首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT Genetic variation within a worldwide collection of 208 isolates of Fu-sarium oxysporum f. sp. cubense, representing physiological races 1, 2, 3, and 4 and the 20 reported vegetative compatibility groups (VCGs), was analyzed using modified DNA amplification fingerprinting. Also characterized were 133 isolates that did not belong to any of the reported VCGs of F. oxysporum f. sp. cubense including race 3 isolates from a Heliconia species and isolates from a symptomatic wild banana species growing in the jungle in peninsular Malaysia. The DNA fingerprint patterns were generally VCG specific, irrespective of geographic or host origin. A total of 33 different genotypes were identified within F. oxysporum f. sp. cu-bense; 19 genotypes were distinguished among the isolates that belonged to the 20 reported VCGs, and 14 new genotypes were identified among the isolates that did not belong to any of the existing VCGs. DNA fingerprinting analysis also allowed differentiation of nine clonal lineages within F. oxysporum f. sp. cubense. Five of these lineages each contained numerous closely related VCGs and genotypes, and the remaining four lineages each contained a single genotype. The genetic diversity and geographic distribution of several of these lineages of F. oxysporum f. sp. cubense suggests that they have coevolved with edible bananas and their wild diploid progenitors in Asia. DNA fingerprinting analysis of isolates from the wild pathosystem provides further evidence for the coevolution hypothesis. The genetic isolation and limited geographic distribution of four of the lineages of F. oxysporum f. sp. cubense suggests that the pathogen has also arisen independently, both within and outside of the center of origin of the host.  相似文献   

2.
Zhou XG  Everts KL 《Phytopathology》2007,97(4):461-469
ABSTRACT Eighty-eight isolates of Fusarium oxysporum f. sp. niveum, collected from wilted watermelon plants and infested soil in Maryland and Dela-ware, were characterized by cross pathogenicity to muskmelon, race, and vegetative compatibility. Four isolates (4.5%) were moderately pathogenic to >/=2 of 18 muskmelon cultivars in a greenhouse test, and one representative isolate also was slightly pathogenic in field microplots. The four isolates all were designated as race 2, and were in vegetative compatibility group (VCG) 0082. Of the 74 isolates to which a VCG could be assigned, 41 were in VCG 0080, the VCG distributed most widely; 27 were in VCG 0082, and were distributed in half of the 20 watermelon fields surveyed; and 6 were in the newly described VCG 0083, and were restricted to three fields. Among the isolates in VCG 0080, 8 were designated as race 0, 21 as race 1, and 12 as race 2. Of the isolates in VCG 0082, 6 were designated as race 0, 11 as race 1, and 10 as race 2. All isolates in VCG 0083 were designated as race 2. Isolates from more than one race within the same VCG or isolates from more than one VCG were recovered from single plants and fields. No differences in aggressiveness on differential watermelon cultivars were observed among isolates from different VCGs of the same race. A diverse association between virulence and VCG throughout the Mid-Atlantic region suggests that the pathotypes of F. oxysporum f. sp. niveum may be of local origin or at least long existent in the region.  相似文献   

3.
Chen Y  Wang JX  Zhou MG  Chen CJ  Yuan SK 《Phytopathology》2007,97(12):1584-1589
ABSTRACT Monoconidial isolates of 33 carbendazim-sensitive isolates and 31 carbendazim-resistant isolates of Fusarium graminearum were selected from three regions of China for vegetative compatibility group (VCG) analysis. A total of 213 and 224 nit mutants were recovered from the 33 sensitive and the 31 resistant isolates, respectively. Of all the nit mutants, the frequency of the different phenotypes was 44.6, 46.5, 5.7, and 3.2% for nit1, nit3, nitM, and nitA, respectively. VCG analysis identified 30 different VCGs among the 33 sensitive- and the 31 carbendazim-resistant isolates, with VCG diversity 0.91 and 0.97, respectively. Both, a carbendazim-sensitive and a -resistant isolate from the same field belonged to the same VCG. In all then, a total of 59 VCGs were identified among the 64 isolates with an overall VCG diversity 0.92. Direct hyphal fusion was observed in six pairs of vegetatively compatible complements, which is evidence of heterokaryon formation. It was hypothesized that carbendazim resistance could not be transferred by hyphal fusion or there is a small chance to be transferred between two compatible isolates. Three stable sexual recombinants of F. graminearum were randomly chosen from each of the three genetic crosses to study their biological properties. There were no significant differences in mycelial linear growth and pathogenicity between recombinants and their parents, but they differ in sporulation ability and capacity to produce perithecia. We concluded that sexual recombination presumably played a role in the development of carbendazim resistance under field conditions.  相似文献   

4.
Fusarium corm rot of saffron (Crocus sativus L.), incited by Fusarium oxysporum f. sp. gladioli, causes severe yield losses in Italy. Major symptoms during flowering (October–November) include yellowing and wilting of shoots, basal stem rot and corm rot. Sixty-four isolates of F. oxysporum f. sp. gladioli, obtained from infected saffron crops located in Italy (Abruzzi, Tuscany and Umbria) and in Spain, were characterized by pathogenicity and vegetative compatibility. Chlorate-resistant, nitrate-nonutilizing (nit) mutants were used to determine vegetative compatibility among the isolates of the pathogen with the aim of examining the genetic relatedness among populations from different locations. All the isolates belonged to vegetative compatibility group 0340. Since saffron shares susceptibility to F. oxysporum f. sp. gladioli with other ornamental plants of the Iridaceae (Crocus, Gladiolus, Iris and Ixia), it is likely that a clone of the pathogen (VCG 0340) was introduced with other hosts and is responsible for the disease outbreak observed on saffron in Italy. Alternatively, or additionally, the clone of F. oxysporum f. sp. gladioli causing disease on saffron in other countries may have spread to the saffron fields in Italy through the import and dispersal of infested propagation material.  相似文献   

5.
Seventy-nine single-spore isolates of Fusarium udum, the causal agent of wilt disease of pigeonpea, from Kenya, India and Malawi were characterized according to their cultural characteristics, pathogenicity and vegetative compatibility group (VCG). The isolates exhibited high variation in pathogenicity on a wilt-susceptible pigeonpea variety, and in mycelial growth and sporulation on potato dextrose agar medium. The 79 isolates were categorized into two virulence groups, two groups of radial mycelial growth and four groups of sporulation. Radial mycelial growth showed a moderate negative correlation (r = –0.40; P = 0.01) with sporulation. However, mycelial growth and sporulation had no correlation with virulence. Pairings between complementary nitrate non-utilizing (nit) mutants of F. udum generated on chlorate containing minimal medium revealed that all the isolates belonged to a single VCG (VCG 1) with two subgroups, VCG 1 I and VCG 1 II. Vegetative compatibility was independent of cultural characteristics and pathogenicity. This is the first report of vegetative compatibility in F. udum.  相似文献   

6.
Fusarium wilt of tobacco could be caused by Fusarium oxysporum f. sp. batatas or f. sp. vasinfectum since f. sp. nicotianae was rejected because there was no evidence of isolates specific to tobacco. Forty isolates of F. oxysporum from soil and plants from tobacco fields in Extremadura (south-western Spain) were characterized by pathogenicity on burley and flue-cured tobacco, for vegetative compatibility group (VCG), and by random amplified polymorphic DNA (RAPD). Isolates from burley were identified as race 1 of F. oxysporum f. sp. batatas based on pathogenicity on tobacco, sweet potato and cotton, and those from flue-cured as race 2. Most isolates from soil were heterokaryon self-incompatible (HSI) and the remaining isolates from soil and tobacco were grouped into four VCGs: VCG 1 (5 isolates from burley), VCG 2 (17 isolates from flue-cured and 4 from soil), VCG 3 (2 isolates from flue-cured) and VCG 4 (2 isolates from soil). This is the first report of the two races and VCGs of F. oxysporum f. sp. batatas in Spain. Analysis of RAPD revealed two clusters (C-I and C-II) related to race and VCGs. C-I included race 1 (VCG 1) isolates from burley and nonpathogenic (VCG 4 or HSI) isolates from soils. C-II included nonpathogenic (VCG 2) and race 2 (VCG 2 or VCG 3) isolates from flue-cured. VCG and RAPD markers were effective in distinguishing race 2 from race 1, suggesting that there are two genetically differentiated groups of F. oxysporum f. sp. batatas on tobacco in Extremadura.  相似文献   

7.
8.
Vegetative compatibility groups of a collection of 71 Greek Verticillium dahliae isolates obtained from cotton plants were tested. Nit mutants were generated from single spore wild strains by selecting chlorate-resistant sectors on minimal medium amended with potassium chlorate, 25g/l. These mutants were tested against tester strains from the USA and Greece of the previously described VCGs 1, 2, 3 and 4. Forty-six of 71 isolates belonged to VCG2, because they were able to anastomose with the testers of this group, two isolates belonged to VCG4 and one to VCG1, while the 22 remaining strains could not be assigned to any of the identified VCGs. Our data demonstrated that wilt of cotton is caused only by V. dahliae in Greece, and VCG2 is the most commonly detected VCG. Some strains were found to be more virulent to cotton than other strains from the same VCG. This is the first report of VCG1 of Verticillium in Greece.  相似文献   

9.
Gibberella zeae (anamorph Fusarium graminearum) is the main pathogen causing Fusarium head blight of wheat in Argentina. The objective of this study was to determine the vegetative compatibility groups (VCGs) and mycotoxin production (deoxynivalenol, nivalenol and 3-acetyl deoxynivalenol) by F. graminearum populations isolated from wheat in Argentina. VCGs were determined among 70 strains of F. graminearum isolated from three localities in Argentina, using nitrate non-utilizing (nit) mutants. Out of 367 nit mutants generated, 41% utilized both nitrite and hypoxanthine (nit1), 45% utilized hypoxanthine but not nitrite (nit3), 9% utilized nitrite but not hypoxanthine (NitM) and 5% utilized all the nitrogen sources (crn). The complementations were done by pairing the mutants on nitrate medium. Fifty-five different VCGs were identified and the overall VCG diversity (number of VCGs/number of isolates) averaged over the three locations was 0.78. Forty-eight strains were incompatible with all others, thus each of these strains constituted a unique VCG. Twenty-two strains were compatible with other isolates and were grouped in seven multimembers VCGs. Considering each population separately, the VCG diversity was 0.84, 0.81 and 1.0 for San Antonio de Areco, Alberti and Marcos Juarez, respectively. Toxin analysis revealed that of the 70 strains of F. graminearum tested, only 90% produced deoxynivalenol, 10% were able to produce deoxynivalenol and very low amounts of 3-acetyldeoxynivalenol. No isolate produced nivalenol. The results indicate a high degree of VCG diversity in the F. graminearum populations from wheat in Argentina. This diversity should be considered when screening wheat germplasm for Fusarium head blight resistance.  相似文献   

10.
瓜类尖孢镰刀菌的营养体亲和群研究   总被引:1,自引:0,他引:1  
 应用营养亲和性方法研究了尖孢镰刀菌菌株抗氯酸盐突变体和nit突变体的诱发规律及分布特性,以及菌株营养体亲和群(VCG)的划分。研究表明,不同寄主(黄瓜、甜瓜和西瓜)分离的尖孢镰刀菌菌株形成的抗氯酸盐突变体数目差异不显著,平均为每个接种点产生0.89~0.98个;但寄主不同部位(根部、茎基部和茎中部)分离的菌株间差异显著,形成的数目分别为1.27、0.75及0.76个。菌株产生的nit1突变体比例(75.40%)显著高于nitM突变体比例(13.17%);nit1突变体数目会因菌株的寄主及菌株寄主部位的不同而有差异,寄主为黄瓜、甜瓜和西瓜的菌株产生的比例依次为67.73%、83.71%和77.50%,根部、茎基部及茎中部分离菌株产生的比例依次为81.82%、78.48%和68.64%,而在致病菌株与非致病菌株间无显著差异,分别为74.43%和79.63%;nitM突变体数目受菌株寄主影响较小,所占比例在11.17%~13.92%之间;而在寄主不同部位分离的菌株及致病菌株与非致病菌株间差异显著,分离自茎基部的菌株所占比例最高为15.97%,茎中部菌株所占比例最低为9.87%,致病菌株与非致病菌株所占比例分别为14.08%和9.26%。供试菌株分为7个VCGs,其特点为来源于不同寄主的尖孢镰刀菌菌株互不亲和,同一寄主的致病菌株与非致病菌株均不亲和,同一寄主不同部位分离的菌株可亲和。  相似文献   

11.
ABSTRACT An epidemic of vascular wilt caused by Fusarium oxysporum f. sp. erythroxyli is currently occurring on Erythroxylum coca var. coca in the coca-growing regions of the Huallaga Valley in Peru. Random amplified polymorphic DNA (RAPD) analysis of isolates of the pathogen was undertaken to elucidate its genetic complexity, as well as to identify a specific DNA fingerprint for the pathogen. Two hundred isolates of Fusarium were collected from 10 coca-growing regions in Peru. Of these, 187 were confirmed to be F. oxysporum, and 143 of the F. oxysporum were shown to be pathogens of coca by a root-dip pathogenicity test. The pathogens could be grouped into two subpopulations based on RAPD analysis, and no polymorphism in RAPD pattern was observed among isolates of either subpopulation. Both subpopulations were present in the central Huallaga Valley, where earliest reports of the epidemic occurred. RAPD analysis could easily distinguish the isolates of F. oxysporum f. sp. erythroxyli from the nonpathogenic isolates of F. oxysporum from E. coca var. coca, indicating its utility in DNA fingerprinting.  相似文献   

12.
ABSTRACT Fusarium species can cause severe root disease and damping-off in conifer nurseries. Fusarium inoculum is commonly found in most container and bareroot nurseries on healthy and diseased seedlings, in nursery soils, and on conifer seeds. Isolates of Fusarium spp. can differ in virulence; however, virulence and colony morphology are not correlated. Forty-one isolates of Fusarium spp., morphologically indistinguishable from F. oxysporum, were collected from nursery samples (soils, healthy seedlings, and diseased seedlings). These isolates were characterized by amplified fragment length polymorphism (AFLP) and DNA sequencing of nuclear rDNA (internal transcribed spacer including 5.8S rDNA), mitochon-drial rDNA (small subunit [mtSSU]), and nuclear translation elongation factor 1-alpha. Each isolate had a unique AFLP phenotype. Out of 121 loci, 111 (92%) were polymorphic; 30 alleles were unique to only highly virulent isolates and 33 alleles were unique to only isolates nonpathogenic on conifers. Maximum parsimony and Bayesian analyses of DNA sequences from all three regions and the combined data set showed that all highly virulent isolates clearly separated into a common clade that contained F. commune, which was recently distinguished from its sister taxon, F. oxysporum. Interestingly, all but one of the nonpathogenic isolates grouped into a common clade and were genetically similar to F. oxysporum. The AFLP cladograms had similar topologies when compared with the DNA-based phylograms. Although all tested isolates were morphologically indistinguishable from F. oxysporum based on currently available monographs, some morphological traits can be plastic and unreliable for identification of Fusarium spp. We consider the highly virulent isolates to be F. commune based on strong genetic evidence. To our knowledge, this is the first reported evidence that shows F. commune is a cause of Fusarium disease (root rot and dampingoff) on Douglas-fir seedlings. Furthermore, several AFLP genetic markers and mtSSU sequences offer potential for development of molecular markers that could be used to detect and distinguish isolates of F. oxysporum nonpathogenic to conifers and highly virulent isolates of F. commune in forest nurseries.  相似文献   

13.
Fusarium wilt and crown rot of sweet basil, caused by Fusarium oxysporum f.sp. basilici (F.o.ba.), is widespread in Israel. Affected plants show a variety of symptoms, including vascular wilt as well as crown rot, and masses of macroconidia on stem surfaces. We used vegetative compatibility to determine whether F.o.ba. isolates associated with various symptoms and sources are genetically related. All 119 isolates previously described as F.o.ba., and 42 additional F. oxysporum isolates which had not been tested for pathogenicity, belonged to a single vegetative compatibility group (VCG). The various symptoms are therefore induced by a single pathogenic form which appears to be a specific clone of F. oxysporum. The isolates of F.o.ba. from Israel were vegetatively compatible with eight isolates of F.o.ba. from Italy and the USA, but not with nonpathogenic isolates of F. oxysporum from basil, or with F.o. lycopersici or F.o. radicis-lycopersici from tomato. We conclude that the population of F.o.ba. in Israel belongs to the common VCG of this pathogen described in the USA, and which includes American and Italian isolates.  相似文献   

14.
中国不同地区致病疫霉遗传多样性的RAPD分析   总被引:4,自引:0,他引:4  
 本文应用RAPD技术检测了我国主要马铃薯产区致病疫霉的遗传分化情况及不同地区菌株间的亲缘关系。用筛选出的10个随机引物对1997-2001年间采自我国9省市的82株及3株来自日本的致病疫霉DNA进行了PCR扩增,获得了79条谱带,其中多态性标记75条,占95%。根据扩增结果,运用UPGMA分析,获得了表现菌株间亲缘关系的树状图。菌株间的最大遗传距离为0.5,以距离0.3为阈值,可将供试菌株划分为10个组(RG1-10)。结果发现:A1交配型菌株群体内的差异大于A1和A2菌株群体之间的;RAPD分组与菌株的地理来源、交配型及对甲霜灵的敏感性无明显相关性。研究结果显示,来自中国北方甘肃、内蒙、吉林、黑龙江地区的菌株与一些来自云南、四川等西南地区的菌株亲缘关系相近。病原菌随种薯的迁移可能是导致这种现象的原因之一。  相似文献   

15.
One hundred and sixteen isolates of Fusarium oxysporum f. sp. lactucae obtained from 85 fields in three crisphead lettuce-producing areas in Nagano Prefecture, Japan were typed for races using differential cultivars Patriot, Banchu Red Fire and Costa Rica No. 4. They were also grouped into vegetative compatibility groups (VCGs) using complementation tests with nitrate non-utilizing (nit) mutants. Two California strains reported as F. oxysporum f. sp. lactucum, a type culture of F. oxysporum f. sp. lactucae, and 28 avirulent isolates of F. oxysporum obtained from crisphead lettuce were included for comparison. Among Nagano isolates, 66 isolates were identified as race 1, and 50 as race 2. Race 1 strains derived from Shiojiri and Komoro cities and race 2 from Kawakami village and Komoro city. All isolates of race 2 were biotin auxotrophs, and the race could be distinguished based on its requirement for biotin on minimal nitrate agar medium (MM). Pathogenic isolates were classified into two VCGs and three heterokaryon self-incompatible isolates. Strong correlations were found between race and VCG. All the race 1 strains were assigned to VCG 1 except self-incompatible isolates, and all the race 2 strains to VCG 2. The 28 avirulent isolates of F. oxysporum were incompatible with VCG 1 and VCG 2. California strains was vegetatively compatible with VCG 1, and they were assigned to race 1. Based on vegetative compatibility, these two races of F. oxysporum f. sp. lactucae may be genetically distinct, and F. oxysporum f. sp. lactucae race 1 is identical to F. oxysporum f. sp. lactucum. Received 7 May 2002/ Accepted in revised form 6 September 2002  相似文献   

16.
We screened 188 isolates of Fusarium graminearum, which originated from northwest Europe, the USA and Nepal, for genetic diversity using a sequence-characterised amplified region polymorphism (SCAR). On the basis of this analysis, 42 of the 118 isolates were selected for random amplified polymorphic DNA (RAPD) analysis. Three groups were identified, two of which, A and B, contained the isolates from Nepal, and a third, group C, contained the isolates from Europe and the USA. In pathogenicity tests on wheat and maize seedlings, group C isolates were more pathogenic than the group A and B isolates. The isolates were assigned chemotypes based on their ability to produce the trichothecene mycotoxins nivalenol (NIV) and deoxynivalenol (DON). Isolates from group A were equally likely to produce NIV or DON while group B isolates produced predominantly NIV, and group C isolates produced predominantly DON. Within group A, isolates of the two chemotypes were equally pathogenic to wheat but isolates with the NIV chemotype were significantly more pathogenic to maize. The results confirm that distinct genetic groups exist within F. graminearum and demonstrate that these groups have different biological properties, especially with respect to their pathogenicity to two of the most economically important hosts of this pathogen.  相似文献   

17.
ABSTRACT In order to elucidate the origin of Fusarium oxysporum f. sp. dianthi in Argentina, the genetic diversity among pathogenic isolates together with co-occurring nonpathogenic isolates on carnation was investigated. In all, 151 isolates of F. oxysporum were obtained from soils and carnation plants from several horticultural farms in Argentina. The isolates were characterized using vegetative compatibility group (VCG), intergenic spacer (IGS) typing, and pathogenicity tests on carnation. Seven reference strains of F. oxysporum f. sp. dianthi also were analyzed and assigned to six different IGS types and six VCGs. Twenty-two Argentinean isolates were pathogenic on carnation, had the same IGS type (50), and belonged to a single VCG (0021). The 129 remaining isolates were nonpathogenic on carnation and sorted into 23 IGS types and 97 VCGs. The same VCG never occurred in different IGS types. Our results suggest that the pathogen did not originate in the local populations of F. oxysporum but, rather, that it was introduced into Argentina. Given the genetic homogeneity within Argentinean isolates of F. oxysporum f. sp. dianthi, either IGS type or VCG can be used for the identification of the forma specialis dianthi currently in Argentina.  相似文献   

18.
Fusarium oxysporum f. sp. dianthi (Fod) causes vascular wilt, the most important carnation disease worldwide. We have analyzed vegetative compatibility in a collection of Fod isolates, obtained from both soils and carnation plants in the most important growing areas in Spain, by pairing all isolates in all possible combinations. Results showed that isolates of race 1 and race 2 were distributed among three Vegetative Compatibility Groups (VCG) which correlated with the molecular Groups previously described. Isolates of race 1 and race 2 in molecular Group I grouped in VCG 0021, isolates of race 1 type were in VCG 0022, and isolates of race 1 and race 2 in molecular Group II constituted a new VCG (002-), not previously reported. Isolates in each VCG contained the same mating type gene (MAT1-1 or MAT1-2), with the exception of the new VCG 002- that contained both idiomorphs. This work identifies a new VCG in Fod populations and reports for the first time the presence of isolates of race 1 and race 2 in the same VCG.  相似文献   

19.
In a study of vegetative compatibility in Verticillium dahliae in the Netherlands, a collection of 45 isolates including representatives from woody hosts, several horticultural crops and from the soil of potato fields was examined. In addition an effort was made to compare vegetative compatibility groups (VCGs) from different countries. The results of this study indicate that VCG diversity in V. dahliae in the Netherlands is limited. Only two VCGs were detected: VCG NL-I and VCG NL-II. The former is the predominant VCG for isolates from tree hosts. However, Verticillium wilt in trees can be caused by isolates from both VCGs. It is suggested that the predominance of VCG NL-I in tree hosts is the result of the origin of the tree and the cropping history of its growing site, rather than trees being preferential hosts for isolates from this VCG. Comparison of VCG testers from the Netherlands, from several other European countries and from the USA show that in Europe two major VCGs are present. The first one, including NL-I, is compatible with USA VCG 3 and VCG 4, whereas the second one, including NL-II, is compatible with USA VCG 1 and VCG 2. These groups are not completely separated; in some cases, testers formed heterokaryons with VCG testers from both main groups. Because of the presence of these bridge isolates and because mutants from the same isolate differ in ability to form heterokaryons, it is emphasised that careful selection of isolate testers is an essential step to get a clear picture of VCG diversity.  相似文献   

20.
Auxotrophic mutants were used to determine vegetative relatedness among isolates of Fusarium oxysporum f.sp. dianthi (F.o.d.) , the vascular wilt pathogen of carnation. At the first stage, different nitrate-non-utilizing (nit) mutants were produced from 11 isolates of F.o.d. collected in Israel. Complementation (heterokaryon) tests showed that all the isolates belonged to a single vegetative compatibility group (VCG), and two mutants were chosen as its testers. Additional isolates of Fusarium from carnation, collected during 1986-88, were analysed for pathogenicity and vegetative compatibility with the testers. A total of 170 Fusarium isolates, obtained from 42 cultivars at 40 sites, were tested. All the nit mutants of all the 132 pathogenic isolates formed heterokaryons with the testers, indicating that they belonged to the same VCG. None of the 38 non-pathogenic isolates was vegetatively compatible with the testers. The nit mutants retained pathogenicity to carnation. The F.o.d. testers were not compatible with testers of five other formae speciales of F. oxysporum. Thus, F.o.d. appears to constitute a distinct genetic population within the F. oxysporum complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号