯萎病菌生理小种的分子鉴定及各生理小种田间流行动态监测奠定了基础。  相似文献   

5.
不同来源的洋葱伯克氏菌基因型对洋葱的致病性分析   总被引:1,自引:0,他引:1  
张立新  宋江华 《植物保护》2009,35(2):117-120
通过对农田环境和医院的洋葱伯克氏菌基因型在洋葱上的致病性研究,结果表明,来源于根围的基因型Ⅲ和基因型Ⅰ的部分菌株,以及来源于医院的基因型Ⅰ和Ⅲ菌株均能使洋葱鳞茎腐烂,表现出与洋葱致病菌LMG1222相似的致病症状,但基因型Ⅴ和Ⅸ没有使洋葱发病。农田和医院环境中均存在对洋葱致病的洋葱伯克氏菌,而且各基因型对洋葱的致病性有差异。  相似文献   

6.
One of the most serious diseases of banana is fusarium wilt, caused by Fusarium oxysporum f.sp. cubense ( Foc ). The objectives of this study were to isolate and identify nonpathogenic F. oxysporum strains from soils suppressive to banana wilt, and to determine the diversity of these isolates. More than 100 Fusarium strains were isolated from the rhizosphere of banana plants and identified to species level. Pathogenicity testing was carried out to confirm that these isolates were nonpathogens of banana. A PCR-based RFLP analysis of the intergenic spacer region of the ribosomal RNA operon was used to characterize the nonpathogens. The isolates were also compared with isolates of Foc from South Africa and the known biological control isolate of F. oxysporum , Fo47. The species-specific primers FOF1 and FOR1, in addition to morphological features, were used to confirm the identity of F. oxysporum isolates included in the PCR-RFLP analysis. Twelve different genotypes could be distinguished, identified by a six-letter code allocated to each isolate following digestion with the restriction enzymes Hae III, Hha I, Hin fI, Msp I, Rsa I and Scrf I. Eleven of these included nonpathogenic F. oxysporum isolates, and these groups could all be distinguished from the genotype that included Foc . Fo47 was included in one of the genotype groups consisting of nonpathogenic F. oxysporum isolates from South Africa.  相似文献   

7.
香蕉束顶病毒株系生物学特性的研究   总被引:7,自引:1,他引:6  
 在广东香蕉束顶病株症状基本相同的情况下,在8个产区分别随机采集11~15个标样共111个分离物,接种在香蕉苗上,其后又从8个产区的分离物中各选取1个代表分离物用于进行各项研究。寄主范围试验结果,这8个代表分离物可分为能侵染粉蕉的NSP株系(以广州天河分离物为代表的7个分离物)和不能侵染粉蕉的NS株系(高州代表分离物)。用Eco RI对8个毒源地的111个分离物DNA组分1进行酶切分析,结果表明:所有高州分离物共15个和信宜分离物14个中的9个都可以被酶切,应属NS株系;而其余6个毒源地的所有分离物及信宜分离物中的另外5个都不能被酶切,应属NSP株系。在病害潜育期方面,2个株系在大蕉上的差异达到显著水平;在香蕉4个品种上,2株系也存在较明显的差异,但其中有些差异未达到显著水平。在病毒增殖、运转速度及病毒达到高浓度所需的时间上,2个株系也存在显著的差异。  相似文献   

8.
Gibberella fujikuroi is composed of at least nine mating populations (MPs), corresponding to biological species and assigned letters (from A to I). Each MP possesses a specific toxicological profile and a preferential host. Members of Fusarium verticillioides and F. thapsinum, anamorphs respectively of MPs A (G. moniliformis) and F (G. thapsina), share identical morphological traits, but they have a different preferential hosts (maize and sorghum, respectively) and toxin profiles, beingable the only member of MP A to produce fumonisins and the only member of MP F to produce moniliformin. Isolates from banana fruits were identified morphologically as F. verticillioides. The isolates were analyzed for fumonisin and moniliformin production. While none of the isolates produced fumonisin, all the isolates produced moniliformin. The isolates were crossed with tester strains of MPs A and F, showing ability to produce fertile perithecia only when crossed by MP A tester strains isolated from maize. However, the time required for the formation of fertile perithecia and their size differed significantly from the usual fertile crosses of strains belonging to MP A. Pathogenicity tests using such isolates of F. verticillioides isolated from banana and a set of F. verticillioides isolates isolated from maize were also performed on banana fruits. The data showed that the isolates from banana were more pathogenic. Finally, isolates from banana and maize were compared using AFLP. The results revealed that isolates from banana and maize produced two distinctly different clusters. In conclusion, isolates of F. verticillioides from banana showed specific traits (toxin production, in vitro fertility, pathogenicity and molecular profiles), that were different to those of the same species from maize. This could reflect important differences in the ecology and natural history of the population from banana and should encourage further investigations into the mechanisms of toxin production and pathogenicity within the same MP.  相似文献   

9.
Banana (Musa spp.) is one of the most widely cultivated subtropical fruits around the globe. Banana cultivation has been extensively increased in southeastern Iran over the last two decades. Recently, banana fruits possessing rotten and blackened fingertip symptoms were observed in Sistan-Baluchestan, Iran. Isolation and characterization of the causal agent showed that the pathogen belongs to the multifaceted bacterial species Burkholderia cenocepacia. Pathogenicity tests and host range assays showed that the strains were pathogenic on banana, as well as carrot, onion and potato. All the strains were resistant to 50 mg L−1 rifampicin and 200 mg L−1 copper sulphate. Phylogenetic analysis of 16S rRNA and recA gene sequences showed that the strains belong to two different genomovars of B. cenocepacia (III-A and III-B), which also include environmental and cystic fibrosis associated strains of the species. The results obtained from recA phylogeny were confirmed using multilocus sequence analysis (MLSA), although MLSA showed that the banana strains were clustered as a novel phylogroup among the members of both genomovars. Banana-pathogenic B. cenocepacia strains isolated in Iran were different from the strains isolated in Taiwan, as the ‘B. cepacia epidemic strain marker’ reported in the Taiwanese strains was absent from Iranian strains. To the authors’ knowledge, this is the first MLSA-based study on the banana-pathogenic strains of B. cenocepacia. However, further in-depth molecular studies are needed to decipher the relationships between the banana fingertip rot pathogen and the clinical strains of B. cenocepacia.  相似文献   

10.
Moko disease, caused by the bacterium Ralstonia solanacearum, is one of the most devastating diseases of Musa spp. in Colombia, where banana and plantain are major crops. The disease epidemiology is poorly understood and little is known about the diversity of the bacterial populations associated with this disease. This study assessed the diversity, phylogenetic relationship and pathogenicity of R. solanacearum strains associated with moko disease in Colombia. For this, the genetic diversity of 65 isolates obtained from four banana/plantain-growing regions was evaluated by using multiplex PCR and analysing the partial sequences of the mutS, rplB and egl genes. These analyses revealed that all the strains belonged to the R. solanacearum phylotype II, sequevars 4 and 6. In addition, the phylogenetic analysis assorted the strains into three subgroups, which matched the region of isolation: (i) central region (i.e. Eastern plains and Andes, IIB/4); (ii) northwest (i.e. Urabá and a few strains from Magdalena, IIB/4); and (iii) north coast (Magdalena and a few strains from Urabá, IIA/6). In addition, this evolutionary pattern was associated with pathogenicity, as 63 of the 65 isolates caused wilting of banana and plantain plants under greenhouse conditions, whilst only 32, those isolated from the central region, caused such symptoms in tomato plants. In conclusion, this study shows that banana and plantain crops in Colombia foster genetically diverse strains of R. solanacearum that belong to at least three different genetic groups, which show biogeographic and host range association.  相似文献   

11.
12.
香蕉黑腐病菌(Botryodiplodia theobromae)的PCR检测   总被引:1,自引:0,他引:1  
 根据香蕉黑腐病菌可可球二孢菌(Botryodiplodia theobromae)与其它香蕉病原真菌核糖体基因转录间隔区(rDNA-ITS)ITS1和ITS2间序列差异,设计了特异引物Bth-S(5'-TCTCCCACCCTTTGTGAAC-3')和Bth-A(5'-AAAAGT-TCAGAAGGTTCGTC-3'),利用此引物对包括可可球二孢菌在内的21个菌株基因组DNA进行PCR扩增,结果只有4个可可球二孢菌菌株扩增到422bp特异带,其它17个菌株无扩增产物。灵敏度测试结果表明此特异引物能对1pg的可可球二孢菌基因组DNA进行扩增。对自然感染黑腐病的香蕉果实组织和接种可可球二孢菌或多种香蕉病原真菌混合接种的果实组织进行检测,Bth-S和Bth-A引物对不仅能够在自然感染黑腐病果实组织中特异检测到可可球二孢菌,而且能在未显症和发病的接菌香蕉果实组织中特异检测得到可可球二孢菌。这为香蕉可可球二孢菌潜伏侵染检测提供了技术支持。  相似文献   

13.
Xanthomonas campestris pv. musacearum (Xcm) is the causal agent of banana xanthomonas wilt, a major threat to banana production in eastern and central Africa. The pathogen is present in very high levels within infected plants and can be transmitted by a broad range of mechanisms; therefore early specific detection is vital for effective disease management. In this study, a polyclonal antibody (pAb) was developed and deployed in a lateral flow device (LFD) format to allow rapid in‐field detection of Xcm. Published Xcm PCR assays were also independently assessed: only two assays gave specific amplification of Xcm, whilst others cross‐reacted with non‐target Xanthomonas species. Pure cultures of Xcm were used to immunize a rabbit, the IgG antibodies purified from the serum and the resulting polyclonal antibodies tested using ELISA and LFD. Testing against a wide range of bacterial species showed the pAb detected all strains of Xcm, representing isolates from seven countries and the known genetic diversity of Xcm. The pAb also detected the closely related Xanthomonas axonopodis pv. vasculorum (Xav), primarily a sugarcane pathogen. Detection was successful in both naturally and experimentally infected banana plants, and the LFD limit of detection was 105 cells mL?1. Whilst the pAb is not fully specific for Xcm, Xav has never been found in banana. Therefore the LFD can be used as a first‐line screening tool to detect Xcm in the field. Testing by LFD requires no equipment, can be performed by non‐scientists and is cost‐effective. Therefore this LFD provides a vital tool to aid in the management and control of Xcm.  相似文献   

14.
ABSTRACT Strains of Xylella fastidiosa, isolated from sweet orange trees (Citrus sinensis) and coffee trees (Coffea arabica) with symptoms of citrus variegated chlorosis and Requeima do Café, respectively, were indistinguishable based on repetitive extragenic palindromic polymerase chain reaction (PCR) and enterobacterial repetitive intergenic consensus PCR assays. These strains were also indistinguishable with a previously described PCR assay that distinguished the citrus strains from all other strains of Xylella fastidiosa. Because we were not able to document any genomic diversity in our collection of Xylella fastidiosa strains isolated from diseased citrus, the observed gradient of increasing disease severity from southern to northern regions of S?o Paulo State is unlikely due to the presence of significantly different strains of the pathogen in the different regions. When comparisons were made to reference strains of Xylella fastidiosa isolated from other hosts using these methods, four groups were consistently identified consistent with the hosts and regions from which the strains originated: citrus and coffee, grapevine and almond, mulberry, and elm, plum, and oak. Independent results from random amplified polymorphic DNA (RAPD) PCR assays were also consistent with these results; however, two of the primers tested in RAPD-PCR were able to distinguish the coffee and citrus strains. Sequence comparisons of a PCR product amplified from all strains of Xylella fastidiosa confirmed the presence of a CfoI polymorphism that can be used to distinguish the citrus strains from all others. The ability to distinguish Xylella fastidiosa strains from citrus and coffee with a PCR-based assay will be useful in epidemiological and etiological studies of this pathogen.  相似文献   

15.
Tumour tissue samples were collected from vines grown in various regions of Italy and other parts of Europe and extracted for detection of Agrobacterium vitis. Fifty strains were isolated on agar plates and screened by PCR with consensus primers from the virD2 gene. They were confirmed as A. vitis with a species-specific monoclonal antibody. The isolates were further analyzed by PCR for their opine synthase genes and ordered into octopine, nopaline and vitopine strains. Primers designed on the octopine synthase gene did not detect octopine strains of Agrobacterium tumefaciens. For quantitative PCR, virD2 fragments were sequenced: two classes of virD2 genes were found and two primer sets designed, which detected octopine and nopaline strains or only vitopine strains. For simultaneous identification of all opine-type strains, multiplex real-time PCR with either primer pair and SYBR Green was performed: the combined sets of primers gave signals with DNA from any A. vitis strain. Specificity of the new primers for real-time PCR was evaluated using several unidentified bacterial isolates from grapevines and other plant species. An elevated level of non-specific background was observed when the combined primer sets were used in multiplex PCR assays. The real-time PCR protocol was also used to detect A. vitis cells directly from grapevine tumours; avoiding direct isolation procedures a sensitivity in the range of one to ten cells per assay was found. Inhibition of the PCR reaction by plant material was overcome by treating tumour extracts with a DNA purification kit as a step for the isolation of nucleic acids.  相似文献   

16.
This study analysed genomic variation of the translation elongation factor 1α (TEF‐1α) and the intergenic spacer region (IGS) of the nuclear ribosomal operon of Fusarium oxysporum f. sp. cubense (Foc) isolates, from different banana production areas, representing strains within the known races, comprising 20 vegetative compatibility groups (VCG). Based on two single nucleotide polymorphisms present in the IGS region, a PCR‐based diagnostic tool was developed to specifically detect isolates from VCG 01213, also called tropical race 4 (TR4), which is currently a major concern in global banana production. Validation involved TR4 isolates, as well as Foc isolates from 19 other VCGs, other fungal plant pathogens and DNA samples from infected tissues of the Cavendish banana cultivar Grand Naine (AAA). Subsequently, a multiplex PCR was developed for fungal or plant samples that also discriminated Musa acuminata and M. balbisiana genotypes. It was concluded that this diagnostic procedure is currently the best option for the rapid and reliable detection and monitoring of TR4 to support eradication and quarantine strategies.  相似文献   

17.
ABSTRACT In order to confirm and refine the current classification scheme of Xanthomonas translucens and to identify novel strains from ornamental asparagus, a collection of field and reference strains was analyzed. Rep-polymerase chain reaction (PCR) genomic fingerprint profiles were generated from 33 isolates pathogenic to asparagus as well as 61 X. trans-lucens reference strains pathogenic to cereals and grasses. Amplified ribo-somal gene restriction analysis profiles were obtained from most of these and 29 additional Xanthomonas reference strains. Rep-PCR genomic fingerprint profiles of all strains were compared with those in a large Xanthomonas database using computer-assisted analysis. Rep-PCR ge-nomic fingerprinting facilitated the characterization and discrimination of X. translucens, including the pathovars arrhenatheri, graminis, phlei, phleipratensis, and poae, as well as a number of strains received as X. translucens pv. cerealis. Strains received as pathovars hordei, secalis, translucens, undulosa, and other cerealis strains were grouped in two subclusters that correspond to the recently redefined pathovars X. trans-lucens pvs. undulosa and translucens. All 33 novel isolates from ornamental asparagus (tree fern; Asparagus virgatus) were identified as X. translucens pv. undulosa. Moreover, a unique amplified small subunit ribosomal gene MspI/AluI restriction profile specific for all X. translucens strains tested, including those pathogenic to asparagus, allowed discrimination from all other Xanthomonas spp. Although phage tests were inconclusive, the classification of the asparagus strains within the X. translucens complex was supported by pathogenicity assays in which all the isolates from ornamental asparagus induced watersoaking on wheat. Surprisingly, several X. translucens reference strains affected asparagus tree fern as well. That the novel asparagus isolates belong to X. translucens pv. undulosa is extraordinary because all hosts of X. translucens pathovars described to date belong only to the families Gramineae and Poaceae, whereas asparagus belongs to the phylogenetically distant family Liliaceae.  相似文献   

18.
New rapid diagnostic methods are urgently needed to discriminate the quarantine pathogen Ralstonia solanacearum (Rs) race 3 biovar 2 (R3B2) from other populations of Rs that lack the adaptation to cause bacterial wilt disease in temperate regions. We used an in silico bioinformatic approach to identify several genome sequences potentially specific to R3B2 strains. Primer sets were designed to PCR-amplify sequences in these regions, and four sets were ultimately shown to be >99% accurate for detection of R3B2 strains. On the basis of these results, several primers were designed to enable development of a loop-mediated isothermal amplification assay that was rapid, technologically simple, and essentially 100% accurate for identification of R3B2 when applied to a comprehensive collection of geographically diverse Rs strains. We fortuitously found that a sequence in one of the “R3B2-specific” regions has ~90% identity to a sequence present in strains of the blood disease bacterium (BDB), a member of the Rs species complex that infects banana. Alignments of these sequences allowed design of a second PCR primer set that proved 100% accurate for identification of BDB strains when tested on the 22 BDB strains available to us. These results demonstrate the power of in silico genomic subtraction for rapid identification of population-specific DNA sequences and for the development of simple, reliable detection methods for Rs subpopulations.  相似文献   

19.
我国植物青枯菌菌株的遗传多样性和组群划分   总被引:14,自引:0,他引:14  
 采用15条随机引物对我国11个省(市、区)6种不同寄主植物的43个青枯菌代表性菌株和4个国外青枯菌菌株,进行了PCR扩增.引物OPB11、OPA15、OPE1和OPZ10对上述所有菌株扩增获得了相似的产物电泳图谱,分别具1~5条谱带不等;引物OPB7、OPA10和OPF1对马铃薯菌株获得了相同的产物图谱,但对其它寄主菌株的产物间有明显差别;引物OPA14、OPC,6、OPG14、OPF5、OPK14、OPK20和OPK17对于不同菌株的扩增产物多态性很强.供试菌株被聚类为2个组群,即组群A和组群B.组群A中又可分为7个亚组(A1、A2、A3、A4、A5、A6、A7),其中A1含有2个类型(A1-1、A1-2);组群B中也可分为2个亚组(B1、B2),其中B1含有3个类型(B1-1、B1-2、B1-3),B2也含有3个类型(B2-1、B2-2、B2-3).RAPD组群A中包含了27个来自我国不同地区的马铃薯菌株,主要是3号小种、生化变种2;组群B中含有20个来自不同地区、不同寄主的菌株,分属于其它不同的小种和生化变种.研究结果表明,我国青枯菌菌株RAPD组群的划分与菌株的地理来源关系不大,而与寄主来源有明显相关性.此外,通过对我国青枯菌菌株组群进行同源性PCR分析表明,来源自马铃薯的3号小种菌株属于美洲分支"Americanmm",而来自其它寄主的青枯菌1号、5号小种菌株属于亚洲分支"Asiaticum",与本研究RAPD组群A和组群B的划分是一致的.  相似文献   

20.
Choy sum (Brassica rapa var. parachinensis), leafy mustard (Brassica juncea) and pak choi (B. rapa var. chinensis) are highly nutritious components of diets in Taiwan and other Asian countries, and bacterial black rot caused by Xanthomonas campestris pv. campestris (Xcc) is a major biotic constraint in these crops. As very little was known about the Xcc strains from these crops in these regions, including their cross‐pathogenicity and aggressiveness on different hosts, Xcc strains were obtained from cabbage (Brassica oleracea var. capitata), choy sum, leafy mustard and pak choi crops in Taiwan. Two previously published PCR‐based assays reliably distinguished the Xcc strains from other Xanthomonas species and subspecies. Phylogenetic analysis based on repetitive sequence‐based PCR assays placed the Xcc strains in a clade distinct from other Xanthomonas species, and also showed host specificity. Although all of the Xcc strains from the different host species were pathogenic on all five Brassica test species in both a detached leaf assay and an intact plant assay, in the intact plant assay they showed differences in virulence or aggression on the different test hosts. The Xcc strains from leafy mustard and pak choi were consistently highly aggressive on all the test host genotypes, but the strains from choy sum and cabbage were less aggressive on leafy mustard and choy sum. The intact plant assay proved more discriminating and reliable than the detached leaf assay for comparing the aggressiveness of Xcc strains on different host genotypes, and so, with the new Xcc strains isolated in this study, will be useful for screening leafy brassica germplasm accessions for resistance to black rot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号