首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 通过Tn5诱变技术,分离了植物青枯菌生理小种1号、3号的胞外蛋白输出功能丧失突变体。由于Tn5在其基因组单一的eep位点的插入,突变体失去了向培养滤液分泌产生胞外酶和胞外蛋白质的能力。用碱性磷酸酯酶基因PhoA作为报导基因,研究这些胞外蛋白穿越突变体细胞内膜,结果表明,这些胞外蛋白质可以穿过其内膜,但失去了穿越其外膜的能力。胞外多糖在植物体内和体外的产生没有受到eep基因位点突变的影响。该突变体失去了对番茄植株的致萎能力。  相似文献   

2.
Cauliflower (Brassica oleracea var. botrytis subvar. cauliflora) is susceptible to wilt caused by Verticillium dahliae but broccoli (B. oleracea var. italica subvar. cyamosa) is not. Infection of broccoli and cauliflower by a green fluorescent protein-expressing isolate of V. dahliae was examined using epifluorescence and confocal laser-scanning microscopy to follow infection and colonization in relation to plant phenology. Plant glucosinolate, phenolic, and lignin contents were also assayed at 0, 4, 14, and 28 days postinoculation. V. dahliae consistently infected and colonized the vascular tissues of all cauliflower plants regardless of age at inoculation, with the pathogen ultimately appearing in the developing seed; however, colonization decreased with plant age. In broccoli, V. dahliae infected and colonized root and stem xylem tissues of plants inoculated at 1, 2, or 3 weeks postemergence. However, V. dahliae colonized only the root xylem and the epidermal and cortical tissues of broccoli plants inoculated at 4, 5, and 6 weeks postemergence. The frequency of reisolation of V. dahliae from the stems (4 to 22%) and roots (10 to 40%) of mature broccoli plants was lower than for cauliflower stems (25 to 64%) and roots (31 to 71%). The mean level of aliphatic glucosinolates in broccoli roots was 6.18 times higher than in the shoots and did not vary with age, whereas it was 3.65 times higher in cauliflower shoots than in the roots and there was a proportional increase with age. Indole glucosinolate content was identical in both cauliflower and broccoli, and both indole and aromatic glucosinolates did not vary with plant age in either crop. Qualitative differences in characterized glucosinolates were observed between broccoli and cauliflower but no differences were observed between inoculated and noninoculated plants for either broccoli or cauliflower. However, the phenolic and lignin contents were significantly higher in broccoli following inoculation than in noninoculated broccoli or inoculated cauliflower plants. The increased resistance of broccoli to V. dahliae infection was related to the increase in phenolic and lignin contents. Significant differential accumulation of glucosinolates associated with plant phenology may also contribute to the resistant and susceptible reactions of broccoli and cauliflower, respectively, against V. dahliae.  相似文献   

3.
为明确海洋细菌解淀粉芽胞杆菌BA-3在兰花根际的定殖特性,本研究采用抗生素标记法筛选出对利福平和卡那霉素稳定的菌株BA-3-K。平板对峙试验证明,菌株BA-3-K对兰花茎腐病抑菌率达86.91%,与原始菌株BA-3抑菌率87.69%无明显差异。采用灌根法和涂茎法证实了标记菌株BA-3-K能在兰花植株体内定殖达60 d以上。灌根处理表明,生防菌BA-3-K的定殖数量为土壤>根>茎,呈先升后降的趋势,第21d在根部和茎部达到最大分别为2.54×10^5和1.47×10^5cfu/g,在土壤中第15d达到最大6.50×10^5cfu/g,但叶部未检测到标记菌株BA-3-K;涂茎处理生防菌的定殖量茎>叶,第17 d在茎部达到最大2.33×10^5cfu/g,随后呈下降趋势,根部和土壤未检测到标记菌株BA-3-K;通过扫描电镜定性观察,发现BA-3-K可在植株茎部定殖。盆栽试验表明,菌株BA-3-K施用后,根际土壤中细菌、真菌和放线菌的数量明显高于对照处理。本研究表明海洋细菌BA-3有较强的定殖能力,具有良好的应用价值。  相似文献   

4.
Gnomonia fragariae is a poorly studied ascomycete, which was recently demonstrated to be a cause of severe root rot and petiole blight of strawberry. The pathogen was genetically transformed with the GFP as a vital marker and hygromycin resistance gene. Several stable transformants were obtained, which did not differ in their phenotype from the wild type isolate. Using one of the GFP-tagged isolates the infection process and colonization of roots and petioles of host plant by the pathogen were studied. Fluorescence microscopy examinations of the inoculated plants at different time points showed that plant infection occurs 24 h after inoculation and intensively continues during first 3 days. The specific penetration sites on epidermal cells and preferences in colonization for certain root and petiole tissues were observed. The pathogen intensively colonized and destroyed cortex of roots and petioles and spread rapidly longitudinally within intercellular spaces. The petioles were colonized by the hyphae, which grew mostly in the intracellular spaces of the cortical cells while in the roots the intracellular growth of hyphae occurred only in the later stages of infection. The fungus was also capable to infect the vascular tissues of petioles although these were not the primary tissues colonized by the pathogen. The mature ascomata were formed on the infected petiole bases several weeks after the inoculation. This study presents a genetic transformation method for Gnomonia fragariae and it demonstrates details on infection process and colonization of root, crown and petiole tissues of strawberry by the pathogen.  相似文献   

5.
为了探讨具生防作用的植物内生细菌在辣椒体内的定殖动态与其防治辣椒疫病的关系,采用对峙培养法和盆栽苗防效法筛选生防菌株,依据菌体形态、生理生化性质和16SrDNA序列鉴定菌种,用抗利福平标记研究菌株在辣椒苗中的定殖动态,在同时接入植物内生细菌和灌根接种辣椒疫霉菌的条件下分析生防菌株的定殖数量与防效的关系。结果表明,菌株G9、R15和J13对辣椒疫病防效最好,经鉴定均为荧光假单胞菌Pseudomonasfluorescens。菌株G9和R15在辣椒根部定殖量高于菌株J13;定殖周期均在30-40d,呈“先增后减”的变化趋势;菌株G9和R15在接种第15d时定殖量最高,菌株J13在根、茎和叶中定殖量达到最高的天数分别为第9、15和15-20d,定殖数量的变化为根〉茎〉叶。菌株G9定殖量达到9.73×10^5cfu·g-1时辣椒疫病的防效达到100%,保持该数量的时间约6d;菌株R15定殖量达到6.30×10^5cfu·g-1以上时对辣椒疫病的防效达到100%,保持该数量的时间约14d。研究结果展现了植物内生细菌在辣椒疫病生物防治上的应用潜力,为制定植物内生细菌防治辣椒疫病的施用技术提供了科学依据。  相似文献   

6.
内生菌B47的定殖能力及其对番茄青枯病的防治作用   总被引:11,自引:4,他引:11  
从番茄茎分离的内生枯草芽孢杆菌菌株B47对番茄青枯病有较好的防治作用,利用该菌株的抗链霉素突变菌株,研究其在土壤和番茄植株根、茎中的定殖能力及其对番茄青枯病的防治作用。结果表明,枯草芽孢杆菌菌株B47可在土壤和番茄植株中定殖。B47施到土壤中后的15~45天,其数量逐步增加,45天后,其数量逐步下降。B47在土壤中的定殖能力随土壤的种类和土壤的处理情况而异。施入菜地土后的第45天,B47在非灭菌土中的数量是9.91×105cfu/g土壤干重,而在灭菌土中的数量是9.84×107cfu/g土壤干重。接种后,番茄植株根和茎中的B47数量,从苗期到结果期逐渐增加,但到了成熟期呈下降趋势。B47和番茄青枯病菌混合施入土壤后,随B47的数量增加番茄青枯病菌的数量显著降低。当番茄植株根和茎中B47的含量分别为1.17×104cfu/g鲜重和3.33×104cfu/g鲜重时,接种番茄青枯病菌后的第20天,对番茄青枯病的防治效果达79.79%。  相似文献   

7.
ABSTRACT Field-grown winter wheat was inoculated with a beta-glucuronidase-transformed isolate of Cephalosporium gramineum in two field seasons to elucidate the mode of infection in resistant and susceptible cultivars. Colonization of viable root epidermis and cortical cells occurred as soon as 15 days postinoculation and the pathogen was found in the vascular tissues by 20 days postinoculation, well before freezing soil temperatures occurred. Penetration occurred directly through the root epidermis and through wounds adjacent to emerging secondary roots. The pathogen also penetrated through root cap cells and colonized meristematic tissues near root tips to gain access to the vascular system. Lower stem base colonization was observed where the pathogen penetrated directly through the epidermis, wounds, or senescent tissues. Appressorium-like structures, which appeared to aid penetration of cell walls, were often found within cells of both roots and stems after initial colonization. The mechanisms of resistance were not apparent, but less colonization occurred in resistant than in susceptible cultivars.  相似文献   

8.
ABSTRACT Initial infection processes and the subsequent colonization of leaves and young stems of peach by Tranzschelia discolor were studied. On leaves where multiple disease cycles of peach rust occur during the growing season, urediniospores germinated after 4 h of wetness. Germ tubes became septate and formed appressoria only over leaf stomata beginning 18 h after inoculation. No appressoria, however, formed over stomata of positive replicas of leaf surfaces indicating nonthigmotropic responses of germ tubes. On young, primary-growth stems (ca. 8 weeks old), stomata were mostly closed, less frequent than on leaves, and recessed from the surface of the cuticle of the epidermis. Although appressoria formation was not observed on inoculated stems, germ tube growth of urediniospores was directional toward stomata. Penetration of stem tissue is apparently a less common event that was reflected by a lower occurrence of stem lesions compared with that of leaf lesions in our potted plant inoculation studies and previous field observations. Still, stem lesions are important as sources of primary inoculum each spring and were reproduced in this study for the first time. Fungal colonization of leaves and stems was subepidermal-intercellular and haustoria were commonly found within mesophyll or cortical cells, respectively. No fungal colonization was observed in cambial stem tissue. Vascular tissue was also not colonized and delimited lesions in leaves and stems. Morphological host responses were not observed in infections on either leaves or young stems. In older stems (>32 weeks old), however, the infection was delimited by a wound periderm after uredinial formation. Furthermore, with continued secondary growth, stems recovered and fungal lesions became part of the bark tissue of woody branches. Thus, the fungus must infect primary-growth branches each year to establish stem lesions.  相似文献   

9.
为探索防治玉米蚜的新方法,从山东省玉米主产区玉米植株上分离获得61株内生菌菌株,室内测定了对玉米蚜的防治效果,筛选出高效菌株,并测定了菌株对玉米生长的影响及在玉米植株内的定殖率。结果显示,白僵菌属菌株YC1和链格孢属菌株GX5对玉米蚜的防治效果最好,均为74.80%,无虫株率分别为32.22%和55.64%;接入菌株YC1和GX5后玉米各组织的生物量均大于对照,菌株YC1处理组的根、茎、叶干重分别增长了9.64%、15.71%和20.51%,菌株GX5处理组的根、茎、叶干重分别增长了3.88%、8.16%和9.14%;菌株GX5在玉米根、茎、叶中的定殖率可以达到44.23%以上,菌株YC1在玉米茎中的定殖率可以达到63.44%,有较大的应用价值。  相似文献   

10.
Agrobacterium tumefaciens was isolated from stem tumors of several rose cultivars showing that the bacterium is the causal agent of aerial galls in rose plants. No differences were observed in the characteristics of the Agrobacterium isolates from crown or aerial galls. Stem inoculation of ten rose cultivars showed that all of them were susceptible to A. tumefaciens but differences in the size of the resulting tumors were observed. The movement of A. tumefaciens in rose plants was demonstrated using two wild type strains and two antibiotic resistant mutants. Three months after inoculation, the inoculated strains were recovered in the roots, crown and below and above the inoculation site but low numbers of pathogenic Agrobacterium cells were isolated. New tumors appeared in 5% of the noninoculated wounds. A. tumefaciens was isolated from the stem at different distances from the tumor in naturally infected plants. In symptomless commercial plants, the isolation from the roots, crown and at different stem levels demonstrated the existence of systemic and latent infections in rose. Direct isolation using a nonselective and selective media with or without a previous enrichment step were efficient methods for isolating tumorigenic Agrobacterium from the different parts of rose plants.  相似文献   

11.
PG1和PG6微生物在小麦根际的定殖对植物生长的影响   总被引:1,自引:0,他引:1  
将对植物生长有促进作用的二个菌群PG1和PG6进行分离纯化,首先考察其中的单菌株生态学特性,然后在无菌条件下考察PG1和PG6菌群在沙-土试管中在小麦根际的定殖能力,并对根段显微观测以确定其定殖方式和密度及对小麦根形态的影响。同时对PG1和PG6微生物抗药标记,考察其温室条件下在土壤中的存活能力及对小麦根际土著细菌数量的影响。  相似文献   

12.
The vascular colonization pattern of Fusarium oxysporum f.sp. lycopersici races 0 and 1 in tomato was studied in five susceptible and five resistant cultivar–fungus combinations during a 26-day period after inoculation by root immersion. Propagules spread discontinuously along the stems in all five cultivars 1 day after inoculation, irrespective of cultivar resistance. Five days later the fungus was limited to the stem bases in all cultivars. Between the fifth and 12th days, stem colonization by the fungus stopped in all cultivar–race combinations. Thereafter, the situation remained stable in resistant combinations, with inoculum distributed discontinuously, and no disease symptoms were apparent. By contrast, in the susceptible combinations a gradual upward colonization of the stems was seen such that fungal distribution was no longer discontinuous and disease symptoms appeared. These results suggest that a fungal 'incubation' period in the base of the vascular system is required before a secondary invasion of tissues occurs in susceptible genotypes. The slope of the regression line fitted between the height reached by the fungus up the stem ( y ) and the time after inoculation ( x ) provides a measure of the horizontal (polygenic) resistance in tomato cultivars  相似文献   

13.
为示踪青枯雷尔氏菌Ralstonia solanacearum无致病力菌株FJAT1458在番茄植株及根际土壤中的定殖特性,采用电击法对菌株FJAT1458进行荧光素酶(luciferase,LUC)基因标记,并于室内采用生测法测定标记菌株的生物学特性、遗传稳定性、致病力及在番茄植株和根际土壤中的定殖能力。结果表明,成功将luc基因整合至无致病力菌株FJAT1458染色体上,标记菌株FJAT1458-LUC发出强烈的荧光,且PCR扩增出1 612 bp的luc基因片段;与野生型菌株FJAT1458相比,标记菌株FJAT1458-LUC的生长明显滞后,培养8h之后标记菌株FJAT1458-LUC的OD600nm值均小于野生型菌株FJAT1458;且标记菌株FJAT1458-LUC连续传代20次后菌体浓度显著增加,发光菌体比例显著降低,LUC活性和luc基因表达量均随着传代数增加而显著降低;标记前、后菌株FJAT1458的弱化指数分别为0.90和0.89,且接种番茄植株30 d均未引起植株发病。标记菌株FJAT1458-LUC能在番茄根际土壤、根及茎中定殖,定殖数量呈...  相似文献   

14.
ABSTRACT Observations were made of the ultrastructure of infection and colonization of leaves of a susceptible maize inbred by Colletotrichum graminicola and by a C. graminicola pathogenicity mutant. The mutant causes no symptoms on either maize leaves or stalks. Prior evidence suggested that it is deficient in production of signal peptidase, responsible for cleavage of signal peptides from proteins destined for transport through the endoplasmic reticulum. There was no significant difference in the process of infection or colonization by the mutant and wild-type strains up to 48 h after inoculation. Both the mutant and the wild type produced globose, melanized appressoria within 24 h after inoculation on the host surface. By 36 h, both strains had penetrated the host epidermal cells directly. The host cells frequently formed papillae in response to appressoria, but these were not usually successful in preventing fungal ingress in either case. Penetration was followed by formation of irregularly shaped, swollen infection hyphae. Infection hyphae of both strains grew biotrophically for a relatively short time (less than 12 h). One or more hyphal branches was produced from each infection hypha, and these invaded adjacent mesophyll cells. Both strains of the fungus grew cell-to-cell, setting up new biotrophic interactions in each cell, between 36 and 48 h after inoculation. Papillae were frequently formed by the mesophyll cells, but these were not successful in preventing fungal ingress. The first noticeable difference between the mutant and the wild type was related to their interaction with mesophyll cells. Cells invaded by the wild type died relatively quickly, whereas those infected by the mutant appeared to survive longer. The most dramatic difference between the mutant and wild type occurred when the mutant completely failed to make a transition to necrotrophic growth, while the wild type made that switch at 48 to 72 h after inoculation. The mutant may be unable to secrete sufficient quantities of one or more proteins that are necessary to support the switch between biotrophy and necrotrophy.  相似文献   

15.
Unwounded and wounded periderm tissue of 1-year old stems of Eucalyptus marginata were infected and lesioned after 5 days'exposure to either mycelium or motile zoospores of Phytophthora cinnamomi. Lesions produced by P. cinnamomi were longer in wounded than in unwounded stems. The inclusion of non-sterile mine site soil with inocula in the unwounded treatments did not affect the rate or extent to which P. cinnamomi colonized E. marginata stem tissue. The ability of P. cinnamomi zoospores to infect unwounded suberized woody tissue of E. marginata , has important implications for mine site rehabilitation in P. cinnamomi infested areas. This is the first study to demonstrate clearly that zoospores of P. cinnamomi can infect and invade unwounded suberized tissue.  相似文献   

16.
Interactions between lettuce and a green fluorescent protein (GFP)-expressing, race 1 isolate of Verticillium dahliae, were studied to determine infection and colonization of lettuce cultivars resistant and susceptible to Verticillium wilt. The roots of lettuce seedlings were inoculated with a conidial suspension of the GFP-expressing isolate. Colonization was studied with the aid of laser scanning confocal and epi-fluorescence microscopes. Few differences in the initial infection and colonization of lateral roots were observed between resistant and susceptible cultivars. Hyphal colonies formed on root tips and within the root elongation zones by 5 days, leading to the colonization of cortical tissues and penetration of vascular elements regardless of the lettuce cultivar by 2 weeks. By 8 to 10 weeks after inoculation, vascular discoloration developed within the taproot and crown regions of susceptible cultivars well in advance of V. dahliae colonization. Actual foliar wilt coincided with the colonization of the taproot and crown areas and the eruption of mycelia into surrounding cortical tissues. Advance colonization of stems, pedicels, and inflorescence, including developing capitula and mature achenes was observed. Seedborne infection was limited to the maternal tissues of the achene, including the pappus, pericarp, integument, and endosperm; but the embryo was never compromised. Resistant lettuce cultivars remained free of disease symptoms. Furthermore, V. dahliae colonization never progressed beyond infected lateral roots of resistant cultivars. Results indicated that resistance in lettuce may lie with the plant's ability to shed infected lateral roots or to inhibit the systemic progress of the fungus through vascular tissues into the taproot.  相似文献   

17.
The biocontrol agent Pythium oligandrum (PO) can suppress bacterial wilt caused by Ralstonia solanacearum (RS) in tomato. To understand the primary biocontrol mechanisms of bacterial wilt by PO, we pretreated tomato plants with sterile distilled water or preinoculated them with PO, followed by inoculation with RS, then observed PO and RS in fixed sections of tomato tissues using a confocal laser-scanning microscope and fluorescence labeling until 14 days after the inoculation with RS. Horizontal and vertical movement of RS bacteria was frequently observed in the xylem vessels of roots and stems of tomato plants (cv. Micro-Tom) that had not been inoculated with PO. In plants that were preinoculated with PO, the movement of RS was suppressed, and bacteria appeared to be restricted to the pit of vessels, a reaction similar to that observed in resistant rootstocks. PO colonization was mainly observed at the surfaces of taproots, the junctions between taproots and lateral roots, and the middle sections of the lateral roots. PO was not observed near wound sites or root tips where RS tended to colonize. However, RS colonization was significantly repressed at these sites in PO preinoculated plants. These observations suggest that the induction of plant defense reactions is the main mechanism for the control of tomato bacterial wilt by PO, not direct competition for infection sites.  相似文献   

18.
Transmission of three strains of OMMV by an Olpidium sp. was evaluated and compared. The three strains were 1) an OMMV wild type (WT) recovered from olive trees, 2) an OMMV variant (L11) obtained after 15 serial passages of single local lesions induced in Chenopodium murale plants, and 3) a construct OMMV/OMMVL11 in which the coat protein (CP) gene replaced that of the wild type. A single-sporangial culture derived from Chinese cabbage (Brassica pekinensis) used as a bait plant grown in soil of an olive orchard, was identified as Olpidium brassicae based on the size and sequence of the generated amplicon in PCR specific tests. Each of the three virus strains was soil transmitted to cabbage roots in the absence of the fungus at similar rates of 30 to 40%. Separate plant inoculation by O. brassicae zoospores incubated with each viral strain resulted in enhanced transmission of OMMV, reaching 86% of infection whereas that of the other two strains remained practically unaffected at ca. 34%. Binding assays showed that the amount of virus bound to zoospores, estimated spectrophotometrically, was 7% in the case of OMMV, and practically nil in the case of the other two viral strains. Substitution of the coat protein (CP) gene of OMMV by that of the OMMV L11 strain, drastically reduced viral transmissibility in the presence of zoospores to the level of that observed in their absence. Our data shows that OMMV soil transmission is greatly enhanced by O. brassicae zoospores and that the viral CP plays a significant role in this process, most likely by facilitating virus binding and later entrance into the host plant roots.  相似文献   

19.
ABSTRACT Seed treatment with Trichoderma harzianum strain T22, which results in colonization of plant roots but little or no colonization of shoots or leaves, had substantial effects on growth of and disease expression in maize inbred line Mo17. Shoots and roots of 10-day-old seedlings grown in a sandy loam field soil were larger (roots were nearly twice as long) in the presence of T22 than in its absence. Both main and secondary roots were increased in size and area and the root hair area was greater with T22. However, root hair area per unit of root length was greater in control plants. Increased growth probably was due to direct stimulation of plant growth in addition to effects from biological control of deleterious microflora. Seedlings of Mo17 grown in autoclaved or mefenoxamtreated sandy loam field soil were larger than those produced in untreated soil. However, seedlings grown in the presence of T22, either in treated or untreated soil, were larger than those produced in its absence. Infestation of soil with Pythium ultimum had little effect upon growth of Mo17. The presence of T22 increased protein levels and activities of beta-1,3 glucanase, exochitinase, and endochitinase in both roots and shoots, even though T22 colonized roots well but colonized shoots hardly at all. With some enzymes, the combination of T22 plus P. ultimum gave the greatest activity. Plants grown from T22-treated seed had reduced symptoms of anthracnose following inoculation of leaves with Colletotrichum graminicola, which indicates that root colonization by T22 induces systemic resistance in maize.  相似文献   

20.
McGarvey JA  Denny TP  Schell MA 《Phytopathology》1999,89(12):1233-1239
ABSTRACT One susceptible and two resistant cultivars of tomato were tested for differences in infection by Ralstonia solanacearum and for the subsequent multiplication, colonization, and production of the wilt-inducing virulence factor, exopolysaccharide I (EPS I). Bacterial ingress into the taproot was fastest in the susceptible cv. Marion, followed by the resistant cvs. L285 (fivefold slower) and Hawaii 7996 (15-fold slower). Once inside the taproot, R. solanacearum colonized, to some extent, almost all regions of the resistant and susceptible plants. However, colonization occurred sooner in the susceptible than in the resistant cultivars, as measured by viablecell counts of bacteria in the midstems. Rates of multiplication and maximum bacterial cell densities were also greater in the susceptible than in the resistant cultivars. Growth experiments utilizing xylem fluid from infected and uninfected plants indicated that neither antimicrobial activities nor reduced levels of growth-supporting nutrients in the xylem fluids were responsible for the reduced bacterial multiplication in the resistant cultivars. Quantification of EPS I in the infected plants, using an enzyme-linked immunosorbent assay, revealed that the bacterial populations in the susceptible cultivar produced greater amounts of EPS I per plant than those in the resistant cultivars. Immunofluorescence microscopy using antibodies against either EPS I or R. solanacearum cells revealed that bacteria and EPS I were distributed throughout the vascular bundles and intercellular spaces of the pith in the susceptible cultivar, whereas in the resistant cultivars, bacteria and EPS I were restricted to the vascular tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号