首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Diab HG  Hu S  Benson DM 《Phytopathology》2003,93(9):1115-1123
ABSTRACT Peat moss-based potting mix was amended with either of two composted swine wastes, CSW1 and CSW2, at rates from 4 to 20% (vol/vol) to evaluate suppression of pre-emergence damping-off of impatiens (Impatiens balsamina) caused by Rhizoctonia solani (anastomosis group-4). A cucumber bioassay was used prior to each impatiens experiment to monitor maturity of compost as the compost aged in a curing pile by evaluating disease suppression toward both Pythium ultimum and R. solani. At 16, 24, 32, and 37 weeks after composting, plug trays filled with compost-amended potting mix were seeded with impatiens and infested with R. solani to determine suppression of damping-off. Pre-emergence damping-off was lower for impatiens grown in potting mix amended with 20% CSW1 than in CSW2-amended and nonamended mixes. To identify relationships between disease suppression and microbial parameters, samples of mixes were collected to determine microbial activity, biomass carbon and nitrogen, functional diversity, and population density. Higher rates of microbial activity were observed with increasing rates of CSW1 amendment than with CSW2 amendments. Microbial biomass carbon and nitrogen also were higher in CSW1-amended mixes than in CSW2-amended potting mixes 1 day prior to seeding and 5 weeks after seeding. Principal component analysis of Biolog-GN2 profiles showed different functional diversities between CSW1- and CSW2-amended mixes. Furthermore, mixes amended with CSW1 had higher colony forming units of fungi, endospore-forming bacteria, and oligotrophic bacteria. Our results suggest that enhanced microbial activity, functional and population diversity of stable compost-amended mix were associated with suppressiveness to Rhizoctonia damping-off in impatiens.  相似文献   

2.
Ground green waste is used as mulch in ornamental landscapes and for tree crops such as avocados. Survival of Armillaria mellea, Phytophthora cinnamomi, Sclerotinia sclerotiorum, and Tylenchulus semipenetrans was assessed for 8 weeks within unturned piles of either recently ground or partially composted green waste. S. sclerotiorum survived at the pile surface and at 10, 30, and 100 cm within the pile for the entire 8 weeks in both fresh green waste (FGW) and aged green waste (AGW). A. mellea and T. semipenetrans did not survive more than 2 days in FGW, while P. cinnamomi persisted for over 21 days in FGW. AGW was less effective in reducing pathogen viability than FGW, most likely because temperatures in AGW peaked at 45 degrees C compared with 70 degrees C in FGW. Survival modeling curves based on pile temperatures indicate the time to inactivate 10 propagules of pathogens was 11, 30, 363, and 50 days for A. mellea, P. cinnamomi, S. sclerotiorum, and T. semipenetrans, respectively. Sclerotia-forming pathogens pose the greatest risk for escape; to ensure eradication of persistent fungi, green waste stockpiles should be turned intermittently to mix pile contents and move pathogen propagules to a location within the pile where they are more likely to be killed by heat, microbial attack, or chemical degradation.  相似文献   

3.
The current study investigates the natural alternatives of methyl bromide on head lettuce plants grown in greenhouse. Lettuce (Lactuca sativa L.) seedlings (cv. “Big Bell”) were treated with six different MBr alternatives which are, Biofumigation with fresh cow manure, fresh chicken manure, or Brassicaceae residuals plus Bio-Compost application (using disease suppressive compost) in comparison with chemical control with one of MBr chemical alternatives (Basamid) and finally negative control (which is the standard farmer treatment). Despite that chemical control with Basamid recorded the highest survival rate, biofumigation with fresh chicken manure gave the best head length, diameter, fresh weight, dry weight, total and marketable yield. Also, highest head quality characteristics such as TSS, SPAD reading, and nitrogen content were recorded with biofumigation with fresh chicken manure. Regardless of the superiority of Biofumigation with fresh chicken manure, Biofumigation with fresh cow manure or Brassicaceae residuals showed a better vegetative growth and quality parameters than farmer treatment (control), and they had significantly less effect than chemical control treatment. Bio-Compost fortified with Trichoderma harzianum and Bacillus subtilis (disease suppressive compost) recorded survival rate similar to biofumigation treatments but were significantly lower than chemical control treatment. Bio-Compost treatment did not result in a good result regarding total and marketable yield head fresh and dry weight. There was no detected significant effect of the studied treatments on stem diameter, L?ascorbic acid (vitamin C), phosphorus and potassium content  相似文献   

4.
ABSTRACT Soil fertility amendments, including composted cotton-gin trash, swine manure, a rye-vetch green manure, or synthetic fertilizers, were applied to subplots and tillage on bare soil; or tillage followed by surface mulch with wheat straw were applied to main plots to determine the effect on the incidence of southern blight caused by Sclerotium rolfsii, yield of processing tomato, and soil microbial communities. The amendment-tillage interaction was significant in 1997 and disease incidence was 67% in tilled bare soil receiving synthetic fertilizers; whereas disease incidence was 3, 12, and 16% in surface-mulched plots amended with a composted cotton-gin trash, swine manure, or a rye-vetch green manure. The amendment effect was significant in 1998, and disease incidence was 61% in plots receiving synthetic fertilizer and was 23, 44, and 53% in plots receiving cotton-gin trash, swine manure, or rye-vetch green manure, respectively. In 1997, yields were highest in tilled surface-mulched plots amended with synthetic fertilizers, cotton-gin trash, or swine manure, respectively. In 1998, yields were low in all plots and there were no significant differences in yield due to treatment. Propagule densities of antagonistic soil fungi in the genus Trichoderma were highest in soils amended with composted cotton-gin trash or swine manure in both years. Propagule densities of fluorescent pseudomonads in soil were higher in plots amended with organic amendments than with synthetic fertilizers in both years. Propagules densities of enteric bacteria were elevated in soils amended with raw swine manure biosolids in both years. Our research indicates that some organic amendments, such as cotton-gin trash, reduced the incidence of southern blight in processing tomato and also enhanced populations of beneficial soil microbes.  相似文献   

5.
ABSTRACT Compost made from organic household and garden waste was used to substitute part of the peat in potting mixtures used for growing woody ornamental nursery stock. The effects of amendment with compost on the colonization of potting mixture by Rhizoctonia solani (AG1) were studied in greenhouse experiments. A bioassay was developed using cucumber as a sensitive herbaceous test plant as a substitute for woody ornamental cuttings. Pathogen growth in the potting mixture was estimated by measuring the distance over which damping-off of seedlings occurred. Compost from two commercial composting facilities suppressed growth of R. solani in potting mixtures with 20% of the product when the compost was fresh (directly after delivery) or long matured (after 5 to 7 months of additional curing). In contrast, short-matured compost (1 month of additional curing) from the same batches stimulated pathogen growth. In vitro mycelial growth of R. solani on mixtures with mature compost was inhibited by microbial antagonism. Compost-amended potting mixtures responded differentially to the addition of cellulose powder; the effect on suppressiveness depended on curing time and origin of the compost. In long-matured compost, suppressiveness to R. solani was associated with high population densities of cellulolytic and oligotrophic actinomycetes. The ratio of the population density of actinomycetes to that of other bacteria was around 200-fold higher in mature suppressive compost than in conducive compost.  相似文献   

6.
ABSTRACT Horticultural potting media have been amended with compost to enhance biological suppression and with Al(2)(SO(4))(3) to enhance abiotic suppression of plant pathogens, but these factors have not been simultaneously incorporated into the same medium. In this study, the efficacy of aluminum (Al)-amended potting medium containing 20% composted swine waste (CSW) was assessed for control of Phytophthora parasitica (syn. P. nicotianae), a soilborne pathogen causing damping-off of many horticultural bedding plants. Steamed and unsteamed media were amended with no Al or Al at 0.0079 g of Al g(-1) of medium with an Al(2)(SO(4))(3) solution at either pH 4 or pH 6. Infested leaf disks were buried for 2-day durations beginning 0, 6, 13, and 21 days after Al amendment. The number of sporangia produced on infested leaf disks was assessed. A similar experiment was conducted to determine the effect of steaming and Al amendments on pathogen populations. Medium treated with the pH 4 solution consistently reduced sporangia production between 38 and 65% on day 0, but no Al effect was noted at subsequent time points. The pH 6 amendment did not consistently affect sporangia production. Exchangeable Al levels decreased over time, and abiotic suppression was only observed at >2 muM Al g(-1) of medium. Pathogen populations were occasionally affected by steaming and Al. Sporangia production in unsteamed medium was reduced by 50% on leaf disks buried on days 6, 13, and 21, but not on day 0. Al amendment of a 20% CSW potting medium enhanced suppression of P. parasitica and abiotic suppression occurred before biological suppression developed.  相似文献   

7.
Plants of the eucalypt. Eucalyptus marginata. selected through a glasshouse screening procedure for resistance or susceptibility to Phytophthora cinnamomi , were established in tissue culture and micropropagated. After inoculation with P. cinnamomi , root lesions in clonal lines selected as resistant (RR) to P. cinnamomi were restricted and became contained within four days after inoculation while lesions in roots of those lines susceptible (SS) to P. cinnamomi continued to extend rapidly. Activity of phenylalanine ammonialyase (PAL) was increased above controls in root segments of the RR lines 48 h after inoculation with P. cinnamomi while activity in unselected seedlings and the SS lines was reduced or unchanged. After inoculation, lignin concentration was increased and reached high levels compared with uninoculated control levels in roots of the two RR lines tested. Constitutive levels of phenolics in roots of the RR lines were up to 94% higher than in seedling roots and levels were further increased after inoculation. Levels of phenolics in the other lines and seedlings were unaltered by inoculation. A line derived from resistant seedlings from a susceptible family (RS) had the highest constitutive levels of lignin, which were further increased after inoculation. Resistance to P. cinnamomi in clonally propagated E. marginata seedlings is based on similar mechanisms to those of field resistant species.  相似文献   

8.
ABSTRACT The associations of Pythium oligandrum with the root cortex, rhizoplane, and rhizosphere were measured with 11 crop species. This work was expedited by the use of a semiselective technique for isolation of P. oligandrum from soil and plant material. Cortical colonization of roots by P. oligandrum was not detected, and the rhizoplanes of the roots of most crops were free of the fungus. However, P. oligandrum was detected in large quantities with every crop tested when roots with adhering soil (rhizosphere soil) were assayed. Different crop species and cultivars of cantaloupe, cauliflower, and tomato varied in rhizosphere densities of P. oligandrum, but rhizosphere population densities of the fungus were consistently higher than in nonrhizosphere soils with plants grown in P. oligandrum-infested sterilized potting mix or an unsterilized mineral soil. After transplanting tomatoes into potting mix infested with P. oligandrum, increases in CFU occurred over time in the rhizosphere but not in the nonrhizosphere soil. In trials on delivery methods of inoculum of P. oligandrum, the rhizosphere populations of tomato plants grown in potting mix were about sixfold higher compared to seed-coat treatments when ground, alginate pelleted oospores were applied to seedlings growing in plug containers prior to transplanting or to pots containing potting mix before direct seeding.  相似文献   

9.

The suppressive effects of soil bio-solarization, which is a new method of soil disinfestation that combines soil bio-fumigation with soil solarization, against the sclerotial viability of Stromatinia cepivora and the subsequent control of white rot disease of onion and garlic were evaluated. Soil was bio-fumigated with fresh amendments of cow manure, chicken manure, horse manure, cruciferous plant residues, or Allium waste, at 30,000 kg/ha. After bio-fumigation, the soil was irrigated and covered with a 200 μm transparent plastic sheet for 60 days. Plots that received fresh amendment and remained uncovered and untreated served as controls. Solarization alone increased the maximum soil temperature to 55.3 °C, 50.3 °C and 46.3 °C at 10, 20, and 30 cm depths, respectively, which led to significant reductions (98.0%, 89.3%, and 62.7%, respectively) in the sclerotial viability of S. cepivora. Soil bio-solarization with cruciferous plant residues or Allium waste resulted in the strongest negative effects on the sclerotial viability of S. cepivora, with reductions of 100.0%, 98.7%, and 87.3% or 100.0%, 99.3%, and 87.7%, at 10, 20, and 30 cm depths, respectively. Compared to the non-treated control, these treatments significantly reduced the incidence of white rot disease in onion and garlic, which led to increases in onion and garlic yield in fields that were heavily infested by S. cepivora.

  相似文献   

10.
The pathogenicity of five species of Phytophthora to English walnut was studied in a greenhouse experiment. Phytophthora cinnamomi was the most aggressive species, causing severe root rot and seedling mortality. The other species tested, P. cambivora , P. citricola , P. cactorum and P. cryptogea , did not induce visible crown symptoms on seedlings 2 months after inoculation. Some strains of P. cambivora and P. cactorum also caused taproot damage to seedlings. All except one of the tested isolates caused significant necrosis of fine roots and a significant reduction of root weight compared with noninoculated seedlings. Reduction of above-ground plant development was not statistically significant. While P. cinnamomi is well known as an aggressive primary pathogen of English walnut, the other species of Phytophthora may act as predisposing factors to walnut decline, affecting root system development and increasing host vulnerability to environmental stress.  相似文献   

11.
A series of laboratory experiments were conducted to investigate the capacity of Bradysia impatiens (Johannsen) larvae to ingest propagules from two strains each of Pythium aphanidermatum (Edson) Fitzp. and P. ultimum Trow and transmit the pathogens to healthy geranium seedlings on a filter-paper substrate in petri dishes. The capacity of fungus gnat larvae to transmit P. aphanidermatum to seedlings rooted in a commercial peat-based potting mix and germination of Pythium oospores and hyphal swellings before and after passage through the guts of larval fungus gnats were also examined. Assays revealed that Pythium spp. transmission by larval fungus gnats varied greatly with the assay substrate and also with the number and nature of ingested propagules. Transmission was highest (65%) in the petri dish assays testing larvae fed P. aphanidermatum K-13, a strain that produced abundant oospores. Transmission of strain K-13 was much lower (<6%) in plug cells with potting mix. Larvae were less efficient at vectoring P. ultimum strain PSN-1, which produced few oospores, and no transmission was observed with two non-oospore-producing strains: P. aphanidermatum Pa58 and P. ultimum P4. Passage of P. aphanidermatum K-13 through larval guts significantly increased oospore germination. However, decreased germination of hyphal swellings was observed following larval gut passage for strains of P. ultimum. These results expand previous studies suggesting that larval fungus gnats may vector Pythium spp.  相似文献   

12.
The soil-borne plant pathogen Phytophthora cinnamomi is widely distributed in the jarrah ( Eucalyptus marginata ) forest of Western Australia. Infested areas of the forest are mined for bauxite and the presence of the pathogen could after the survival of trees re-established after mining. Monitoring of 21 revegetated bauxite mined areas found that survival of jarrah and marri ( Eucalyptus calophylla ) trees was high (85–92% and 93–99%, respectively) after 5–7 years but P. cinnamomi was recovered from dead trees. To identify trees for more detailed study, plant symptoms of stress such as suppressed growth, wilting, yellowing of crown, coppice and epicormic growth and visible stem lesions were used. Over a period of 15 months, 30 E. marginata and 28 E. calophylla were carefully excavated and examined for lesions and the presence of P. cinnamomi. P. cinnamomi was consistently isolated from the lignotuber and collar regions of both hosts but never from the roots alone, except in one instance from E. calophylla where it was isolated from a non-lesioned root. In E. calophylla , the lignotuber appears to be very susceptible to invasion by P. cinnamomi in contrast to the roots which appear resistant. The invasion of the pathogen into the lignotuber and collar regions of both species was consistently associated with ponding of water around the plants. This ponding persists for many hours to days after rain and appears to provide an infection court for P. cinnamomi. Development of rehabilitation procedures to reduce this ponding will minimize the risk of tree deaths caused by this pathogen.  相似文献   

13.
Phytophthora cinnamomi was the species isolated most frequently from soil associated with dead or dying proteaceous plants in the Adelaide region of South Australia. The association of P. citricola with diseased Banksia species in South Australia is reported for the first time. The response of a range of Banksia species to inoculation with P. cinnamomi and P. citricola was assessed. P. cinnamomi was generally more pathogenic than P. citricola . Inoculation of 10-month-old seedlings with colonized millet seed or zoospores showed that B. hookeriana and B. ashbyi were the most susceptible of the species tested, whereas B. coccinea , B. menziesii and B. prionotes were moderately susceptible. B. ericifolia , B. serrata , B. spinulosa var. collina and B. lemanniana showed tolerance. Similarly, 2–3-week-old seedlings of B. ericifolia , B. serrata and B. spinulosa var. collina inoculated in vitro showed little disease 6 and 12 days after inoculation, whereas B. baueri, B. baxteri , B. coccinea and B. solandri , as well as B. hookeriana and B. ashbyi , showed severe symptoms of disease after 6 days. Results suggested that the in vitro assay may have potential in the evaluation of breeding material. Development of infection was studied microscopically in 2–3-week-old seedlings of B. coccinea , B. menziesii , B. serrata and B. spinulosa var. collina inoculated in vitro with zoospores of P. cinnamomi . Roots of B. coccinea and B. menziesii were colonized rapidly and root tips became necrotic within 24 h and hypocotyls by day 5. Penetration was delayed in B. spinulosa var. collina , and callose deposition was delayed in B. coccinea . Necrosis of roots of B. serrata and B. spinulosa var. collina began 3 days after inoculation but rarely extended more than half way up the root by 9 days.  相似文献   

14.
The effect of different soil amendments and biological control agents on soil-borne root diseases that cause significant economic losses in organic and other soil-based tomato production systems (Pyrenochaeta lycopersici and Verticillium albo-atrum) was compared. Organic matter inputs (fresh Brassica tissue, household waste compost and composted cow manure) significantly reduced soil-borne disease severity (measured as increased root fresh weight) and/or increased tomato fruit yield, with some treatments also increasing fruit number and/or size. Soil biological activity also increased with increasing organic matter input levels and there were significant positive correlations between soil biological activity, root fresh weight and fruit yield. This indicates that one mechanism of soil-borne disease control by organic matter input may be increased competition by the soil biota. Chitin/chitosan products also significantly reduced soil-borne disease incidence and increased tomato fruit yield, number and/or size, but had no effect on soil biological activity. Biological control products based on Bacillus subtilis and Pythium oligandrum and commercial seaweed extract (Marinure) and fish emulsion (Nugro)-based liquid fertilisers had no positive effect on soil-borne disease incidence and fruit yield, number and size. The use of ‘suppressive’ organic matter inputs alone or in combination with chitin/chitosan soil amendments can therefore be recommended as methods to control soil-borne diseases in organic and other soil-based production systems.  相似文献   

15.
Influence of beet soil-borne virus on mechanically inoculated sugar beet   总被引:1,自引:1,他引:0  
Seven-day-old seedlings of three different sugar-beet varieties (Carla, Rizor and Desirée) were inoculated mechanically with the Ahlum isolate of beet soil-borne virus (BSBV) in crude sap from infected leaves of Chenopodium quinoa. Control plants were mock-inoculated with sap from healthy C. quinoa. After potting up, the plants were arranged in a randomized block design on nine neighbouring benches in a glasshouse. Plants were sampled after 11 weeks, the fresh weight of the tap roots determined and the presence of virus checked by ELISA. Considerable variation in tap-root growth was observed between benches. Overall, BSBV inoculation reduced tap-root weight of Rizor and Carla by c. 20%. Problems arising in attempts to assess yield loss due to BSBV in naturally infected sugar beet are discussed.  相似文献   

16.
ABSTRACT The impact of Brassica napus seed meal on the microbial complex that incites apple replant disease was evaluated in greenhouse trials. Regardless of glucosinolate content, seed meal amendment at a rate of 0.1% (vol/vol) significantly enhanced growth of apple and suppressed apple root infection by Rhizoctonia spp. and Pratylenchus penetrans. High glucosinolate B. napus cv. Dwarf Essex seed meal amendments did not consistently suppress soil populations of Pythium spp. or apple root infection by this pathogen. Application of a low glucosinolate containing B. napus seed meal at a rate of 1.0% (vol/vol) resulted in a significant increase in recovery of Pythium spp. from apple roots, and a corresponding reduction in apple seedling root biomass. When applied at lower rates, B. napus seed meal amendments enhanced populations of fluorescent Pseudomonas spp., but these bacteria were not recovered from soils amended with seed meal at a rate of 2% (vol/vol). Seed meal amendments resulted in increased soil populations of total bacteria and actinomycetes. B. napus cv. Dwarf Essex seed meal amendments were phytotoxic to apple when applied at a rate of 2% (vol/vol), and phytotoxicity was not diminished when planting was delayed for as long as 12 weeks after application. These findings suggest that B. napus seed meal amendments can be a useful tool in the management of apple replant disease and, in the case of Rhizoctonia spp., that disease control operates through mechanisms other than production of glucosinolate hydrolysis products.  相似文献   

17.
Green H  Jensen DF 《Phytopathology》2000,90(9):1049-1055
ABSTRACT This study demonstrates that outward growth of mycelium from primary foci through bulk potting mix to roots of adjoining plants can be an important means of spread of damping-off and root rot caused by Pythium ultimum. The use of a rhizobox system, which confines plant roots, enabled us to study the spread of actively growing mycelium between root systems placed at precise distances from each other. In steamed potting mix, hyphae of P. ultimum on average grew 9.6 cm from diseased root tissue compared to 5.3 cm in raw potting mix. The density of mycelium was highest within the first 2 cm from the infected root tissue, decreasing with increasing distances from the roots. Accordingly, the disease on adjacent plants decreased as the distance from infected roots increased. The time required for damping-off of adjacent plants was 3 days slower in raw as compared to steamed potting mix and increased by 2 days for each additional centimeter between the rhizoboxes. The presence of Trichoderma harzianum diminished the production of secondary inoculum and reduced the ability of P. ultimum hyphae to extend through bulk potting mix. In conclusion, the concentration of the primary inoculum, the plant density, the distance separating diseased from healthy roots, the resident microflora, and the presence of an antagonist were shown to be important factors affecting disease spread by mycelial growth.  相似文献   

18.
Richter BS  Ivors K  Shi W  Benson DM 《Phytopathology》2011,101(2):223-230
Wood-based mulches are used in avocado production and are being tested on Fraser fir for reduction of Phytophthora root rot, caused by Phytophthora cinnamomi. Research with avocado has suggested a role of microbial cellulase enzymes in pathogen suppression through effects on the cellulosic cell walls of Phytophthora. This work was conducted to determine whether cellulase activity could account for disease suppression in mulch systems. A standard curve was developed to correlate cellulase activity in mulches with concentrations of a cellulase product. Based on this curve, cellulase activity in mulch samples was equivalent to a cellulase enzyme concentration of 25 U ml(-1) or greater of product. Sustained exposure of P. cinnamomi to cellulase at 10 to 50 U ml(-1) significantly reduced sporangia production, but biomass was only reduced with concentrations over 100 U ml(-1). In a lupine bioassay, cellulase was applied to infested soil at 100 or 1,000 U ml(-1) with three timings. Cellulase activity diminished by 47% between 1 and 15 days after application. Cellulase applied at 100 U ml(-1) 2 weeks before planting yielded activity of 20.08 μmol glucose equivalents per gram of soil water (GE g(-1) aq) at planting, a level equivalent to mulch samples. Cellulase activity at planting ranged from 3.35 to 48.67 μmol GE g(-1) aq, but no treatment significantly affected disease progress. Based on in vitro assays, cellulase activity in mulch was sufficient to impair sporangia production of P. cinnamomi, but not always sufficient to impact vegetative biomass.  相似文献   

19.
ABSTRACT Composts can induce systemic resistance in plants to disease. Unfortunately, the degree of resistance induced seems highly variable and the basis for this effect is not understood. In this work, only 1 of 79 potting mixes prepared with different batches of mature, stabilized composts produced from several different types of solid wastes suppressed the severity of bacterial leaf spot of radish caused by Xanthomonas campestris pv. armoraciae compared with disease on plants produced in a nonamended sphagnum peat mix. An additional batch of compost-amended mix that had been inoculated with Trichoderma hamatum 382 (T(382)), which is known to induce systemic resistance in plants, also suppressed the disease. A total of 11 out of 538 rhizobacterial strains isolated from roots of radish seedlings grown in these two compostamended mixes that suppressed bacterial leaf spot were able to significantly suppress the severity of this disease when used as inoculum in the compost-amended mixes. The most effective strains were identified as Bacillus sp. based on partial sequencing of 16S rDNA. These strains were significantly less effective in reducing the severity of this disease than T(382). A combined inoculum consisting of T(382) and the most effective rhizobacterial Bacillus strain was less effective than T(382) alone. A drench applied to the potting mix with the systemic acquired resistance-inducing chemical acibenzolar-S-methyl was significantly more effective than T(382) in several, but not all tests. We conclude that systemic suppression of foliar diseases induced by compost amendments is a rare phenomenon. Furthermore, inoculation of compost-amended potting mixes with biocontrol agents such as T(382) that induce systemic resistance in plants can significantly increase the frequency of systemic disease control obtained with natural compost amendments.  相似文献   

20.
The effect of different organic composts on the suppression of wilt disease of spinach caused by Fusarium oxysporum f. sp. spinaciae was evaluated in a continuous cropping system in both containers and in microplot field trials. Test soils infested with the pathogen were amended with wheatbran, wheatbran and sawdust, coffee grounds, chicken manure, or mixture of different composts with and without 5% (w/w) crab shell powder either once (5%, w/w) or continuously (2.5%) into the test soils infested with the pathogen. In the container trials, the soil amended with composts became suppressive to disease development on the second and third cropping. The suppressive effect was notable in the soil amended with the mixture of compost with and without crab shell powder. The coffee compost lowered soil pH but became suppressive to the disease after modifying the soil pH. In the field trial using the mixture of the different composts containing 5% crab shell powder, a combination of 5% before the first cropping and 2.5% every second cropping gave stable disease control and promoted plant growth. After compost amendment, populations of fungi, bacteria and actinomycetes as measured by dilution plate counting and the total microbial activity as evaluated by fluorescein diacetate hydrolysis increased and population of the pathogen gradually decreased. These phenomena were especially notable in soils amended with the mixture of different composts. These results indicate that diversity in the organic materials promotes higher microbial activity and population in the soil thereby enhancing disease suppressiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号