首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Raupach GS  Kloepper JW 《Phytopathology》1998,88(11):1158-1164
ABSTRACT Plant growth-promoting rhizobacteria (PGPR) strains INR7 (Bacillus pumilus), GB03 (Bacillus subtilis), and ME1 (Curtobacterium flaccumfaciens) were tested singly and in combinations for biological control against multiple cucumber pathogens. Investigations under greenhouse conditions were conducted with three cucumber pathogens-Colletotrichum orbiculare (causing anthracnose), Pseudomonas syringae pv. lachrymans (causing angular leaf spot), and Erwinia tracheiphila(causing cucurbit wilt disease)-inoculated singly and in all possible combinations. There was a general trend across all experiments toward greater suppression and enhanced consistency against multiple cucumber pathogens using strain mixtures. The same three PGPR strains were evaluated as seed treatments in two field trials over two seasons, and two strains, IN26 (Burkholderia gladioli) and INR7 also were tested as foliar sprays in one of the trials. In the field trials, the efficacy of induced systemic resistance activity was determined against introduced cucumber pathogens naturally spread within plots through placement of infected plants into the field to provide the pathogen inoculum. PGPR-mediated disease suppression was observed against angular leaf spot in 1996 and against a mixed infection of angular leaf spot and anthracnose in 1997. The three-way mixture of PGPR strains (INR7 plus ME1 plus GB03) as a seed treatment showed intensive plant growth promotion and disease reduction to a level statistically equivalent to the synthetic elicitor Actigard applied as a spray.  相似文献   

2.
BACKGROUND: Plant growth‐promoting rhizobacteria (PGPR) can be potential agents for biological control of plant pathogens, while their combined use with conventional pesticides may increase their efficacy and broaden the disease control spectrum. The effect of four different Bacillus sp. PGPR strains (B. subtilis GB03 and FZB24, B. amyloliquefaciens IN937a and B. pumilus SE34) applied individually and in mixtures, as well as in combined use with acibezolar‐S‐methyl (ASM) and hymexazol, on plant growth promotion and on the control of Fusarium crown and root rot (FCRR) of tomato was evaluated. RESULTS: All PGPR strains promoted the tested plant growth characteristics significantly. A higher promoting effect was provided by SE34. Experiments on population dynamics of PGPR strains revealed that, after 28 days of incubation, populations of strain SE34 remained stable, while the remaining bacterial strains showed a slight decline in their population densities. The GB03 and FZB24 strains provided a higher disease suppression when applied individually. However, application of IN937a in a mixture with GB03 provided a higher control efficacy of Fusarium oxysporum f. sp. radicis‐lycopersici (Forl). Treatment of tomato plants with ASM resulted in a small reduction in disease index, while application of hymexazol provided significantly higher control efficacy. Combined applications of the four PGPR strains with either ASM or hymexazol were significantly more effective. CONCLUSION: The results of the study indicate that, when bacilli PGPR strains were combined with pesticides, there was an increased suppression of Forl on tomato plants, and thus they may prove to be important components in FCRR integrated management. Copyright © 2011 Society of Chemical Industry  相似文献   

3.
Cucumber mosaic virus (CMV) is one of the most important plant viruses responsible for sharp reductions in the production of many cultivated plants. Activities of antioxidant enzymes, photosynthetic capacity, proline and total soluble carbohydrates (TSC) content were measured in the leaves of tomato (Solanum lycopercicum cv. Falat) plants treated with phytohormones (salicylic and jasmonic acids and their combination) and inoculated with CMV at 0, 1, 2, 4, 6, 8, and 15 days after the treatments. Based on the results, catalase (CAT) activity decreased in the healthy and infected plants, but peroxidase (POD) activity increased in the CMV-infected plants signifying that POD is more active in H2O2 scavenging in tomato. Because the hormone treatments inhibited the reduction in the enzyme activity, it may be considered as a controlling method against CMV. Superoxide dismutase (SOD) activity was lower in the control until 6 days post inoculation (dpi), but increased after 8 dpi. The infected plants and the hormone-treated plants showed an increased SOD activity from 0 to 15 dpi. Phenylalanine ammonia lyase (PAL) activity also increased in all the treatments over the time period (0-15 dpi). Net photosynthesis (NP) rate and chlorophyll content decreased under the virus infection and hormone treatment, whereas control plants had the highest NP and chlorophyll content. Proline accumulation occurred in the infected and hormone- treated plants, but TSC content decreased in comparison to the control. Reduction of TSC content was not significant in the hormone and virus- treated plants. Expression of CMV coat protein gene (CMV-CP) was decreased by approximately 34% in SA+JA+CMV treatment in comparison to the CMV-infected plants. In conclusion, CMV had harmful effect on physiological traits of tomato plants, but hormone application induced resistance. This resistance may be accomplished through the combination of both hormone-related signaling pathways which likely established a strong resistance network together.  相似文献   

4.
ABSTRACT Two strains of plant growth-promoting rhizobacteria (PGPR), Bacillus pumilus SE34 and Pseudomonas fluorescens 89B61, elicited systemic protection against late blight on tomato and reduced disease severity by a level equivalent to systemic acquired resistance induced by Phytophthora infestans or induced local resistance by chemical inducer beta-amino butyric acid (BABA) in greenhouse assays. Germination of sporangia and zoospores of P. infestans on leaf surfaces of tomato plants treated with the two PGPR strains, pathogen, and chemical BABA was significantly reduced compared with the noninduced control. Induced protection elicited by PGPR, pathogen, and BABA were examined to determine the signal transduction pathways in three tomato lines: salicylic acid (SA)-hydroxylase transgenic tomato (nahG), ethylene insensitive mutants (Nr/Nr), and jasmonic acid insensitive mutants (def1). Results suggest that induced protection elicited by both bacilli and pseudomonad PGPR strains was SA-independent but ethylene- and jasmonic acid-dependent, whereas systemic acquired resistance elicited by the pathogen and induced local resistance by BABA were SA-dependent. The lack of colonization of tomato leaves by strain 89B61 suggests that the observed induced systemic resistance (ISR) was due to systemic protection by strain 89B61 and not attributable to a direct interaction between pathogen and biological control agent. Although strain SE34 was detected on tomato leaves, ISR mainly accounted for the systemic protection with this strain.  相似文献   

5.
Application of Rhizobacteria for Induced Resistance   总被引:6,自引:0,他引:6  
This article provides a review of experiments conducted over a six-year period to develop a biological control system for insect-transmitted diseases in vegetables based on induced systemic resistance (ISR) mediated by plant growth-promoting rhizobacteria (PGPR). Initial experiments investigated the factors involved in treatment with PGPR led to ISR to bacterial wilt disease in cucumber caused by Erwinia tracheiphila. Results demonstrated that PGPR-ISR against bacterial wilt and feeding by the cucumber beetle vectors of E. trachiphiela were associated with reduced concentrations of cucurbitacin, a secondary plant metabolite and powerful beetle feeding stimulant. In other experiments, PGPR induced resistance against bacterial wilt in the absence of the beetle vectors, suggesting that PGPR-ISR protects cucumber against bacterial wilt not only by reducing beetle feeding and transmission of the pathogen, but also through the induction of other plant defense mechanisms after the pathogen has been introduced into the plant. Additional greenhouse and field experiments are described in which PGPR strains were selected for ISR against cucumber mosaic virus (CMV) and tomato mottle virus (ToMoV). Although results varied from year to year, field-grown tomatoes treated with PGPR demonstrated a reduction in the development of disease symptoms, and often a reduction in the incidence of viral infection and an increase in tomato yield. Recent efforts on commercial development of PGPR are described in which biological preparations containing industrial formulated spores of PGPR plus chitosan were formulated and evaluated for use in a transplant soil mix system for developing plants that can withstand disease attack after transplanting in the field.  相似文献   

6.
两株植物根际促生菌对番茄青枯病的生物防治效果评价   总被引:1,自引:0,他引:1  
研究了Erwinia persicinus RA2和Bacillus pumilus WP8浸种和拌土处理对番茄青枯病的实际防治效果,及其对番茄根际微生物群落的影响。结果显示,两株菌都具有防治番茄青枯病的作用,并能不同程度地促进番茄幼苗生长。主要体现在显著提高番茄幼苗健株率,病原菌处理的健株率最低,仅为22.4%,而RA2和WP8浸种处理分别达68.9%和62.8%;促进幼苗地上部增高、增粗和根部生长,如WP8浸种处理的茎叶干重和根干重分别达到4.87 mg·株^-1和35.69 mg·株^-1,分别比病原菌对照提高110.82%和205.83%。浸种处理的促进效应明显优于拌土处理;还能在一定程度上提高土壤水稳性团聚体(〉0.25 mm)比例,WP8浸种处理尤为明显,分别比空白对照和病原菌对照提高269.91%和156.88%。DGGE指纹图谱表明根际微生物群落受番茄种植的影响最大,其次是青枯病菌,而受这两种菌施用的影响最小。  相似文献   

7.
枯草芽孢杆菌PTS-394诱导番茄对灰霉病的系统抗性   总被引:5,自引:0,他引:5  
本文研究了枯草芽孢杆菌PTS-394对番茄的防御相关酶活性、抗病信号转导通路的标志基因表达的诱导情况和诱导抗病性对灰霉病的防治效果。结果显示,菌株PTS-394灌根番茄后,在24~72 h内番茄顶端叶片中PAL、PPO、POX、LOX的活性都有不同程度的持续增加,且72 h时达到最高峰值,随后在96 h下降,与对照相比差异显著;此外,番茄抗病信号通路节点基因NPR1和水杨酸(SA)信号通路激发的防卫基因PR-1a,在24~72 h得到了显著持续高表达。以上结果表明,利用菌株PTS-394灌根番茄后,能够诱导植株产生系统抗病性。菌株PTS-394灌根番茄后48 h,离体叶片挑战接种番茄灰霉菌,结果显示,菌株PTS-394处理的番茄叶片病斑面积仅为对照处理的50%,防控效果达47.1%;温室盆栽试验显示,菌株PTS-394处理后对番茄灰霉的防治效果为58.2%。综上所述,枯草芽孢杆菌PTS-394灌根番茄后,可以触发番茄植株系统性的抗病性,增强植株免疫能力。  相似文献   

8.
本文室内测定了枯草芽孢杆菌Bacillus subtilis对石榴枯萎病菌Ceratocystis fimbriata的抑菌作用,检测其在石榴Punica granatum、番茄Lycopersicum esculentum、大豆Glycine max、青菜Brassica chinensis、芫荽Coriandrum sativum、大葱Allium fistulosum var. giganteum和大蒜Allium sativum根际的定殖动态及其结合作物套栽对石榴枯萎病的盆栽控制效果。结果表明,芽孢杆菌在不同供试植物根际的定殖能力差异大,在石榴根际的定殖力弱,在番茄、大葱和大蒜根际的定殖力强;作物套栽结合施用芽孢杆菌明显地减轻了石榴枯萎病的发病程度,其中芽孢杆菌结合套栽番茄、大葱和大蒜的平均防效分别达78.14%、80.99%和78.91%。综上所述,套栽番茄、大葱和大蒜有望成为一种提高枯草芽孢杆菌控制石榴枯萎病的有效手段。  相似文献   

9.
 根结线虫病严重威胁各类蔬菜作物的生产,是世界上最难防治的土传病害之一。利用生防细菌能够有效地控制蔬菜根结线虫种群数量并降低危害。荧光假单胞菌Sneb825是本实验室筛选出的对南方根结线虫病具有较高防效的生防细菌。本研究通过盆栽试验、裂根试验和温室试验验证了荧光假单胞菌Sneb825诱导番茄抗南方根结线虫侵染的防治效果;通过酶联免疫法(ELISA)和实时荧光定量PCR检测了番茄根系内活性氧与木质素含量及其相关基因表达量的变化。研究发现,Sneb825菌株发酵液不但能够有效降低南方根结线虫对番茄的侵染,而且对番茄植株有显著的促生作用。Sneb825菌株发酵液灌根处理并接种南方根结线虫二龄幼虫后,番茄根系内活性氧(10 dpi)和木质素含量(5 dpi)显著高于空白对照;活性氧合成相关基因RBOH1(10 dpi)和过氧化物酶基因Ep5C(10 dpi)以及木质素合成相关基因Tpx1(5 dpi)的表达量均达到最高值。研究结果表明活性氧和木质素的大量积累是荧光假单胞菌Sneb825诱导番茄抑制南方根结线虫侵染的防御对策之一。荧光假单胞菌可以有效的防治根结线虫病,在农业生产实践中具有潜在的应用前景。  相似文献   

10.
系统侵染的番茄植株中黄瓜花叶病毒的时序变化   总被引:1,自引:0,他引:1  
 采用实时荧光定量PCR (FQ-PCR)和DAS-ELISA方法,研究了22~26℃温室条件下番茄幼苗中黄瓜花叶病毒CNA株系(CMV-CNA)各基因组RNA组分及其外壳蛋白(CP)含量的动态变化,同时结合同期感病植株症状发展和病情指数,分析并探讨CMV各基因组RNA、CP以及病症显示程度之间的时间效应及其相关性。以18S rRNA为内参照,FQ-PCR相对定量分析结果显示:接种后5~30 d,CMV三分体基因组RNA在系统侵染的番茄组织中负荷量变化趋势大体一致,但是不同时期含量差异显著,均经历对数增长期、稳定期和回落期。其中,以RNA2负荷量变化情况最为平缓。DAS-ELISA检测结果显示:CP含量随接种时间延长而持续升高,但其对数增长趋势相对滞后于基因组RNA。番茄幼苗发病症状与CMV基因组RNA及CP负荷量的变化趋势大体一致,但症状表现时间相对滞后。CMV-CNA株系在番茄幼苗中以基因组RNA、CP以及病症显示先后次序出现高峰期,显示病毒基因组RNA及其CP在植物组织内负荷量的变化与植株症状表现并不同步。其动态变化规律将为研究CMV侵染机制,病毒与寄主互作及防病控病提供量化依据。  相似文献   

11.

Two independent field experiments (2017 and 2019) were conducted to evaluate the effects of plant growth promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi (AMF; AMF1: Rhizophagus irregularis strain and AMF2: AMF consortium) and compost (Comp) in comparison to chemical NPK fertilizers on growth and yield of lettuce plants and soil properties. The biofertilizers-biostimulants were applied alone or in combinations and increased significantly the lettuce dry weight (DW), number of leaves, and yield compared to the control. In the first experiment, the highest plant DW was obtained by NPK, PGPR?+?AMF2?+?Comp and PGPR treatments recording an increase of 109, 109, and 95%, respectively, compared to the control plants. In the second experiment the highest plant DW was obtained by the NPK (77%), followed by Comp and PGPR?+?AMF1?+?Comp treatments increasing the plant DW by 52 and 51%, respectively, compared to the control. Concerning to lettuce yield, in the first experiment, the highest yields were obtained by NPK, PGPR?+?AMF2, PGPR?+?AMF1?+?Comp, PGPR, AMF2?+?Comp, AMF1?+?Comp and AMF2 treatments recording an enhancement of 68, 64, 63, 58, 57, 57, and 55%, respectively. In the second experiment, the application of NPK based fertilizers resulted in the highest yield (77%), followed by PGPR?+?AMF1?+?Comp, PGPR?+?AMF2?+?Comp, AMF1?+?Comp, and AMF2?+?Comp treatments, increasing the yield by 61, 61, 54, and 55%, respectively, compared to the control. Concerning the soil organic matter (OM), the applied treatments had significantly increased the amount of the OM compared to the control. The highest amounts of OM were obtained by the PGPR?+?AMF2?+?Comp treatment in the first experiment and the PGPR?+?AMF1?+?Comp treatment in the second experiment. The available phosphorus (P) was significantly increased by the application of all treatments. The highest records were obtained by the application of Comp, PGPR?+?AMF1 and PGPR?+?AMF1?+?Comp treatment after the first experiment. In the second experiment, the highest amount of P was obtained by PGPR?+?AMF2?+?Comp treatment. Application of biofertilizers-biostimulants in combination proved to be beneficial for the improvement of the tested culture yield.

  相似文献   

12.
ABSTRACT Suppressive subtractive hybridization (SSH) was used to identify genetic markers associated with biological control of plant pathogens by Bacillus subtilis. The genomes of two commercialized strains, GB03 and QST713, were compared with that of strain 168, which has no defined biocontrol capacities, to obtain a pool of DNA fragments unique to the two biocontrol strains. The sequences of 149 subtracted fragments were determined and compared with those present in GenBank, but only 80 were found to correspond to known Bacillus genes. Of these, 65 were similar to genes with a wide range of metabolic functions, including the biosynthesis of cell wall components, sporulation, and antibiotic biosynthesis. Sixteen subtracted fragments shared a high degree of similarity to sequences found in multiple B. subtilis strains with proven biocontrol capacities. Oligonucleotide primers specific to nine of these genes were developed. The targeted genes included five genes involved in antibiotic synthesis (bmyB, fenD, ituC,srfAA, and srfAB) and four additional genes (yndJ, yngG, bioA, and a hypothetical open reading frame) not previously associated with biological control. All nine markers were amplified from the commercialized B. subtilis strains GB03, QST713, and MBI600, with the exception of ituC, which was not detected in GB03. The markers also were amplified from four other B. subtilis isolates, but they were not amplified from other related Bacillus strains, including the plant growth-promoting rhizobacteria IN937a and IN937b. Sequencing of the amplified markers revealed that all seven of the isolates that scored positive for multiple markers were genotypically distinct strains. Interestingly, strains scored positive for the amplifiable markers generally were more effective at inhibiting the growth of Rhizoctonia solani and Pythium ultimum than other Bacillus isolates that lacked the markers. The potential utility of the defined genetic markers to further define the diversity, ecology, and biocontrol activities of B. subtilis are discussed.  相似文献   

13.
We previously reported that a strain of Cucumber mosaic virus (Pepo CMV) invaded the shoot apical meristem (SAM, tunica corpus) of tobacco plants at 6–8 days postinoculation (dpi), contrary to earlier observations. To identify a viral factor determining the ability to invade the SAM, we inoculated plants with two other CMV strains, MY17 and Y, and tested the three strains in this study. Immunohistochemical microscopy revealed that MY17 CMV invaded the SAM at 7 dpi, the same as Pepo CMV, but Y CMV did not, even at 21 dpi. Using RNA pseudorecombinants between Pepo and Y CMV, we found that Pepo RNA 2 affected the rate of SAM invasion, and Pepo RNA 3 was required for successful SAM invasion. Inoculation with RNA 1 and RNA 2 from Y CMV and RNA 3 containing the chimeric coat protein (CP) gene between Pepo and Y CMV or a Y RNA 3 point mutant containing a Ser-to-Pro substitution at position 129 in CP (Y129P) revealed that amino acid 129 of CP is the determinant for successful SAM invasion. The rate of SAM invasion of the pseudorecombinants and Y129P was consistent with the efficiency of cell-to-cell movement in the inoculated leaves, implying that SAM invasion by CMV strains may be due to efficient cell-to-cell movement.  相似文献   

14.
Gal-On A  Wolf D  Wang Y  Faure JE  Pilowsky M  Zelcer A 《Phytopathology》1998,88(10):1101-1107
ABSTRACT Tomato breeding lines were transformed with a defective replicase gene from RNA 2 of cucumber mosaic virus (CMV). A total of 63 transformants from five tomato genotypes were evaluated for resistance to CMV strains. The responses of R1 transgenic offspring fit into three categories: fully susceptible lines (44%), fully resistant lines (8%), and an intermediate-type mixture of susceptible and resistant seedlings in variable proportions (48%). Further characterization of the response of two highly resistant lines was performed by mechanical inoculation, aphid transmission, or grafting experiments. No virus was detected in noninoculated leaves from these lines, although a low level of virus accumulated initially in the inoculated leaf. The homozygous R2 plants and further generations that were evaluated (up to R5) showed resistance to the Fny-CMV strain, two Israeli isolates tentatively classified as subgroup IA, and K-CMV (a representative of subgroup IB). These lines were partially resistant to LS-CMV (a representative of subgroup II) when a high-virus-titer inoculum was used. Expression of the viral transgene was verified in these lines; however, the expected translation product was not detectable. In grafting experiments, we demonstrated that CMV virions were blocked in their ability to move from infected rootstocks of nontransformed tomato or tobacco into the transgenic scions. Interestingly, virions could not move through a transgenic intersection into the upper scion. These results provide an additional indication that replicase-mediated resistance affects long-distance movement.  相似文献   

15.
Transgenic tomato plants containing the coat protein (CP) gene of Cucumber mosaic virus (CMV) of subgroup IB were developed through Agrobacterium-mediated transformations. The progenies of transgenic plants showed the presence of transgene, its expression and translation of 26 KDa CP. The T1 and T2 generation plants were evaluated for resistance against challenge inoculations by a homologous strain of CMV. Visual observations of challenged transgenic plants categorized them into resistant, tolerant and susceptible as compared with untransformed control plants. Out of 33 plants of the T1 generation, 36.3% showed resistance and remained symptomless throughout their life, 48.4% showed tolerance which developed delayed symptoms of mild mosaic, and 15.1% showed susceptibility to CMV which developed severe systemic mosaic and leaf distortion symptoms after 30?days of virus challenge. Out of 120 plants of the T2 generation, 60% showed resistance, 26.6% were tolerant and only 13.3% were found susceptible to challenge inoculations of CMV. Resistant transgenic plants also showed less CP accumulation in systemic upper leaves as compared with challenged untransformed plants. In this study, CP of a CMV subgroup IB strain has demonstrated a significant level of resistance in transgenic tomato plants against the CMV strain. The strategy may be applied for better quality and productivity of tomato crops.  相似文献   

16.
枯草芽孢杆菌BS-208和BS-209菌株防治番茄灰霉病研究   总被引:8,自引:1,他引:8       下载免费PDF全文
为开发防治番茄灰霉病Botrytis cinerea的生防细菌,进行了枯草芽孢杆菌Bacillus subtilis BS-208和BS-209菌株对番茄灰霉病的温室和田间防治试验,并测定了两菌株对番茄灰霉病菌的抑制作用。结果表明:BS-208菌株分泌物对番茄灰霉病菌菌丝生长的抑制率为44%以上;BS-208和BS-209菌株的发酵液在经稀释10倍后,对番茄灰霉病菌分生孢子萌发的抑制率可达90%以上。经温室盆栽试验测定,以BS-208和BS-209菌株发酵液和菌体处理后24和48 h接种病菌,防效均达75%以上,好于0 h接种的防效,但分泌物滤液防治效果较差。两年的田间试验结果表明,BS-208和BS-209制剂对番茄灰霉病均具有良好的防治效果,其防效随浓度加大而提高,以800倍液的防效最好,两菌株制剂800倍液连续3次施药后防效均达到74%以上,并且BS-208菌株的防效略高于BS-209菌株。  相似文献   

17.
During regular surveys of banana plantations in the Sindh province of Pakistan for banana bunchy top nanavirus (BBTV), sporadic plants showing mosaic, chlorotic spots intermingled with a dark green area were observed at a few places in the districts of Thatta, Hyderabad and Nawabshah. The infected young plants were uprooted and grown in pots for 2 years to ascertain the cause of the disease. Apart from studying the development of symptoms, the infected plants were tested for the presence of BBTV, cucumber mosaic cucumovirus (CMV), chilli veinal mottle potyvirus (CVMV), tomato mosaic tobamovirus (TMV), potato X potexvirus (PVX) and potato Y potyvirus (PVY) by DAS-ELISA. Virions were also partially purified. The infected plants developed typical symptoms of CMV. All tested plants were ELISA-positive only for CMV, and a partially purified preparation revealed virus particles measuring 25–28 nm in diameter. Based on the characteristic field symptoms, serology and particle morphology, the presence of CMV in banana in Pakistan was established.  相似文献   

18.
Cucumber cotyledons inoculated with Cucumber mosaic virus (CMV, Pepo strain) or Zucchini yellow mosaic virus (ZYMV, Z5-1 isolate) developed either mild chlorotic spots or no symptoms. Cotyledons treated with CMV plus ZYMV also developed mild chlorotic spots. However, plants ZYMV-inoculated cotyledons had veinal yellowing and gradual cell death by 20 days postinoculation (dpi) when co-inoculated with CMV on the other cotyledon. When analyzing this synergism, an enzyme-linked immunosorbent assay showed that CMV gradually increased in CMV-inoculated cotyledons of plants, with the other cotyledon mock- or ZYMV-inoculated. However, CMV significantly increased at 9 to 14 dpi in the ZYMV-inoculated cotyledons of plants co-infected with CMV. ZYMV similarly increased in cotyledon pairs of both co-infected and singly infected plants. Inoculation with PepoΔ2b, a modified Pepo-CMV that lacks translation of the 2b protein, revealed that PepoΔ2b without the 2b protein systemically infected cucumber but induced no symptoms on cotyledons or true leaves. Plants with a ZYMV-inoculated cotyledon and co-infected with PepoΔ2b did not undergo cell death; nevertheless, PepoΔ2b was at high levels comparable to levels of CMV in the ZYMV-inoculated cotyledon. The 2b protein thus seems essential for induction of the novel gradual cell death in ZYMV-inoculated cotyledons of cucumbers co-infected with CMV.  相似文献   

19.
Metabolic products of polyunsaturated fatty acids have been variously implicated in control of microbial pathogens. Induced resistance has been shown as one of the mechanisms of biological control by plant growth promoting rhizobacteria (PGPR). This paper reports a significant lipoxygenase (LOX) activity in groundnut seedlings with production of 13-hydroperoxyoctadecadienoic acid (13-HPODE) and 13-hydroperoxyoctadecatrienoic acid (13-HPOTrE) as major products with linoleic acid (LA) and -linolenic acid (ALA), respectively. Both the hydroperoxides are inhibitory to the growth of Aspergillus niger as measured in micro titer plates. Ours is the first report on induction of LOX activities in groundnut on treatment with a PGPR strain Bacillus subtilis AF 1, and with crown-rot pathogen, A. niger. Treatment with B. subtilis AF 1 enhanced LOX levels in groundnut similarly but earlier to A. niger – treatment. This induction of LOX during activation of growth and pathogen infection was discussed in light of the reported involvement of LOX both in growth and development as well as in plant-pathogen interaction, particularly induced disease resistance.  相似文献   

20.
Silicon amendment significantly reduced bacterial wilt incidence expressed as area under disease progress curve for tomato genotypes L390 (susceptible) by 26.8% and King Kong2 (moderately resistant) by 56.1% compared to non-treated plants grown in hydroponic culture. However, wilt incidence in silicon-treated plants of genotype L390 reached 100% at 13 days post-inoculation (dpi), while in genotype King Kong2, plant death was retarded by 6 days, with 20% reduction of final wilt incidence. Bacterial numbers were significantly lower in silicon-treated compared to non-treated plants in King Kong2 at 2 dpi in midstems and in all organs at 5 dpi, and in Hawaii 7998 (resistant) in all organs at 2 dpi. Differences between genotypes were obvious on midstem level (5 dpi), where bacterial populations were generally significantly lower compared to roots. Increased tolerance was observed in genotypes L390 and King Kong2 with silicon treatment.Silicon accumulated in roots and was low in stems and leaves. Inoculation with Ralstonia solanacearum did not significantly affect silicon uptake and distribution. Negative correlations between root silicon content and bacterial numbers of midstems in genotypes Hawaii 7998 and King Kong2 suggested an induced resistance. Indications for an influence of host genotype and silicon treatment on the phenotypic conversion of R. solanacearum strain To-udk2-sb from fluidal to non-fluidal colonies in planta were observed.This is the first report on the effect of silicon on a bacterial disease and in a silicon-non-accumulator plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号